1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
|
.. _fmpz-mod-poly:
**fmpz_mod_poly.h** -- polynomials over integers mod n
===============================================================================
The :type:`fmpz_mod_poly_t` data type represents elements of
`\mathbb{Z}/n\mathbb{Z}[x]` for a fixed modulus `n`. The
:type:`fmpz_mod_poly` module provides routines for memory management,
basic arithmetic and some higher level functions such as GCD, etc.
Each coefficient of an :type:`fmpz_mod_poly_t` is of type :type:`fmpz`
and represents an integer reduced modulo the fixed modulus `n` in the
range `[0,n)`.
Unless otherwise specified, all functions in this section permit
aliasing between their input arguments and between their input and
output arguments.
The :type:`fmpz_mod_poly_t` type is a typedef for an array of length 1
of :type:`fmpz_mod_poly_struct`'s. This permits passing parameters of
type :type:`fmpz_mod_poly_t` by reference.
In reality one never deals directly with the ``struct`` and simply
deals with objects of type :type:`fmpz_mod_poly_t`. For simplicity we
will think of an :type:`fmpz_mod_poly_t` as a ``struct``, though in
practice to access fields of this ``struct``, one needs to dereference
first, e.g. to access the ``length`` field of an
:type:`fmpz_mod_poly_t` called ``poly1`` one writes ``poly1->length``.
An :type:`fmpz_mod_poly_t` is said to be *normalised* if either
``length`` is zero, or if the leading coefficient of the polynomial is
non-zero. All :type:`fmpz_mod_poly` functions expect their inputs to
be normalised and all coefficients to be reduced modulo `n`, and
unless otherwise specified they produce output that is normalised with
coefficients reduced modulo `n`.
Simple example
--------------
The following example computes the square of the polynomial `5x^3 + 6`
in `\mathbb{Z}/7\mathbb Z[x]`.
.. code:: c
#include "flint/fmpz_mod.h"
#include "flint/fmpz_mod_poly.h"
int main(void)
{
fmpz_mod_ctx_t ctx;
fmpz_mod_poly_t x, y;
fmpz_mod_ctx_init_ui(ctx, 7);
fmpz_mod_poly_init(x, ctx);
fmpz_mod_poly_init(y, ctx);
fmpz_mod_poly_set_coeff_ui(x, 3, 5, ctx);
fmpz_mod_poly_set_coeff_ui(x, 0, 6, ctx);
fmpz_mod_poly_sqr(y, x, ctx);
flint_printf("x = %{fmpz_mod_poly} (%{fmpz_mod_ctx})\n"
"x^2 = %{fmpz_mod_poly} (%{fmpz_mod_ctx})\n",
x, ctx, y, ctx);
fmpz_mod_poly_clear(x, ctx);
fmpz_mod_poly_clear(y, ctx);
fmpz_mod_ctx_clear(ctx);
}
The output is:
::
4 7 6 0 0 5
7 7 1 0 0 4 0 0 4
Types, macros and constants
-------------------------------------------------------------------------------
.. type:: fmpz_mod_poly_struct
A structure holding a polynomial over the integers modulo `n`.
.. type:: fmpz_mod_poly_t
An array of length 1 of ``fmpz_mod_poly_struct``.
Memory management
--------------------------------------------------------------------------------
.. function:: void fmpz_mod_poly_init(fmpz_mod_poly_t poly, const fmpz_mod_ctx_t ctx)
Initialises ``poly`` for use with context ``ctx`` and set it to zero.
A corresponding call to :func:`fmpz_mod_poly_clear` must be made to free the memory used by the polynomial.
.. function:: void fmpz_mod_poly_init2(fmpz_mod_poly_t poly, slong alloc, const fmpz_mod_ctx_t ctx)
Initialises ``poly`` with space for at least ``alloc`` coefficients
and sets the length to zero. The allocated coefficients are all set to
zero.
.. function:: void fmpz_mod_poly_clear(fmpz_mod_poly_t poly, const fmpz_mod_ctx_t ctx)
Clears the given polynomial, releasing any memory used. It must
be reinitialised in order to be used again.
.. function:: void fmpz_mod_poly_realloc(fmpz_mod_poly_t poly, slong alloc, const fmpz_mod_ctx_t ctx)
Reallocates the given polynomial to have space for ``alloc``
coefficients. If ``alloc`` is zero the polynomial is cleared
and then reinitialised. If the current length is greater than
``alloc`` the polynomial is first truncated to length ``alloc``.
.. function:: void fmpz_mod_poly_fit_length(fmpz_mod_poly_t poly, slong len, const fmpz_mod_ctx_t ctx)
If ``len`` is greater than the number of coefficients currently
allocated, then the polynomial is reallocated to have space for at
least ``len`` coefficients. No data is lost when calling this
function.
The function efficiently deals with the case where it is called
many times in small increments by at least doubling the number of
allocated coefficients when length is larger than the number of
coefficients currently allocated.
.. function:: void _fmpz_mod_poly_normalise(fmpz_mod_poly_t poly)
Sets the length of ``poly`` so that the top coefficient is non-zero.
If all coefficients are zero, the length is set to zero. This function
is mainly used internally, as all functions guarantee normalisation.
.. function:: void _fmpz_mod_poly_set_length(fmpz_mod_poly_t poly, slong len)
Demotes the coefficients of ``poly`` beyond ``len`` and sets
the length of ``poly`` to ``len``.
.. function:: void fmpz_mod_poly_truncate(fmpz_mod_poly_t poly, slong len, const fmpz_mod_ctx_t ctx)
If the current length of ``poly`` is greater than ``len``, it
is truncated to have the given length. Discarded coefficients are
not necessarily set to zero.
.. function:: void fmpz_mod_poly_set_trunc(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly, slong n, const fmpz_mod_ctx_t ctx)
Notionally truncate ``poly`` to length `n` and set ``res`` to the
result. The result is normalised.
Randomisation
--------------------------------------------------------------------------------
.. function:: void fmpz_mod_poly_randtest(fmpz_mod_poly_t f, flint_rand_t state, slong len, const fmpz_mod_ctx_t ctx)
Sets the polynomial~`f` to a random polynomial of length up~``len``.
.. function:: void fmpz_mod_poly_randtest_irreducible(fmpz_mod_poly_t f, flint_rand_t state, slong len, const fmpz_mod_ctx_t ctx)
Sets the polynomial~`f` to a random irreducible polynomial of length
up~``len``, assuming ``len`` is positive.
.. function:: void fmpz_mod_poly_randtest_not_zero(fmpz_mod_poly_t f, flint_rand_t state, slong len, const fmpz_mod_ctx_t ctx)
Sets the polynomial~`f` to a random polynomial of length up~``len``,
assuming ``len`` is positive.
.. function:: void fmpz_mod_poly_randtest_monic(fmpz_mod_poly_t poly, flint_rand_t state, slong len, const fmpz_mod_ctx_t ctx)
Generates a random monic polynomial with length ``len``.
.. function:: void fmpz_mod_poly_randtest_monic_irreducible(fmpz_mod_poly_t poly, flint_rand_t state, slong len, const fmpz_mod_ctx_t ctx)
Generates a random monic irreducible polynomial with length ``len``.
.. function:: void fmpz_mod_poly_randtest_monic_primitive(fmpz_mod_poly_t poly, flint_rand_t state, slong len, const fmpz_mod_ctx_t ctx)
Generates a random monic irreducible primitive polynomial with
length ``len``.
.. function:: void fmpz_mod_poly_randtest_trinomial(fmpz_mod_poly_t poly, flint_rand_t state, slong len, const fmpz_mod_ctx_t ctx)
Generates a random monic trinomial of length ``len``.
.. function:: int fmpz_mod_poly_randtest_trinomial_irreducible(fmpz_mod_poly_t poly, flint_rand_t state, slong len, slong max_attempts, const fmpz_mod_ctx_t ctx)
Attempts to set ``poly`` to a monic irreducible trinomial of
length ``len``. It will generate up to ``max_attempts``
trinomials in attempt to find an irreducible one. If
``max_attempts`` is ``0``, then it will keep generating
trinomials until an irreducible one is found. Returns `1` if one
is found and `0` otherwise.
.. function:: void fmpz_mod_poly_randtest_pentomial(fmpz_mod_poly_t poly, flint_rand_t state, slong len, const fmpz_mod_ctx_t ctx)
Generates a random monic pentomial of length ``len``.
.. function:: int fmpz_mod_poly_randtest_pentomial_irreducible(fmpz_mod_poly_t poly, flint_rand_t state, slong len, slong max_attempts, const fmpz_mod_ctx_t ctx)
Attempts to set ``poly`` to a monic irreducible pentomial of
length ``len``. It will generate up to ``max_attempts``
pentomials in attempt to find an irreducible one. If
``max_attempts`` is ``0``, then it will keep generating
pentomials until an irreducible one is found. Returns `1` if one
is found and `0` otherwise.
.. function:: void fmpz_mod_poly_randtest_sparse_irreducible(fmpz_mod_poly_t poly, flint_rand_t state, slong len, const fmpz_mod_ctx_t ctx)
Attempts to set ``poly`` to a sparse, monic irreducible polynomial
with length ``len``. It attempts to find an irreducible
trinomial. If that does not succeed, it attempts to find a
irreducible pentomial. If that fails, then ``poly`` is just
set to a random monic irreducible polynomial.
Attributes
--------------------------------------------------------------------------------
.. function:: slong fmpz_mod_poly_degree(const fmpz_mod_poly_t poly, const fmpz_mod_ctx_t ctx)
Returns the degree of the polynomial. The degree of the zero
polynomial is defined to be `-1`.
.. function:: slong fmpz_mod_poly_length(const fmpz_mod_poly_t poly, const fmpz_mod_ctx_t ctx)
Returns the length of the polynomial, which is one more than
its degree.
.. function:: fmpz * fmpz_mod_poly_lead(const fmpz_mod_poly_t poly, const fmpz_mod_ctx_t ctx)
Returns a pointer to the first leading coefficient of ``poly``
if this is non-zero, otherwise returns ``NULL``.
Assignment and basic manipulation
--------------------------------------------------------------------------------
.. function:: void fmpz_mod_poly_set(fmpz_mod_poly_t poly1, const fmpz_mod_poly_t poly2, const fmpz_mod_ctx_t ctx)
Sets the polynomial ``poly1`` to the value of ``poly2``.
.. function:: void fmpz_mod_poly_swap(fmpz_mod_poly_t poly1, fmpz_mod_poly_t poly2, const fmpz_mod_ctx_t ctx)
Swaps the two polynomials. This is done efficiently by swapping
pointers rather than individual coefficients.
.. function:: void fmpz_mod_poly_zero(fmpz_mod_poly_t poly, const fmpz_mod_ctx_t ctx)
Sets ``poly`` to the zero polynomial.
.. function:: void fmpz_mod_poly_one(fmpz_mod_poly_t poly, const fmpz_mod_ctx_t ctx)
Sets ``poly`` to the constant polynomial `1`.
.. function:: void fmpz_mod_poly_zero_coeffs(fmpz_mod_poly_t poly, slong i, slong j, const fmpz_mod_ctx_t ctx)
Sets the coefficients of `X^k` for `k \in [i, j)` in the polynomial
to zero.
.. function:: void fmpz_mod_poly_reverse(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly, slong n, const fmpz_mod_ctx_t ctx)
This function considers the polynomial ``poly`` to be of length `n`,
notionally truncating and zero padding if required, and reverses
the result. Since the function normalises its result ``res`` may be
of length less than `n`.
Conversion
--------------------------------------------------------------------------------
.. function:: void fmpz_mod_poly_set_ui(fmpz_mod_poly_t f, ulong c, const fmpz_mod_ctx_t ctx)
Sets the polynomial `f` to the constant `c` reduced modulo `p`.
.. function:: void fmpz_mod_poly_set_fmpz(fmpz_mod_poly_t f, const fmpz_t c, const fmpz_mod_ctx_t ctx)
Sets the polynomial `f` to the constant `c` reduced modulo `p`.
.. function:: void fmpz_mod_poly_set_fmpz_poly(fmpz_mod_poly_t f, const fmpz_poly_t g, const fmpz_mod_ctx_t ctx)
Sets `f` to `g` reduced modulo `p`, where `p` is the modulus that
is part of the data structure of `f`.
.. function:: void fmpz_mod_poly_get_fmpz_poly(fmpz_poly_t f, const fmpz_mod_poly_t g, const fmpz_mod_ctx_t ctx)
Sets `f` to `g`. This is done simply by lifting the coefficients
of `g` taking representatives `[0, p) \subset \mathbf{Z}`.
.. function:: void fmpz_mod_poly_get_nmod_poly(nmod_poly_t f, const fmpz_mod_poly_t g)
Sets `f` to `g` assuming the modulus of both polynomials is the same (no
checking is performed).
.. function:: void fmpz_mod_poly_set_nmod_poly(fmpz_mod_poly_t f, const nmod_poly_t g)
Sets `f` to `g` assuming the modulus of both polynomials is the same (no
checking is performed).
Comparison
--------------------------------------------------------------------------------
.. function:: int fmpz_mod_poly_equal(const fmpz_mod_poly_t poly1, const fmpz_mod_poly_t poly2, const fmpz_mod_ctx_t ctx)
Returns non-zero if the two polynomials are equal, otherwise returns zero.
.. function:: int fmpz_mod_poly_equal_trunc(const fmpz_mod_poly_t poly1, const fmpz_mod_poly_t poly2, slong n, const fmpz_mod_ctx_t ctx)
Notionally truncates the two polynomials to length `n` and returns non-zero
if the two polynomials are equal, otherwise returns zero.
.. function:: int fmpz_mod_poly_is_zero(const fmpz_mod_poly_t poly, const fmpz_mod_ctx_t ctx)
Returns non-zero if the polynomial is zero.
.. function:: int fmpz_mod_poly_is_one(const fmpz_mod_poly_t poly, const fmpz_mod_ctx_t ctx)
Returns non-zero if the polynomial is the constant `1`.
.. function:: int fmpz_mod_poly_is_gen(const fmpz_mod_poly_t poly, const fmpz_mod_ctx_t ctx)
Returns non-zero if the polynomial is the degree `1` polynomial `x`.
Getting and setting coefficients
--------------------------------------------------------------------------------
.. function:: void fmpz_mod_poly_set_coeff_fmpz(fmpz_mod_poly_t poly, slong n, const fmpz_t x, const fmpz_mod_ctx_t ctx)
Sets the coefficient of `X^n` in the polynomial to `x`,
assuming `n \geq 0`.
.. function:: void fmpz_mod_poly_set_coeff_ui(fmpz_mod_poly_t poly, slong n, ulong x, const fmpz_mod_ctx_t ctx)
Sets the coefficient of `X^n` in the polynomial to `x`,
assuming `n \geq 0`.
.. function:: void fmpz_mod_poly_get_coeff_fmpz(fmpz_t x, const fmpz_mod_poly_t poly, slong n, const fmpz_mod_ctx_t ctx)
Sets `x` to the coefficient of `X^n` in the polynomial,
assuming `n \geq 0`.
.. function:: void fmpz_mod_poly_set_coeff_mpz(fmpz_mod_poly_t poly, slong n, const mpz_t x, const fmpz_mod_ctx_t ctx)
Sets the coefficient of `X^n` in the polynomial to `x`,
assuming `n \geq 0`.
.. function:: void fmpz_mod_poly_get_coeff_mpz(mpz_t x, const fmpz_mod_poly_t poly, slong n, const fmpz_mod_ctx_t ctx)
Sets `x` to the coefficient of `X^n` in the polynomial,
assuming `n \geq 0`.
Shifting
--------------------------------------------------------------------------------
.. function:: void _fmpz_mod_poly_shift_left(fmpz * res, const fmpz * poly, slong len, slong n)
Sets ``(res, len + n)`` to ``(poly, len)`` shifted left by
`n` coefficients.
Inserts zero coefficients at the lower end. Assumes that ``len``
and `n` are positive, and that ``res`` fits ``len + n`` elements.
Supports aliasing between ``res`` and ``poly``.
.. function:: void fmpz_mod_poly_shift_left(fmpz_mod_poly_t f, const fmpz_mod_poly_t g, slong n, const fmpz_mod_ctx_t ctx)
Sets ``res`` to ``poly`` shifted left by `n` coeffs. Zero
coefficients are inserted.
.. function:: void _fmpz_mod_poly_shift_right(fmpz * res, const fmpz * poly, slong len, slong n)
Sets ``(res, len - n)`` to ``(poly, len)`` shifted right by
`n` coefficients.
Assumes that ``len`` and `n` are positive, that ``len > n``,
and that ``res`` fits ``len - n`` elements. Supports aliasing
between ``res`` and ``poly``, although in this case the top
coefficients of ``poly`` are not set to zero.
.. function:: void fmpz_mod_poly_shift_right(fmpz_mod_poly_t f, const fmpz_mod_poly_t g, slong n, const fmpz_mod_ctx_t ctx)
Sets ``res`` to ``poly`` shifted right by `n` coefficients. If `n`
is equal to or greater than the current length of ``poly``, ``res``
is set to the zero polynomial.
Addition and subtraction
--------------------------------------------------------------------------------
.. function:: void _fmpz_mod_poly_add(fmpz * res, const fmpz * poly1, slong len1, const fmpz * poly2, slong len2, const fmpz_mod_ctx_t ctx)
Sets ``res`` to the sum of ``(poly1, len1)`` and
``(poly2, len2)``. It is assumed that ``res`` has
sufficient space for the longer of the two polynomials.
.. function:: void fmpz_mod_poly_add(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly1, const fmpz_mod_poly_t poly2, const fmpz_mod_ctx_t ctx)
Sets ``res`` to the sum of ``poly1`` and ``poly2``.
.. function:: void fmpz_mod_poly_add_series(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly1, const fmpz_mod_poly_t poly2, slong n, const fmpz_mod_ctx_t ctx)
Notionally truncate ``poly1`` and ``poly2`` to length `n` and set
``res`` to the sum.
.. function:: void _fmpz_mod_poly_sub(fmpz * res, const fmpz * poly1, slong len1, const fmpz * poly2, slong len2, const fmpz_mod_ctx_t ctx)
Sets ``res`` to ``(poly1, len1)`` minus ``(poly2, len2)``. It
is assumed that ``res`` has sufficient space for the longer of the
two polynomials.
.. function:: void fmpz_mod_poly_sub(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly1, const fmpz_mod_poly_t poly2, const fmpz_mod_ctx_t ctx)
Sets ``res`` to ``poly1`` minus ``poly2``.
.. function:: void fmpz_mod_poly_sub_series(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly1, const fmpz_mod_poly_t poly2, slong n, const fmpz_mod_ctx_t ctx)
Notionally truncate ``poly1`` and ``poly2`` to length `n` and set
``res`` to the difference.
.. function:: void _fmpz_mod_poly_neg(fmpz * res, const fmpz * poly, slong len, const fmpz_mod_ctx_t ctx)
Sets ``(res, len)`` to the negative of ``(poly, len)``
modulo `p`.
.. function:: void fmpz_mod_poly_neg(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly, const fmpz_mod_ctx_t ctx)
Sets ``res`` to the negative of ``poly`` modulo `p`.
Scalar multiplication and division
--------------------------------------------------------------------------------
.. function:: void _fmpz_mod_poly_scalar_mul_fmpz(fmpz * res, const fmpz * poly, slong len, const fmpz_t x, const fmpz_mod_ctx_t ctx)
void _fmpz_mod_poly_scalar_mul_ui(fmpz * res, const fmpz * poly, slong len, ulong x, const fmpz_mod_ctx_t ctx)
Sets ``(res, len``) to ``(poly, len)`` multiplied by `x`,
reduced modulo `p`.
.. function:: void fmpz_mod_poly_scalar_mul_fmpz(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly, const fmpz_t x, const fmpz_mod_ctx_t ctx)
void fmpz_mod_poly_scalar_mul_ui(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly, ulong x, const fmpz_mod_ctx_t ctx)
Sets ``res`` to ``poly`` multiplied by `x`.
.. function:: void fmpz_mod_poly_scalar_addmul_fmpz(fmpz_mod_poly_t rop, const fmpz_mod_poly_t op, const fmpz_t x, const fmpz_mod_ctx_t ctx)
Adds to ``rop`` the product of ``op`` by the scalar ``x``.
.. function:: void _fmpz_mod_poly_scalar_div_fmpz(fmpz * res, const fmpz * poly, slong len, const fmpz_t x, const fmpz_mod_ctx_t ctx)
Sets ``(res, len``) to ``(poly, len)`` divided by `x` (i.e.
multiplied by the inverse of `x \pmod{p}`). The result is reduced modulo
`p`.
.. function:: void fmpz_mod_poly_scalar_div_fmpz(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly, const fmpz_t x, const fmpz_mod_ctx_t ctx)
Sets ``res`` to ``poly`` divided by `x`, (i.e. multiplied by the
inverse of `x \pmod{p}`). The result is reduced modulo `p`.
Multiplication
--------------------------------------------------------------------------------
.. function:: void _fmpz_mod_poly_mul(fmpz * res, const fmpz * poly1, slong len1, const fmpz * poly2, slong len2, const fmpz_mod_ctx_t ctx)
Sets ``(res, len1 + len2 - 1)`` to the product of ``(poly1, len1)``
and ``(poly2, len2)``. Assumes ``len1 >= len2 > 0``. Allows
zero-padding of the two input polynomials.
.. function:: void fmpz_mod_poly_mul(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly1, const fmpz_mod_poly_t poly2, const fmpz_mod_ctx_t ctx)
Sets ``res`` to the product of ``poly1`` and ``poly2``.
.. function:: void _fmpz_mod_poly_mullow(fmpz * res, const fmpz * poly1, slong len1, const fmpz * poly2, slong len2, slong n, const fmpz_mod_ctx_t ctx)
Sets ``(res, n)`` to the lowest `n` coefficients of the product of
``(poly1, len1)`` and ``(poly2, len2)``.
Assumes ``len1 >= len2 > 0`` and ``0 < n <= len1 + len2 - 1``.
Allows for zero-padding in the inputs. Does not support aliasing between
the inputs and the output.
.. function:: void fmpz_mod_poly_mullow(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly1, const fmpz_mod_poly_t poly2, slong n, const fmpz_mod_ctx_t ctx)
Sets ``res`` to the lowest `n` coefficients of the product of
``poly1`` and ``poly2``.
.. function:: void _fmpz_mod_poly_sqr(fmpz * res, const fmpz * poly, slong len, const fmpz_mod_ctx_t ctx)
Sets ``res`` to the square of ``poly``.
.. function:: void fmpz_mod_poly_sqr(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly, const fmpz_mod_ctx_t ctx)
Computes ``res`` as the square of ``poly``.
.. function:: void fmpz_mod_poly_mulhigh(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly1, const fmpz_mod_poly_t poly2, slong start, const fmpz_mod_ctx_t ctx)
Computes the product of ``poly1`` and ``poly2`` and writes the
coefficients from ``start`` onwards into the high coefficients of
``res``, the remaining coefficients being arbitrary.
.. function:: void _fmpz_mod_poly_mulmod(fmpz * res, const fmpz * poly1, slong len1, const fmpz * poly2, slong len2, const fmpz * f, slong lenf, const fmpz_mod_ctx_t ctx)
Sets ``res, len1 + len2 - 1`` to the remainder of the product of
``poly1`` and ``poly2`` upon polynomial division by ``f``.
It is required that ``len1 + len2 - lenf > 0``, which is equivalent
to requiring that the result will actually be reduced. Otherwise, simply
use ``_fmpz_mod_poly_mul`` instead.
Aliasing of ``f`` and ``res`` is not permitted.
.. function:: void fmpz_mod_poly_mulmod(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly1, const fmpz_mod_poly_t poly2, const fmpz_mod_poly_t f, const fmpz_mod_ctx_t ctx)
Sets ``res`` to the remainder of the product of ``poly1`` and
``poly2`` upon polynomial division by ``f``.
.. function:: void _fmpz_mod_poly_mulmod_preinv(fmpz * res, const fmpz * poly1, slong len1, const fmpz * poly2, slong len2, const fmpz * f, slong lenf, const fmpz * finv, slong lenfinv, const fmpz_mod_ctx_t ctx)
Sets ``res, len1 + len2 - 1`` to the remainder of the product of
``poly1`` and ``poly2`` upon polynomial division by ``f``.
It is required that ``finv`` is the inverse of the reverse of ``f``
mod ``x^lenf``. It is required that ``len1 + len2 - lenf > 0``,
which is equivalent to requiring that the result will actually be reduced.
It is required that ``len1 < lenf`` and ``len2 < lenf``.
Otherwise, simply use ``_fmpz_mod_poly_mul`` instead.
Aliasing of ``f`` or ``finv`` and ``res`` is not permitted.
.. function:: void fmpz_mod_poly_mulmod_preinv(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly1, const fmpz_mod_poly_t poly2, const fmpz_mod_poly_t f, const fmpz_mod_poly_t finv, const fmpz_mod_ctx_t ctx)
Sets ``res`` to the remainder of the product of ``poly1`` and
``poly2`` upon polynomial division by ``f``. ``finv`` is the
inverse of the reverse of ``f``. It is required that ``poly1`` and
``poly2`` are reduced modulo ``f``.
Products
--------------------------------------------------------------------------------
.. function:: void _fmpz_mod_poly_product_roots_fmpz_vec(fmpz * poly, const fmpz * xs, slong n, const fmpz_mod_ctx_t ctx)
Sets ``(poly, n + 1)`` to the monic polynomial which is the product
of `(x - x_0)(x - x_1) \cdots (x - x_{n-1})`, the roots `x_i` being
given by ``xs``. It is required that the roots are canonical.
Aliasing of the input and output is not allowed.
.. function:: void fmpz_mod_poly_product_roots_fmpz_vec(fmpz_mod_poly_t poly, const fmpz * xs, slong n, const fmpz_mod_ctx_t ctx)
Sets ``poly`` to the monic polynomial which is the product
of `(x - x_0)(x - x_1) \cdots (x - x_{n-1})`, the roots `x_i` being
given by ``xs``. It is required that the roots are canonical.
.. function:: int fmpz_mod_poly_find_distinct_nonzero_roots(fmpz * roots, const fmpz_mod_poly_t A, const fmpz_mod_ctx_t ctx)
If ``A`` has `\deg(A)` distinct nonzero roots in `\mathbb{F}_p`, write these roots out to ``roots[0]`` to ``roots[deg(A) - 1]`` and return ``1``.
Otherwise, return ``0``. It is assumed that ``A`` is nonzero and that the modulus of ``A`` is prime.
This function uses Rabin's probabilistic method via gcd's with `(x + \delta)^{\frac{p-1}{2}} - 1`.
Powering
--------------------------------------------------------------------------------
.. function:: void _fmpz_mod_poly_pow(fmpz * rop, const fmpz * op, slong len, ulong e, const fmpz_mod_ctx_t ctx)
Sets ``rop = poly^e``, assuming that `e > 1` and ``elen > 0``,
and that ``res`` has space for ``e*(len - 1) + 1`` coefficients.
Does not support aliasing.
.. function:: void fmpz_mod_poly_pow(fmpz_mod_poly_t rop, const fmpz_mod_poly_t op, ulong e, const fmpz_mod_ctx_t ctx)
Computes ``rop = poly^e``. If `e` is zero, returns one,
so that in particular ``0^0 = 1``.
.. function:: void _fmpz_mod_poly_pow_trunc(fmpz * res, const fmpz * poly, ulong e, slong trunc, const fmpz_mod_ctx_t ctx)
Sets ``res`` to the low ``trunc`` coefficients of ``poly``
(assumed to be zero padded if necessary to length ``trunc``) to
the power ``e``. This is equivalent to doing a powering followed
by a truncation. We require that ``res`` has enough space for
``trunc`` coefficients, that ``trunc > 0`` and that
``e > 1``. Aliasing is not permitted.
.. function:: void fmpz_mod_poly_pow_trunc(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly, ulong e, slong trunc, const fmpz_mod_ctx_t ctx)
Sets ``res`` to the low ``trunc`` coefficients of ``poly``
to the power ``e``. This is equivalent to doing a powering
followed by a truncation.
.. function:: void _fmpz_mod_poly_pow_trunc_binexp(fmpz * res, const fmpz * poly, ulong e, slong trunc, const fmpz_mod_ctx_t ctx)
Sets ``res`` to the low ``trunc`` coefficients of ``poly``
(assumed to be zero padded if necessary to length ``trunc``) to
the power ``e``. This is equivalent to doing a powering followed
by a truncation. We require that ``res`` has enough space for
``trunc`` coefficients, that ``trunc > 0`` and that
``e > 1``. Aliasing is not permitted. Uses the binary
exponentiation method.
.. function:: void fmpz_mod_poly_pow_trunc_binexp(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly, ulong e, slong trunc, const fmpz_mod_ctx_t ctx)
Sets ``res`` to the low ``trunc`` coefficients of ``poly``
to the power ``e``. This is equivalent to doing a powering
followed by a truncation. Uses the binary exponentiation method.
.. function:: void _fmpz_mod_poly_powmod_ui_binexp(fmpz * res, const fmpz * poly, ulong e, const fmpz * f, slong lenf, const fmpz_mod_ctx_t ctx)
Sets ``res`` to ``poly`` raised to the power ``e``
modulo ``f``, using binary exponentiation. We require ``e > 0``.
We require ``lenf > 1``. It is assumed that ``poly`` is already
reduced modulo ``f`` and zero-padded as necessary to have length
exactly ``lenf - 1``. The output ``res`` must have room for
``lenf - 1`` coefficients.
.. function:: void fmpz_mod_poly_powmod_ui_binexp(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly, ulong e, const fmpz_mod_poly_t f, const fmpz_mod_ctx_t ctx)
Sets ``res`` to ``poly`` raised to the power ``e``
modulo ``f``, using binary exponentiation. We require ``e >= 0``.
.. function:: void _fmpz_mod_poly_powmod_ui_binexp_preinv(fmpz * res, const fmpz * poly, ulong e, const fmpz * f, slong lenf, const fmpz * finv, slong lenfinv, const fmpz_mod_ctx_t ctx)
Sets ``res`` to ``poly`` raised to the power ``e``
modulo ``f``, using binary exponentiation. We require ``e > 0``.
We require ``finv`` to be the inverse of the reverse of ``f``.
We require ``lenf > 1``. It is assumed that ``poly`` is already
reduced modulo ``f`` and zero-padded as necessary to have length
exactly ``lenf - 1``. The output ``res`` must have room for
``lenf - 1`` coefficients.
.. function:: void fmpz_mod_poly_powmod_ui_binexp_preinv(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly, ulong e, const fmpz_mod_poly_t f, const fmpz_mod_poly_t finv, const fmpz_mod_ctx_t ctx)
Sets ``res`` to ``poly`` raised to the power ``e``
modulo ``f``, using binary exponentiation. We require ``e >= 0``.
We require ``finv`` to be the inverse of the reverse of ``f``.
.. function:: void _fmpz_mod_poly_powmod_fmpz_binexp(fmpz * res, const fmpz * poly, const fmpz_t e, const fmpz * f, slong lenf, const fmpz_mod_ctx_t ctx)
Sets ``res`` to ``poly`` raised to the power ``e``
modulo ``f``, using binary exponentiation. We require ``e > 0``.
We require ``lenf > 1``. It is assumed that ``poly`` is already
reduced modulo ``f`` and zero-padded as necessary to have length
exactly ``lenf - 1``. The output ``res`` must have room for
``lenf - 1`` coefficients.
.. function:: void fmpz_mod_poly_powmod_fmpz_binexp(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly, const fmpz_t e, const fmpz_mod_poly_t f, const fmpz_mod_ctx_t ctx)
Sets ``res`` to ``poly`` raised to the power ``e``
modulo ``f``, using binary exponentiation. We require ``e >= 0``.
.. function:: void _fmpz_mod_poly_powmod_fmpz_binexp_preinv(fmpz * res, const fmpz * poly, const fmpz_t e, const fmpz * f, slong lenf, const fmpz * finv, slong lenfinv, const fmpz_mod_ctx_t ctx)
Sets ``res`` to ``poly`` raised to the power ``e``
modulo ``f``, using binary exponentiation. We require ``e > 0``.
We require ``finv`` to be the inverse of the reverse of ``f``.
We require ``lenf > 1``. It is assumed that ``poly`` is already
reduced modulo ``f`` and zero-padded as necessary to have length
exactly ``lenf - 1``. The output ``res`` must have room for
``lenf - 1`` coefficients.
.. function:: void fmpz_mod_poly_powmod_fmpz_binexp_preinv(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly, const fmpz_t e, const fmpz_mod_poly_t f, const fmpz_mod_poly_t finv, const fmpz_mod_ctx_t ctx)
Sets ``res`` to ``poly`` raised to the power ``e``
modulo ``f``, using binary exponentiation. We require ``e >= 0``.
We require ``finv`` to be the inverse of the reverse of ``f``.
.. function:: void _fmpz_mod_poly_powmod_x_fmpz_preinv(fmpz * res, const fmpz_t e, const fmpz * f, slong lenf, const fmpz * finv, slong lenfinv, const fmpz_mod_ctx_t ctx)
Sets ``res`` to ``x`` raised to the power ``e`` modulo ``f``,
using sliding window exponentiation. We require ``e > 0``.
We require ``finv`` to be the inverse of the reverse of ``f``.
We require ``lenf > 2``. The output ``res`` must have room for
``lenf - 1`` coefficients.
.. function:: void fmpz_mod_poly_powmod_x_fmpz_preinv(fmpz_mod_poly_t res, const fmpz_t e, const fmpz_mod_poly_t f, const fmpz_mod_poly_t finv, const fmpz_mod_ctx_t ctx)
Sets ``res`` to ``x`` raised to the power ``e``
modulo ``f``, using sliding window exponentiation. We require
``e >= 0``. We require ``finv`` to be the inverse of the reverse of
``
.. function:: void _fmpz_mod_poly_powers_mod_preinv_naive(fmpz ** res, const fmpz * f, slong flen, slong n, const fmpz * g, slong glen, const fmpz * ginv, slong ginvlen, const fmpz_mod_ctx_t ctx)
Compute ``f^0, f^1, ..., f^(n-1) mod g``, where ``g`` has length ``glen``
and ``f`` is reduced mod ``g`` and has length ``flen`` (possibly zero
spaced). Assumes ``res`` is an array of ``n`` arrays each with space for
at least ``glen - 1`` coefficients and that ``flen > 0``. We require that
``ginv`` of length ``ginvlen`` is set to the power series inverse of the
reverse of ``g``.
.. function:: void fmpz_mod_poly_powers_mod_naive(fmpz_mod_poly_struct * res, const fmpz_mod_poly_t f, slong n, const fmpz_mod_poly_t g, const fmpz_mod_ctx_t ctx)
Set the entries of the array ``res`` to ``f^0, f^1, ..., f^(n-1) mod g``.
No aliasing is permitted between the entries of ``res`` and either of the
inputs.
.. function:: void _fmpz_mod_poly_powers_mod_preinv_threaded_pool(fmpz ** res, const fmpz * f, slong flen, slong n, const fmpz * g, slong glen, const fmpz * ginv, slong ginvlen, const fmpz_mod_ctx_t p, thread_pool_handle * threads, slong num_threads)
Compute ``f^0, f^1, ..., f^(n-1) mod g``, where ``g`` has length ``glen``
and ``f`` is reduced mod ``g`` and has length ``flen`` (possibly zero
spaced). Assumes ``res`` is an array of ``n`` arrays each with space for
at least ``glen - 1`` coefficients and that ``flen > 0``. We require that
``ginv`` of length ``ginvlen`` is set to the power series inverse of the
reverse of ``g``.
.. function:: void fmpz_mod_poly_powers_mod_bsgs(fmpz_mod_poly_struct * res, const fmpz_mod_poly_t f, slong n, const fmpz_mod_poly_t g, const fmpz_mod_ctx_t ctx)
Set the entries of the array ``res`` to ``f^0, f^1, ..., f^(n-1) mod g``.
No aliasing is permitted between the entries of ``res`` and either of the
inputs.
.. function:: void fmpz_mod_poly_frobenius_powers_2exp_precomp(fmpz_mod_poly_frobenius_powers_2exp_t pow, const fmpz_mod_poly_t f, const fmpz_mod_poly_t finv, ulong m, const fmpz_mod_ctx_t ctx)
If ``p = f->p``, compute `x^{(p^1)}`, `x^{(p^2)}`, `x^{(p^4)}`, ...,
`x^{(p^{(2^l)})} \pmod{f}` where `2^l` is the greatest power of `2` less than
or equal to `m`.
Allows construction of `x^{(p^k)}` for `k = 0`, `1`, ..., `x^{(p^m)} \pmod{f}`
using :func:`fmpz_mod_poly_frobenius_power`.
Requires precomputed inverse of `f`, i.e. newton inverse.
.. function:: void fmpz_mod_poly_frobenius_powers_2exp_clear(fmpz_mod_poly_frobenius_powers_2exp_t pow, const fmpz_mod_ctx_t ctx)
Clear resources used by the ``fmpz_mod_poly_frobenius_powers_2exp_t``
struct.
.. function:: void fmpz_mod_poly_frobenius_power(fmpz_mod_poly_t res, fmpz_mod_poly_frobenius_powers_2exp_t pow, const fmpz_mod_poly_t f, ulong m, const fmpz_mod_ctx_t ctx)
If ``p = f->p``, compute `x^{(p^m)} \pmod{f}`.
Requires precomputed frobenius powers supplied by
``fmpz_mod_poly_frobenius_powers_2exp_precomp``.
If `m == 0` and `f` has degree `0` or `1`, this performs a division.
However an impossible inverse by the leading coefficient of `f` will have
been caught by ``fmpz_mod_poly_frobenius_powers_2exp_precomp``.
.. function:: void fmpz_mod_poly_frobenius_powers_precomp(fmpz_mod_poly_frobenius_powers_t pow, const fmpz_mod_poly_t f, const fmpz_mod_poly_t finv, ulong m, const fmpz_mod_ctx_t ctx)
If ``p = f->p``, compute `x^{(p^0)}`, `x^{(p^1)}`, `x^{(p^2)}`, `x^{(p^3)}`,
..., `x^{(p^m)} \pmod{f}`.
Requires precomputed inverse of `f`, i.e. newton inverse.
.. function:: void fmpz_mod_poly_frobenius_powers_clear(fmpz_mod_poly_frobenius_powers_t pow, const fmpz_mod_ctx_t ctx)
Clear resources used by the ``fmpz_mod_poly_frobenius_powers_t``
struct.
Division
--------------------------------------------------------------------------------
.. function:: void _fmpz_mod_poly_divrem_basecase(fmpz * Q, fmpz * R, const fmpz * A, slong lenA, const fmpz * B, slong lenB, const fmpz_t invB, const fmpz_mod_ctx_t ctx)
Computes ``(Q, lenA - lenB + 1)``, ``(R, lenA)`` such that
`A = B Q + R` with `0 \leq \operatorname{len}(R) < \operatorname{len}(B)`.
Assumes that the leading coefficient of `B` is invertible
modulo `p`, and that ``invB`` is the inverse.
Assumes that `\operatorname{len}(A), \operatorname{len}(B) > 0`. Allows zero-padding in
``(A, lenA)``. `R` and `A` may be aliased, but apart from this no
aliasing of input and output operands is allowed.
.. function:: void fmpz_mod_poly_divrem_basecase(fmpz_mod_poly_t Q, fmpz_mod_poly_t R, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B, const fmpz_mod_ctx_t ctx)
Computes `Q`, `R` such that `A = B Q + R` with
`0 \leq \operatorname{len}(R) < \operatorname{len}(B)`.
Assumes that the leading coefficient of `B` is invertible
modulo `p`.
.. function:: void _fmpz_mod_poly_divrem_newton_n_preinv (fmpz * Q, fmpz * R, const fmpz * A, slong lenA, const fmpz * B, slong lenB, const fmpz * Binv, slong lenBinv, const fmpz_mod_ctx_t ctx)
Computes `Q` and `R` such that `A = BQ + R` with `\operatorname{len}(R)` less than
``lenB``, where `A` is of length ``lenA`` and `B` is of length
``lenB``. We require that `Q` have space for ``lenA - lenB + 1``
coefficients. Furthermore, we assume that `Binv` is the inverse of the
reverse of `B` mod `x^{\operatorname{len}(B)}`. The algorithm used is to call
:func:`div_newton_n_preinv` and then multiply out and compute
the remainder.
.. function:: void fmpz_mod_poly_divrem_newton_n_preinv(fmpz_mod_poly_t Q, fmpz_mod_poly_t R, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B, const fmpz_mod_poly_t Binv, const fmpz_mod_ctx_t ctx)
Computes `Q` and `R` such that `A = BQ + R` with `\operatorname{len}(R) < \operatorname{len}(B)`.
We assume `Binv` is the inverse of the reverse of `B` mod `x^{\operatorname{len}(B)}`.
It is required that the length of `A` is less than or equal to
2*the length of `B` - 2.
The algorithm used is to call :func:`div_newton_n` and then multiply out
and compute the remainder.
.. function:: void _fmpz_mod_poly_div_newton_n_preinv (fmpz * Q, const fmpz * A, slong lenA, const fmpz * B, slong lenB, const fmpz * Binv, slong lenBinv, const fmpz_mod_ctx_t ctx)
Notionally computes polynomials `Q` and `R` such that `A = BQ + R` with
`\operatorname{len}(R)` less than ``lenB``, where ``A`` is of length ``lenA``
and ``B`` is of length ``lenB``, but return only `Q`.
We require that `Q` have space for ``lenA - lenB + 1`` coefficients
and assume that the leading coefficient of `B` is a unit. Furthermore, we
assume that `Binv` is the inverse of the reverse of `B` mod `x^{\operatorname{len}(B)}`.
The algorithm used is to reverse the polynomials and divide the
resulting power series, then reverse the result.
.. function:: void fmpz_mod_poly_div_newton_n_preinv(fmpz_mod_poly_t Q, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B, const fmpz_mod_poly_t Binv, const fmpz_mod_ctx_t ctx)
Notionally computes `Q` and `R` such that `A = BQ + R` with
`\operatorname{len}(R) < \operatorname{len}(B)`, but returns only `Q`.
We assume that the leading coefficient of `B` is a unit and that `Binv` is
the inverse of the reverse of `B` mod `x^{\operatorname{len}(B)}`.
It is required that the length of `A` is less than or equal to
2*the length of `B` - 2.
The algorithm used is to reverse the polynomials and divide the
resulting power series, then reverse the result.
.. function:: ulong fmpz_mod_poly_remove(fmpz_mod_poly_t f, const fmpz_mod_poly_t g, const fmpz_mod_ctx_t ctx)
Removes the highest possible power of ``g`` from ``f`` and
returns the exponent.
.. function:: void _fmpz_mod_poly_rem_basecase(fmpz * R, const fmpz * A, slong lenA, const fmpz * B, slong lenB, const fmpz_t invB, const fmpz_mod_ctx_t ctx)
Notationally, computes `Q`, `R` such that `A = B Q + R` with
`0 \leq \operatorname{len}(R) < \operatorname{len}(B)` but only sets ``(R, lenB - 1)``.
Allows aliasing only between `A` and `R`. Allows zero-padding
in `A` but not in `B`. Assumes that the leading coefficient
of `B` is a unit modulo `p`.
.. function:: void fmpz_mod_poly_rem_basecase(fmpz_mod_poly_t R, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B, const fmpz_mod_ctx_t ctx)
Notationally, computes `Q`, `R` such that `A = B Q + R` with
`0 \leq \operatorname{len}(R) < \operatorname{len}(B)` assuming that the leading term
of `B` is a unit.
.. function:: void _fmpz_mod_poly_div(fmpz * Q, const fmpz * A, slong lenA, const fmpz * B, slong lenB, const fmpz_t invB, const fmpz_mod_ctx_t ctx)
Notationally, computes `Q`, `R` such that `A = B Q + R` with
`0 \leq \operatorname{len}(R) < \operatorname{len}(B)` but only sets ``(Q, lenA - lenB + 1)``.
Assumes that the leading coefficient of `B` is a unit modulo `p`.
.. function:: void fmpz_mod_poly_div(fmpz_mod_poly_t Q, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B, const fmpz_mod_ctx_t ctx)
Notationally, computes `Q`, `R` such that `A = B Q + R` with
`0 \leq \operatorname{len}(R) < \operatorname{len}(B)` assuming that the leading term
of `B` is a unit.
.. function:: void _fmpz_mod_poly_divrem(fmpz * Q, fmpz * R, const fmpz * A, slong lenA, const fmpz * B, slong lenB, const fmpz_t invB, const fmpz_mod_ctx_t ctx)
Computes ``(Q, lenA - lenB + 1)``, ``(R, lenB - 1)`` such that
`A = B Q + R` and `0 \leq \operatorname{len}(R) < \operatorname{len}(B)`.
Assumes that `B` is non-zero, that the leading coefficient
of `B` is invertible modulo `p` and that ``invB`` is
the inverse.
Assumes `\operatorname{len}(A) \geq \operatorname{len}(B) > 0`. Allows zero-padding in
``(A, lenA)``. No aliasing of input and output operands is
allowed.
.. function:: void fmpz_mod_poly_divrem(fmpz_mod_poly_t Q, fmpz_mod_poly_t R, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B, const fmpz_mod_ctx_t ctx)
Computes `Q`, `R` such that `A = B Q + R` and
`0 \leq \operatorname{len}(R) < \operatorname{len}(B)`.
Assumes that `B` is non-zero and that the leading coefficient
of `B` is invertible modulo `p`.
.. function:: void fmpz_mod_poly_divrem_f(fmpz_t f, fmpz_mod_poly_t Q, fmpz_mod_poly_t R, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B, const fmpz_mod_ctx_t ctx)
Either finds a non-trivial factor~`f` of the modulus~`p`, or computes
`Q`, `R` such that `A = B Q + R` and `0 \leq \operatorname{len}(R) < \operatorname{len}(B)`.
If the leading coefficient of `B` is invertible in `\mathbf{Z}/(p)`,
the division with remainder operation is carried out, `Q` and `R` are
computed correctly, and `f` is set to `1`. Otherwise, `f` is set to
a non-trivial factor of `p` and `Q` and `R` are not touched.
Assumes that `B` is non-zero.
.. function:: void _fmpz_mod_poly_rem(fmpz * R, const fmpz * A, slong lenA, const fmpz * B, slong lenB, const fmpz_t invB, const fmpz_mod_ctx_t ctx)
Notationally, computes ``(Q, lenA - lenB + 1)``, ``(R, lenB - 1)``
such that `A = B Q + R` and `0 \leq \operatorname{len}(R) < \operatorname{len}(B)`, returning
only the remainder part.
Assumes that `B` is non-zero, that the leading coefficient
of `B` is invertible modulo `p` and that ``invB`` is
the inverse.
Assumes `\operatorname{len}(A) \geq \operatorname{len}(B) > 0`. Allows zero-padding in
``(A, lenA)``. No aliasing of input and output operands is
allowed.
.. function:: void fmpz_mod_poly_rem_f(fmpz_t f, fmpz_mod_poly_t R, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B, const fmpz_mod_ctx_t ctx)
If `f` returns with the value `1` then the function operates as
``_fmpz_mod_poly_rem``, otherwise `f` will be set to a nontrivial
factor of `p`.
.. function:: void fmpz_mod_poly_rem(fmpz_mod_poly_t R, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B, const fmpz_mod_ctx_t ctx)
Notationally, computes `Q`, `R` such that `A = B Q + R`
and `0 \leq \operatorname{len}(R) < \operatorname{len}(B)`, returning only the remainder
part.
Assumes that `B` is non-zero and that the leading coefficient
of `B` is invertible modulo `p`.
Divisibility testing
--------------------------------------------------------------------------------
.. function:: int _fmpz_mod_poly_divides_classical(fmpz * Q, const fmpz * A, slong lenA, const fmpz * B, slong lenB, const fmpz_mod_ctx_t ctx)
Returns `1` if `(B, lenB)` divides `(A, lenA)` and sets
`(Q, lenA - lenB + 1)` to the quotient. Otherwise, returns `0` and sets
`(Q, lenA - lenB + 1)` to zero. We require that `lenA >= lenB > 0`.
.. function:: int fmpz_mod_poly_divides_classical(fmpz_mod_poly_t Q, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B, const fmpz_mod_ctx_t ctx)
Returns `1` if `B` divides `A` and sets `Q` to the quotient. Otherwise
returns `0` and sets `Q` to zero.
.. function:: int _fmpz_mod_poly_divides(fmpz * Q, const fmpz * A, slong lenA, const fmpz * B, slong lenB, const fmpz_mod_ctx_t ctx)
Returns `1` if `(B, lenB)` divides `(A, lenA)` and sets
`(Q, lenA - lenB + 1)` to the quotient. Otherwise, returns `0` and sets
`(Q, lenA - lenB + 1)` to zero. We require that `lenA >= lenB > 0`.
.. function:: int fmpz_mod_poly_divides(fmpz_mod_poly_t Q, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B, const fmpz_mod_ctx_t ctx)
Returns `1` if `B` divides `A` and sets `Q` to the quotient. Otherwise
returns `0` and sets `Q` to zero.
Power series inversion
--------------------------------------------------------------------------------
.. function:: void _fmpz_mod_poly_inv_series(fmpz * Qinv, const fmpz * Q, slong Qlen, slong n, const fmpz_mod_ctx_t ctx)
Sets ``(Qinv, n)`` to the inverse of ``(Q, n)`` modulo `x^n`,
where `n \geq 1`, assuming that the bottom coefficient of `Q` is
invertible modulo `p` and that its inverse is ``cinv``.
.. function:: void fmpz_mod_poly_inv_series(fmpz_mod_poly_t Qinv, const fmpz_mod_poly_t Q, slong n, const fmpz_mod_ctx_t ctx)
Sets ``Qinv`` to the inverse of ``Q`` modulo `x^n`,
where `n \geq 1`, assuming that the bottom coefficient of
`Q` is a unit.
.. function:: void fmpz_mod_poly_inv_series_f(fmpz_t f, fmpz_mod_poly_t Qinv, const fmpz_mod_poly_t Q, slong n, const fmpz_mod_ctx_t ctx)
Either sets `f` to a nontrivial factor of `p` with the value of
``Qinv`` undefined, or sets ``Qinv`` to the inverse of ``Q``
modulo `x^n`, where `n \geq 1`.
Power series division
--------------------------------------------------------------------------------
.. function:: void _fmpz_mod_poly_div_series(fmpz * Q, const fmpz * A, slong Alen, const fmpz * B, slong Blen, slong n, const fmpz_mod_ctx_t ctx)
Set ``(Q, n)`` to the quotient of the series ``(A, Alen``) and
``(B, Blen)`` assuming ``Alen, Blen <= n``. We assume the bottom
coefficient of ``B`` is invertible modulo `p`.
.. function:: void fmpz_mod_poly_div_series(fmpz_mod_poly_t Q, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B, slong n, const fmpz_mod_ctx_t ctx)
Set `Q` to the quotient of the series `A` by `B`, thinking of the series as
though they were of length `n`. We assume that the bottom coefficient of
`B` is a unit.
Greatest common divisor
--------------------------------------------------------------------------------
.. function:: void fmpz_mod_poly_make_monic(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly, const fmpz_mod_ctx_t ctx)
If ``poly`` is non-zero, sets ``res`` to ``poly`` divided
by its leading coefficient. This assumes that the leading coefficient
of ``poly`` is invertible modulo `p`.
Otherwise, if ``poly`` is zero, sets ``res`` to zero.
.. function:: void fmpz_mod_poly_make_monic_f(fmpz_t f, fmpz_mod_poly_t res, const fmpz_mod_poly_t poly, const fmpz_mod_ctx_t ctx)
Either set `f` to `1` and ``res`` to ``poly`` divided by its leading
coefficient or set `f` to a nontrivial factor of `p` and leave ``res``
undefined.
.. function:: slong _fmpz_mod_poly_gcd(fmpz * G, const fmpz * A, slong lenA, const fmpz * B, slong lenB, const fmpz_mod_ctx_t ctx)
Sets `G` to the greatest common divisor of `(A, \operatorname{len}(A))`
and `(B, \operatorname{len}(B))` and returns its length.
Assumes that `\operatorname{len}(A) \geq \operatorname{len}(B) > 0` and that the vector `G` has
space for sufficiently many coefficients.
Assumes that ``invB`` is the inverse of the leading coefficients
of `B` modulo the prime number `p`.
.. function:: void fmpz_mod_poly_gcd(fmpz_mod_poly_t G, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B, const fmpz_mod_ctx_t ctx)
Sets `G` to the greatest common divisor of `A` and `B`.
In general, the greatest common divisor is defined in the polynomial
ring `(\mathbf{Z}/(p \mathbf{Z}))[X]` if and only if `p` is a prime
number. Thus, this function assumes that `p` is prime.
.. function:: slong _fmpz_mod_poly_gcd_euclidean_f(fmpz_t f, fmpz * G, const fmpz * A, slong lenA, const fmpz * B, slong lenB, const fmpz_mod_ctx_t ctx)
Either sets `f = 1` and `G` to the greatest common divisor
of `(A, \operatorname{len}(A))` and `(B, \operatorname{len}(B))` and returns its length,
or sets `f \in (1,p)` to a non-trivial factor of `p` and
leaves the contents of the vector `(G, lenB)` undefined.
Assumes that `\operatorname{len}(A) \geq \operatorname{len}(B) > 0` and that the vector `G` has
space for sufficiently many coefficients.
Does not support aliasing of any of the input arguments
with any of the output argument.
.. function:: void fmpz_mod_poly_gcd_euclidean_f(fmpz_t f, fmpz_mod_poly_t G, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B, const fmpz_mod_ctx_t ctx)
Either sets `f = 1` and `G` to the greatest common divisor
of `A` and `B`, or ` \in (1,p)` to a non-trivial factor of `p`.
In general, the greatest common divisor is defined in the polynomial
ring `(\mathbf{Z}/(p \mathbf{Z}))[X]` if and only if `p` is a prime
number.
.. function:: slong _fmpz_mod_poly_gcd_f(fmpz_t f, fmpz * G, const fmpz * A, slong lenA, const fmpz * B, slong lenB, const fmpz_mod_ctx_t ctx)
Either sets `f = 1` and `G` to the greatest common divisor
of `(A, \operatorname{len}(A))` and `(B, \operatorname{len}(B))` and returns its length,
or sets `f \in (1,p)` to a non-trivial factor of `p` and
leaves the contents of the vector `(G, lenB)` undefined.
Assumes that `\operatorname{len}(A) \geq \operatorname{len}(B) > 0` and that the vector `G` has
space for sufficiently many coefficients.
Does not support aliasing of any of the input arguments
with any of the output arguments.
.. function:: void fmpz_mod_poly_gcd_f(fmpz_t f, fmpz_mod_poly_t G, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B, const fmpz_mod_ctx_t ctx)
Either sets `f = 1` and `G` to the greatest common divisor
of `A` and `B`, or `f \in (1,p)` to a non-trivial factor of `p`.
In general, the greatest common divisor is defined in the polynomial
ring `(\mathbf{Z}/(p \mathbf{Z}))[X]` if and only if `p` is a prime
number.
.. function:: slong _fmpz_mod_poly_hgcd(fmpz **M, slong * lenM, fmpz * A, slong * lenA, fmpz * B, slong * lenB, const fmpz * a, slong lena, const fmpz * b, slong lenb, const fmpz_mod_ctx_t ctx)
Computes the HGCD of `a` and `b`, that is, a matrix~`M`, a sign~`\sigma`
and two polynomials `A` and `B` such that
.. math::
(A,B)^t = \sigma M^{-1} (a,b)^t.
Assumes that `\operatorname{len}(a) > \operatorname{len}(b) > 0`.
Assumes that `A` and `B` have space of size at least `\operatorname{len}(a)`
and `\operatorname{len}(b)`, respectively. On exit, ``*lenA`` and ``*lenB``
will contain the correct lengths of `A` and `B`.
Assumes that ``M[0]``, ``M[1]``, ``M[2]``, and ``M[3]``
each point to a vector of size at least `\operatorname{len}(a)`.
.. function:: slong _fmpz_mod_poly_xgcd_euclidean_f(fmpz_t f, fmpz * G, fmpz * S, fmpz * T, const fmpz * A, slong lenA, const fmpz * B, slong lenB, const fmpz_t invB, const fmpz_mod_ctx_t ctx)
If `f` returns with the value `1` then the function operates as per
``_fmpz_mod_poly_xgcd_euclidean``, otherwise `f` is set to a nontrivial
factor of `p`.
.. function:: void fmpz_mod_poly_xgcd_euclidean_f(fmpz_t f, fmpz_mod_poly_t G, fmpz_mod_poly_t S, fmpz_mod_poly_t T, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B, const fmpz_mod_ctx_t ctx)
If `f` returns with the value `1` then the function operates as per
``fmpz_mod_poly_xgcd_euclidean``, otherwise `f` is set to a nontrivial
factor of `p`.
.. function:: slong _fmpz_mod_poly_xgcd(fmpz * G, fmpz * S, fmpz * T, const fmpz * A, slong lenA, const fmpz * B, slong lenB, const fmpz_t invB, const fmpz_mod_ctx_t ctx)
Computes the GCD of `A` and `B` together with cofactors `S` and `T`
such that `S A + T B = G`. Returns the length of `G`.
Assumes that `\operatorname{len}(A) \geq \operatorname{len}(B) \geq 1` and
`(\operatorname{len}(A),\operatorname{len}(B)) \neq (1,1)`.
No attempt is made to make the GCD monic.
Requires that `G` have space for `\operatorname{len}(B)` coefficients. Writes
`\operatorname{len}(B)-1` and `\operatorname{len}(A)-1` coefficients to `S` and `T`, respectively.
Note that, in fact, `\operatorname{len}(S) \leq \max(\operatorname{len}(B) - \operatorname{len}(G), 1)` and
`\operatorname{len}(T) \leq \max(\operatorname{len}(A) - \operatorname{len}(G), 1)`.
No aliasing of input and output operands is permitted.
.. function:: void fmpz_mod_poly_xgcd(fmpz_mod_poly_t G, fmpz_mod_poly_t S, fmpz_mod_poly_t T, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B, const fmpz_mod_ctx_t ctx)
Computes the GCD of `A` and `B`. The GCD of zero polynomials is
defined to be zero, whereas the GCD of the zero polynomial and some other
polynomial `P` is defined to be `P`. Except in the case where
the GCD is zero, the GCD `G` is made monic.
Polynomials ``S`` and ``T`` are computed such that
``S*A + T*B = G``. The length of ``S`` will be at most
``lenB`` and the length of ``T`` will be at most ``lenA``.
.. function:: void fmpz_mod_poly_xgcd_f(fmpz_t f, fmpz_mod_poly_t G, fmpz_mod_poly_t S, fmpz_mod_poly_t T, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B, const fmpz_mod_ctx_t ctx)
If `f` returns with the value `1` then the function operates as per
``fmpz_mod_poly_xgcd``, otherwise `f` is set to a nontrivial
factor of `p`.
.. function:: slong _fmpz_mod_poly_gcdinv_euclidean(fmpz * G, fmpz * S, const fmpz * A, slong lenA, const fmpz * B, slong lenB, const fmpz_t invA, const fmpz_mod_ctx_t ctx)
Computes ``(G, lenA)``, ``(S, lenB-1)`` such that
`G \cong S A \pmod{B}`, returning the actual length of `G`.
Assumes that `0 < \operatorname{len}(A) < \operatorname{len}(B)`.
.. function:: void fmpz_mod_poly_gcdinv_euclidean(fmpz_mod_poly_t G, fmpz_mod_poly_t S, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B, const fmpz_mod_ctx_t ctx)
Computes polynomials `G` and `S`, both reduced modulo~`B`,
such that `G \cong S A \pmod{B}`, where `B` is assumed to
have `\operatorname{len}(B) \geq 2`.
In the case that `A = 0 \pmod{B}`, returns `G = S = 0`.
.. function:: slong _fmpz_mod_poly_gcdinv_euclidean_f(fmpz_t f, fmpz * G, fmpz * S, const fmpz * A, slong lenA, const fmpz * B, slong lenB, const fmpz_t invA, const fmpz_mod_ctx_t ctx)
If `f` returns with value `1` then the function operates as per
:func:`_fmpz_mod_poly_gcdinv_euclidean`, otherwise `f` is set to a
nontrivial factor of `p`.
.. function:: void fmpz_mod_poly_gcdinv_euclidean_f(fmpz_t f, fmpz_mod_poly_t G, fmpz_mod_poly_t S, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B, const fmpz_mod_ctx_t ctx)
If `f` returns with value `1` then the function operates as per
:func:`fmpz_mod_poly_gcdinv_euclidean`, otherwise `f` is set to a
nontrivial factor of the modulus of `A`.
.. function:: slong _fmpz_mod_poly_gcdinv(fmpz * G, fmpz * S, const fmpz * A, slong lenA, const fmpz * B, slong lenB, const fmpz_mod_ctx_t ctx)
Computes ``(G, lenA)``, ``(S, lenB-1)`` such that
`G \cong S A \pmod{B}`, returning the actual length of `G`.
Assumes that `0 < \operatorname{len}(A) < \operatorname{len}(B)`.
.. function:: slong _fmpz_mod_poly_gcdinv_f(fmpz_t f, fmpz * G, fmpz * S, const fmpz * A, slong lenA, const fmpz * B, slong lenB, const fmpz_mod_ctx_t ctx)
If `f` returns with value `1` then the function operates as per
:func:`_fmpz_mod_poly_gcdinv`, otherwise `f` will be set to a nontrivial
factor of `p`.
.. function:: void fmpz_mod_poly_gcdinv(fmpz_mod_poly_t G, fmpz_mod_poly_t S, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B, const fmpz_mod_ctx_t ctx)
Computes polynomials `G` and `S`, both reduced modulo~`B`,
such that `G \cong S A \pmod{B}`, where `B` is assumed to
have `\operatorname{len}(B) \geq 2`.
In the case that `A = 0 \pmod{B}`, returns `G = S = 0`.
.. function:: void fmpz_mod_poly_gcdinv_f(fmpz_t f, fmpz_mod_poly_t G, fmpz_mod_poly_t S, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B, const fmpz_mod_ctx_t ctx)
If `f` returns with value `1` then the function operates as per
:func:`fmpz_mod_poly_gcdinv`, otherwise `f` will be set to a nontrivial
factor of `p`.
.. function:: int _fmpz_mod_poly_invmod(fmpz * A, const fmpz * B, slong lenB, const fmpz * P, slong lenP, const fmpz_mod_ctx_t ctx)
Attempts to set ``(A, lenP-1)`` to the inverse of ``(B, lenB)``
modulo the polynomial ``(P, lenP)``. Returns `1` if ``(B, lenB)``
is invertible and `0` otherwise.
Assumes that `0 < \operatorname{len}(B) < \operatorname{len}(P)`, and hence also `\operatorname{len}(P) \geq 2`,
but supports zero-padding in ``(B, lenB)``.
Does not support aliasing.
Assumes that `p` is a prime number.
.. function:: int _fmpz_mod_poly_invmod_f(fmpz_t f, fmpz * A, const fmpz * B, slong lenB, const fmpz * P, slong lenP, const fmpz_mod_ctx_t ctx)
If `f` returns with the value `1`, then the function operates as per
:func:`_fmpz_mod_poly_invmod`. Otherwise `f` is set to a nontrivial
factor of `p`.
.. function:: int fmpz_mod_poly_invmod(fmpz_mod_poly_t A, const fmpz_mod_poly_t B, const fmpz_mod_poly_t P, const fmpz_mod_ctx_t ctx)
Attempts to set `A` to the inverse of `B` modulo `P` in the polynomial
ring `(\mathbf{Z}/p\mathbf{Z})[X]`, where we assume that `p` is a prime
number.
If `\deg(P) < 2`, raises an exception.
If the greatest common divisor of `B` and `P` is~`1`, returns~`1` and
sets `A` to the inverse of `B`. Otherwise, returns~`0` and the value
of `A` on exit is undefined.
.. function:: int fmpz_mod_poly_invmod_f(fmpz_t f, fmpz_mod_poly_t A, const fmpz_mod_poly_t B, const fmpz_mod_poly_t P, const fmpz_mod_ctx_t ctx)
If `f` returns with the value `1`, then the function operates as per
:func:`fmpz_mod_poly_invmod`. Otherwise `f` is set to a nontrivial
factor of `p`.
Minpoly
--------------------------------------------------------------------------------
.. function:: slong _fmpz_mod_poly_minpoly_bm(fmpz * poly, const fmpz * seq, slong len, const fmpz_mod_ctx_t ctx)
Sets ``poly`` to the coefficients of a minimal generating
polynomial for sequence ``(seq, len)`` modulo `p`.
The return value equals the length of ``poly``.
It is assumed that `p` is prime and ``poly`` has space for at least
`len+1` coefficients. No aliasing between inputs and outputs is
allowed.
.. function:: void fmpz_mod_poly_minpoly_bm(fmpz_mod_poly_t poly, const fmpz * seq, slong len, const fmpz_mod_ctx_t ctx)
Sets ``poly`` to a minimal generating polynomial for sequence
``seq`` of length ``len``.
Assumes that the modulus is prime.
This version uses the Berlekamp-Massey algorithm, whose running time
is proportional to ``len`` times the size of the minimal generator.
.. function:: slong _fmpz_mod_poly_minpoly_hgcd(fmpz * poly, const fmpz * seq, slong len, const fmpz_mod_ctx_t ctx)
Sets ``poly`` to the coefficients of a minimal generating
polynomial for sequence ``(seq, len)`` modulo `p`.
The return value equals the length of ``poly``.
It is assumed that `p` is prime and ``poly`` has space for at least
`len+1` coefficients. No aliasing between inputs and outputs is
allowed.
.. function:: void fmpz_mod_poly_minpoly_hgcd(fmpz_mod_poly_t poly, const fmpz * seq, slong len, const fmpz_mod_ctx_t ctx)
Sets ``poly`` to a minimal generating polynomial for sequence
``seq`` of length ``len``.
Assumes that the modulus is prime.
This version uses the HGCD algorithm, whose running time is
`O(n \log^2 n)` field operations, regardless of the actual size of
the minimal generator.
.. function:: slong _fmpz_mod_poly_minpoly(fmpz * poly, const fmpz * seq, slong len, const fmpz_mod_ctx_t ctx)
Sets ``poly`` to the coefficients of a minimal generating
polynomial for sequence ``(seq, len)`` modulo `p`.
The return value equals the length of ``poly``.
It is assumed that `p` is prime and ``poly`` has space for at least
`len+1` coefficients. No aliasing between inputs and outputs is
allowed.
.. function:: void fmpz_mod_poly_minpoly(fmpz_mod_poly_t poly, const fmpz * seq, slong len, const fmpz_mod_ctx_t ctx)
Sets ``poly`` to a minimal generating polynomial for sequence
``seq`` of length ``len``.
A minimal generating polynomial is a monic polynomial
`f = x^d + c_{d-1}x^{d-1} + \cdots + c_1 x + c_0`,
of minimal degree `d`, that annihilates any consecutive `d+1` terms
in ``seq``. That is, for any `i < len - d`,
`seq_i = -\sum_{j=0}^{d-1} seq_{i+j}*f_j.`
Assumes that the modulus is prime.
This version automatically chooses the fastest underlying
implementation based on ``len`` and the size of the modulus.
Resultant
--------------------------------------------------------------------------------
.. function:: void _fmpz_mod_poly_resultant(fmpz_t res, const fmpz * poly1, slong len1, const fmpz * poly2, slong len2, const fmpz_mod_ctx_t ctx)
Returns the resultant of ``(poly1, len1)`` and
``(poly2, len2)``.
Assumes that ``len1 >= len2 > 0``.
The complexity is only guaranteed to be quasilinear if the modulus is prime.
.. function:: void fmpz_mod_poly_resultant(fmpz_t res, const fmpz_mod_poly_t f, const fmpz_mod_poly_t g, const fmpz_mod_ctx_t ctx)
Computes the resultant of $f$ and $g$.
Discriminant
--------------------------------------------------------------------------------
.. function:: void _fmpz_mod_poly_discriminant(fmpz_t d, const fmpz * poly, slong len, const fmpz_mod_ctx_t ctx)
Set `d` to the discriminant of ``(poly, len)``. Assumes ``len > 1``.
.. function:: void fmpz_mod_poly_discriminant(fmpz_t d, const fmpz_mod_poly_t f, const fmpz_mod_ctx_t ctx)
Set `d` to the discriminant of `f`.
We normalise the discriminant so that
`\operatorname{disc}(f) = (-1)^(n(n-1)/2) \operatorname{res}(f, f') /
\operatorname{lc}(f)^(n - m - 2)`, where ``n = len(f)`` and
``m = len(f')``. Thus `\operatorname{disc}(f) =
\operatorname{lc}(f)^(2n - 2) \prod_{i < j} (r_i - r_j)^2`, where
`\operatorname{lc}(f)` is the leading coefficient of `f` and `r_i` are the
roots of `f`.
Derivative
--------------------------------------------------------------------------------
.. function:: void _fmpz_mod_poly_derivative(fmpz * res, const fmpz * poly, slong len, const fmpz_mod_ctx_t ctx)
Sets ``(res, len - 1)`` to the derivative of ``(poly, len)``.
Also handles the cases where ``len`` is `0` or `1` correctly.
Supports aliasing of ``res`` and ``poly``.
.. function:: void fmpz_mod_poly_derivative(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly, const fmpz_mod_ctx_t ctx)
Sets ``res`` to the derivative of ``poly``.
Evaluation
--------------------------------------------------------------------------------
.. function:: void _fmpz_mod_poly_evaluate_fmpz(fmpz_t res, const fmpz * poly, slong len, const fmpz_t a, const fmpz_mod_ctx_t ctx)
Evaluates the polynomial ``(poly, len)`` at the integer `a` and sets
``res`` to the result. Aliasing between ``res`` and `a` or any
of the coefficients of ``poly`` is not supported.
.. function:: void fmpz_mod_poly_evaluate_fmpz(fmpz_t res, const fmpz_mod_poly_t poly, const fmpz_t a, const fmpz_mod_ctx_t ctx)
Evaluates the polynomial ``poly`` at the integer `a` and sets
``res`` to the result.
As expected, aliasing between ``res`` and `a` is supported. However,
``res`` may not be aliased with a coefficient of ``poly``.
Multipoint evaluation
--------------------------------------------------------------------------------
.. function:: void _fmpz_mod_poly_evaluate_fmpz_vec_iter(fmpz * ys, const fmpz * coeffs, slong len, const fmpz * xs, slong n, const fmpz_mod_ctx_t ctx)
Evaluates (``coeffs``, ``len``) at the ``n`` values
given in the vector ``xs``, writing the output values
to ``ys``. The values in ``xs`` should be reduced
modulo the modulus.
Uses Horner's method iteratively.
.. function:: void fmpz_mod_poly_evaluate_fmpz_vec_iter(fmpz * ys, const fmpz_mod_poly_t poly, const fmpz * xs, slong n, const fmpz_mod_ctx_t ctx)
Evaluates ``poly`` at the ``n`` values given in the vector
``xs``, writing the output values to ``ys``. The values in
``xs`` should be reduced modulo the modulus.
Uses Horner's method iteratively.
.. function:: void _fmpz_mod_poly_evaluate_fmpz_vec_fast_precomp(fmpz * vs, const fmpz * poly, slong plen, fmpz_poly_struct * const * tree, slong len, const fmpz_mod_ctx_t ctx)
Evaluates (``poly``, ``plen``) at the ``len`` values given by the precomputed subproduct tree ``tree``.
.. function:: void _fmpz_mod_poly_evaluate_fmpz_vec_fast(fmpz * ys, const fmpz * poly, slong plen, const fmpz * xs, slong n, const fmpz_mod_ctx_t ctx)
Evaluates (``coeffs``, ``len``) at the ``n`` values
given in the vector ``xs``, writing the output values
to ``ys``. The values in ``xs`` should be reduced
modulo the modulus.
Uses fast multipoint evaluation, building a temporary subproduct tree.
.. function:: void fmpz_mod_poly_evaluate_fmpz_vec_fast(fmpz * ys, const fmpz_mod_poly_t poly, const fmpz * xs, slong n, const fmpz_mod_ctx_t ctx)
Evaluates ``poly`` at the ``n`` values given in the vector
``xs``, writing the output values to ``ys``. The values in
``xs`` should be reduced modulo the modulus.
Uses fast multipoint evaluation, building a temporary subproduct tree.
.. function:: void _fmpz_mod_poly_evaluate_fmpz_vec(fmpz * ys, const fmpz * coeffs, slong len, const fmpz * xs, slong n, const fmpz_mod_ctx_t ctx)
Evaluates (``coeffs``, ``len``) at the ``n`` values
given in the vector ``xs``, writing the output values
to ``ys``. The values in ``xs`` should be reduced
modulo the modulus.
.. function:: void fmpz_mod_poly_evaluate_fmpz_vec(fmpz * ys, const fmpz_mod_poly_t poly, const fmpz * xs, slong n, const fmpz_mod_ctx_t ctx)
Evaluates ``poly`` at the ``n`` values given in the vector
``xs``, writing the output values to ``ys``. The values in
``xs`` should be reduced modulo the modulus.
Composition
--------------------------------------------------------------------------------
.. function:: void _fmpz_mod_poly_compose(fmpz * res, const fmpz * poly1, slong len1, const fmpz * poly2, slong len2, const fmpz_mod_ctx_t ctx)
Sets ``res`` to the composition of ``(poly1, len1)`` and
``(poly2, len2)``.
Assumes that ``res`` has space for ``(len1-1)*(len2-1) + 1``
coefficients, although in `\mathbf{Z}_p[X]` this might not actually
be the length of the resulting polynomial when `p` is not a prime.
Assumes that ``poly1`` and ``poly2`` are non-zero polynomials.
Does not support aliasing between any of the inputs and the output.
.. function:: void fmpz_mod_poly_compose(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly1, const fmpz_mod_poly_t poly2, const fmpz_mod_ctx_t ctx)
Sets ``res`` to the composition of ``poly1`` and ``poly2``.
To be precise about the order of composition, denoting ``res``,
``poly1``, and ``poly2`` by `f`, `g`, and `h`, respectively,
sets `f(t) = g(h(t))`.
Square roots
--------------------------------------------------------------------------------
The series expansions for `\sqrt{h}` and `1/\sqrt{h}` are defined
by means of the generalised binomial theorem
``h^r = (1+y)^r =
\sum_{k=0}^{\infty} {r \choose k} y^k.``
It is assumed that `h` has constant term `1` and that the coefficients
`2^{-k}` exist in the coefficient ring (i.e. `2` must be invertible).
.. function:: void _fmpz_mod_poly_invsqrt_series(fmpz * g, const fmpz * h, slong hlen, slong n, const fmpz_mod_ctx_t ctx)
Set the first `n` terms of `g` to the series expansion of `1/\sqrt{h}`.
It is assumed that `n > 0` and `h > 0`. Aliasing is not permitted.
.. function:: void fmpz_mod_poly_invsqrt_series(fmpz_mod_poly_t g, const fmpz_mod_poly_t h, slong n, const fmpz_mod_ctx_t ctx)
Set `g` to the series expansion of `1/\sqrt{h}` to order `O(x^n)`.
It is assumed that `h` has constant term 1.
.. function:: void _fmpz_mod_poly_sqrt_series(fmpz * g, const fmpz * h, slong hlen, slong n, const fmpz_mod_ctx_t ctx)
Set the first `n` terms of `g` to the series expansion of `\sqrt{h}`.
It is assumed that `n > 0` and `h > 0`. Aliasing is not permitted.
.. function:: void fmpz_mod_poly_sqrt_series(fmpz_mod_poly_t g, const fmpz_mod_poly_t h, slong n, const fmpz_mod_ctx_t ctx)
Set `g` to the series expansion of `\sqrt{h}` to order `O(x^n)`.
It is assumed that `h` has constant term 1.
.. function:: int _fmpz_mod_poly_sqrt(fmpz * s, const fmpz * p, slong n, const fmpz_mod_ctx_t ctx)
If ``(p, n)`` is a perfect square, sets ``(s, n / 2 + 1)``
to a square root of `p` and returns 1. Otherwise returns 0.
.. function:: int fmpz_mod_poly_sqrt(fmpz_mod_poly_t s, const fmpz_mod_poly_t p, const fmpz_mod_ctx_t ctx)
If `p` is a perfect square, sets `s` to a square root of `p`
and returns 1. Otherwise returns 0.
Modular composition
--------------------------------------------------------------------------------
.. function:: void _fmpz_mod_poly_compose_mod(fmpz * res, const fmpz * f, slong lenf, const fmpz * g, const fmpz * h, slong lenh, const fmpz_mod_ctx_t ctx)
Sets ``res`` to the composition `f(g)` modulo `h`. We require that
`h` is nonzero and that the length of `g` is one less than the
length of `h` (possibly with zero padding). The output is not allowed
to be aliased with any of the inputs.
.. function:: void fmpz_mod_poly_compose_mod(fmpz_mod_poly_t res, const fmpz_mod_poly_t f, const fmpz_mod_poly_t g, const fmpz_mod_poly_t h, const fmpz_mod_ctx_t ctx)
Sets ``res`` to the composition `f(g)` modulo `h`. We require that
`h` is nonzero.
.. function:: void _fmpz_mod_poly_compose_mod_horner(fmpz * res, const fmpz * f, slong lenf, const fmpz * g, const fmpz * h, slong lenh, const fmpz_mod_ctx_t ctx)
Sets ``res`` to the composition `f(g)` modulo `h`. We require that
`h` is nonzero and that the length of `g` is one less than the
length of `h` (possibly with zero padding). The output is not allowed
to be aliased with any of the inputs.
The algorithm used is Horner's rule.
.. function:: void fmpz_mod_poly_compose_mod_horner(fmpz_mod_poly_t res, const fmpz_mod_poly_t f, const fmpz_mod_poly_t g, const fmpz_mod_poly_t h, const fmpz_mod_ctx_t ctx)
Sets ``res`` to the composition `f(g)` modulo `h`. We require that
`h` is nonzero. The algorithm used is Horner's rule.
.. function:: void _fmpz_mod_poly_compose_mod_brent_kung(fmpz * res, const fmpz * f, slong len1, const fmpz * g, const fmpz * h, slong len3, const fmpz_mod_ctx_t ctx)
Sets ``res`` to the composition `f(g)` modulo `h`. We require that
`h` is nonzero and that the length of `g` is one less than the
length of `h` (possibly with zero padding). We also require that
the length of `f` is less than the length of `h`. The output is not
allowed to be aliased with any of the inputs.
The algorithm used is the Brent-Kung matrix algorithm.
.. function:: void fmpz_mod_poly_compose_mod_brent_kung(fmpz_mod_poly_t res, const fmpz_mod_poly_t f, const fmpz_mod_poly_t g, const fmpz_mod_poly_t h, const fmpz_mod_ctx_t ctx)
Sets ``res`` to the composition `f(g)` modulo `h`. We require that
`h` is nonzero and that `f` has smaller degree than `h`.
The algorithm used is the Brent-Kung matrix algorithm.
.. function:: void _fmpz_mod_poly_reduce_matrix_mod_poly (fmpz_mat_t A, const fmpz_mat_t B, const fmpz_mod_poly_t f, const fmpz_mod_ctx_t ctx)
Sets the ith row of ``A`` to the reduction of the ith row of `B` modulo
`f` for `i=1,\ldots,\sqrt{\deg(f)}`. We require `B` to be at least
a `\sqrt{\deg(f)}\times \deg(f)` matrix and `f` to be nonzero.
.. function:: void _fmpz_mod_poly_precompute_matrix_worker(void * arg_ptr)
Worker function version of ``_fmpz_mod_poly_precompute_matrix``.
Input/output is stored in ``fmpz_mod_poly_matrix_precompute_arg_t``.
.. function:: void _fmpz_mod_poly_precompute_matrix (fmpz_mat_t A, const fmpz * f, const fmpz * g, slong leng, const fmpz * ginv, slong lenginv, const fmpz_mod_ctx_t ctx)
Sets the ith row of ``A`` to `f^i` modulo `g` for
`i=1,\ldots,\sqrt{\deg(g)}`. We require `A` to be
a `\sqrt{\deg(g)}\times \deg(g)` matrix. We require
``ginv`` to be the inverse of the reverse of ``g`` and `g` to be
nonzero. ``f`` has to be reduced modulo ``g`` and of length one less
than ``leng`` (possibly with zero padding).
.. function:: void fmpz_mod_poly_precompute_matrix(fmpz_mat_t A, const fmpz_mod_poly_t f, const fmpz_mod_poly_t g, const fmpz_mod_poly_t ginv, const fmpz_mod_ctx_t ctx)
Sets the ith row of ``A`` to `f^i` modulo `g` for
`i=1,\ldots,\sqrt{\deg(g)}`. We require `A` to be
a `\sqrt{\deg(g)}\times \deg(g)` matrix. We require
``ginv`` to be the inverse of the reverse of ``g``.
.. function:: void _fmpz_mod_poly_compose_mod_brent_kung_precomp_preinv_worker(void * arg_ptr)
Worker function version of
:func:`_fmpz_mod_poly_compose_mod_brent_kung_precomp_preinv`.
Input/output is stored in
``fmpz_mod_poly_compose_mod_precomp_preinv_arg_t``.
.. function:: void _fmpz_mod_poly_compose_mod_brent_kung_precomp_preinv(fmpz * res, const fmpz * f, slong lenf, const fmpz_mat_t A, const fmpz * h, slong lenh, const fmpz * hinv, slong lenhinv, const fmpz_mod_ctx_t ctx)
Sets ``res`` to the composition `f(g)` modulo `h`. We require that
`h` is nonzero. We require that the ith row of `A` contains `g^i` for
`i=1,\ldots,\sqrt{\deg(h)}`, i.e. `A` is a
`\sqrt{\deg(h)}\times \deg(h)` matrix. We also require that
the length of `f` is less than the length of `h`. Furthermore, we require
``hinv`` to be the inverse of the reverse of ``h``.
The output is not allowed to be aliased with any of the inputs.
The algorithm used is the Brent-Kung matrix algorithm.
.. function:: void fmpz_mod_poly_compose_mod_brent_kung_precomp_preinv(fmpz_mod_poly_t res, const fmpz_mod_poly_t f, const fmpz_mat_t A, const fmpz_mod_poly_t h, const fmpz_mod_poly_t hinv, const fmpz_mod_ctx_t ctx)
Sets ``res`` to the composition `f(g)` modulo `h`. We require that the
ith row of `A` contains `g^i` for `i=1,\ldots,\sqrt{\deg(h)}`, i.e. `A` is
a `\sqrt{\deg(h)}\times \deg(h)` matrix. We require that `h` is nonzero and
that `f` has smaller degree than `h`. Furthermore, we require ``hinv``
to be the inverse of the reverse of ``h``. This version of Brent-Kung
modular composition is particularly useful if one has to perform several
modular composition of the form `f(g)` modulo `h` for fixed `g` and `h`.
.. function:: void _fmpz_mod_poly_compose_mod_brent_kung_preinv(fmpz * res, const fmpz * f, slong lenf, const fmpz * g, const fmpz * h, slong lenh, const fmpz * hinv, slong lenhinv, const fmpz_mod_ctx_t ctx)
Sets ``res`` to the composition `f(g)` modulo `h`. We require that
`h` is nonzero and that the length of `g` is one less than the
length of `h` (possibly with zero padding). We also require that
the length of `f` is less than the length of `h`. Furthermore, we require
``hinv`` to be the inverse of the reverse of ``h``.
The output is not allowed to be aliased with any of the inputs.
The algorithm used is the Brent-Kung matrix algorithm.
.. function:: void fmpz_mod_poly_compose_mod_brent_kung_preinv(fmpz_mod_poly_t res, const fmpz_mod_poly_t f, const fmpz_mod_poly_t g, const fmpz_mod_poly_t h, const fmpz_mod_poly_t hinv, const fmpz_mod_ctx_t ctx)
Sets ``res`` to the composition `f(g)` modulo `h`. We require that
`h` is nonzero and that `f` has smaller degree than `h`. Furthermore,
we require ``hinv`` to be the inverse of the reverse of ``h``.
The algorithm used is the Brent-Kung matrix algorithm.
.. function:: void _fmpz_mod_poly_compose_mod_brent_kung_vec_preinv(fmpz_mod_poly_struct * res, const fmpz_mod_poly_struct * polys, slong len1, slong l, const fmpz * g, slong glen, const fmpz * h, slong lenh, const fmpz * hinv, slong lenhinv, const fmpz_mod_ctx_t ctx)
Sets ``res`` to the composition `f_i(g)` modulo `h` for `1\leq i \leq l`,
where `f_i` are the ``l`` elements of ``polys``. We require that `h` is
nonzero and that the length of `g` is less than the length of `h`. We
also require that the length of `f_i` is less than the length of `h`. We
require ``res`` to have enough memory allocated to hold ``l``
``fmpz_mod_poly_struct``'s. The entries of ``res`` need to be initialised
and ``l`` needs to be less than ``len1`` Furthermore, we require ``hinv``
to be the inverse of the reverse of ``h``. The output is not allowed to be
aliased with any of the inputs.
The algorithm used is the Brent-Kung matrix algorithm.
.. function:: void fmpz_mod_poly_compose_mod_brent_kung_vec_preinv(fmpz_mod_poly_struct * res, const fmpz_mod_poly_struct * polys, slong len1, slong n, const fmpz_mod_poly_t g, const fmpz_mod_poly_t h, const fmpz_mod_poly_t hinv, const fmpz_mod_ctx_t ctx)
Sets ``res`` to the composition `f_i(g)` modulo `h` for `1\leq i \leq n`
where `f_i` are the ``n`` elements of ``polys``. We require ``res`` to
have enough memory allocated to hold ``n`` ``fmpz_mod_poly_struct``'s.
The entries of ``res`` need to be initialised and ``n`` needs to be less
than ``len1``. We require that `h` is nonzero and that `f_i` and `g` have
smaller degree than `h`. Furthermore, we require ``hinv`` to be the
inverse of the reverse of ``h``. No aliasing of ``res`` and
``polys`` is allowed.
The algorithm used is the Brent-Kung matrix algorithm.
.. function:: void _fmpz_mod_poly_compose_mod_brent_kung_vec_preinv_threaded_pool(fmpz_mod_poly_struct * res, const fmpz_mod_poly_struct * polys, slong lenpolys, slong l, const fmpz * g, slong glen, const fmpz * poly, slong len, const fmpz * polyinv, slong leninv, const fmpz_mod_ctx_t ctx, thread_pool_handle * threads, slong num_threads)
Multithreaded version of
:func:`_fmpz_mod_poly_compose_mod_brent_kung_vec_preinv`. Distributing the
Horner evaluations across :func:`flint_get_num_threads` threads.
.. function:: void fmpz_mod_poly_compose_mod_brent_kung_vec_preinv_threaded_pool(fmpz_mod_poly_struct * res, const fmpz_mod_poly_struct * polys, slong len1, slong n, const fmpz_mod_poly_t g, const fmpz_mod_poly_t poly, const fmpz_mod_poly_t polyinv, const fmpz_mod_ctx_t ctx, thread_pool_handle * threads, slong num_threads)
Multithreaded version of
:func:`fmpz_mod_poly_compose_mod_brent_kung_vec_preinv`. Distributing the
Horner evaluations across :func:`flint_get_num_threads` threads.
.. function:: void fmpz_mod_poly_compose_mod_brent_kung_vec_preinv_threaded(fmpz_mod_poly_struct * res, const fmpz_mod_poly_struct * polys, slong len1, slong n, const fmpz_mod_poly_t g, const fmpz_mod_poly_t poly, const fmpz_mod_poly_t polyinv, const fmpz_mod_ctx_t ctx)
Multithreaded version of
:func:`fmpz_mod_poly_compose_mod_brent_kung_vec_preinv`. Distributing the
Horner evaluations across :func:`flint_get_num_threads` threads.
Subproduct trees
--------------------------------------------------------------------------------
.. function:: fmpz_poly_struct ** _fmpz_mod_poly_tree_alloc(slong len)
Allocates space for a subproduct tree of the given length, having
linear factors at the lowest level.
.. function:: void _fmpz_mod_poly_tree_free(fmpz_poly_struct ** tree, slong len)
Free the allocated space for the subproduct.
.. function:: void _fmpz_mod_poly_tree_build(fmpz_poly_struct ** tree, const fmpz * roots, slong len, const fmpz_mod_ctx_t ctx)
Builds a subproduct tree in the preallocated space from
the ``len`` monic linear factors `(x-r_i)` where `r_i` are given by
``roots``. The top level product is not computed.
Radix conversion
--------------------------------------------------------------------------------
The following functions provide the functionality to solve the
radix conversion problems for polynomials, which is to express
a polynomial `f(X)` with respect to a given radix `r(X)` as
.. math::
f(X) = \sum_{i = 0}^{N} b_i(X) r(X)^i
where `N = \lfloor\deg(f) / \deg(r)\rfloor`.
The algorithm implemented here is a recursive one, which performs
Euclidean divisions by powers of `r` of the form `r^{2^i}`, and it
has time complexity `\Theta(\deg(f) \log \deg(f))`.
It facilitates the repeated use of precomputed data, namely the
powers of `r` and their power series inverses. This data is stored
in objects of type ``fmpz_mod_poly_radix_t`` and it is computed
using the function :func:`fmpz_mod_poly_radix_init`, which only
depends on~`r` and an upper bound on the degree of~`f`.
.. function:: void _fmpz_mod_poly_radix_init(fmpz **Rpow, fmpz **Rinv, const fmpz * R, slong lenR, slong k, const fmpz_t invL, const fmpz_mod_ctx_t ctx)
Computes powers of `R` of the form `R^{2^i}` and their Newton inverses
modulo `x^{2^{i} \deg(R)}` for `i = 0, \dotsc, k-1`.
Assumes that the vectors ``Rpow[i]`` and ``Rinv[i]`` have space
for `2^i \deg(R) + 1` and `2^i \deg(R)` coefficients, respectively.
Assumes that the polynomial `R` is non-constant, i.e. `\deg(R) \geq 1`.
Assumes that the leading coefficient of `R` is a unit and that the
argument ``invL`` is the inverse of the coefficient modulo~`p`.
The argument~`p` is the modulus, which in `p`-adic applications is
typically a prime power, although this is not necessary. Here, we
only assume that `p \geq 2`.
Note that this precomputed data can be used for any `F` such that
`\operatorname{len}(F) \leq 2^k \deg(R)`.
.. function:: void fmpz_mod_poly_radix_init(fmpz_mod_poly_radix_t D, const fmpz_mod_poly_t R, slong degF, const fmpz_mod_ctx_t ctx)
Carries out the precomputation necessary to perform radix conversion
to radix~`R` for polynomials~`F` of degree at most ``degF``.
Assumes that `R` is non-constant, i.e. `\deg(R) \geq 1`,
and that the leading coefficient is a unit.
.. function:: void _fmpz_mod_poly_radix(fmpz **B, const fmpz * F, fmpz **Rpow, fmpz **Rinv, slong degR, slong k, slong i, fmpz * W, const fmpz_mod_ctx_t ctx)
This is the main recursive function used by the
function :func:`fmpz_mod_poly_radix`.
Assumes that, for all `i = 0, \dotsc, N`, the vector
``B[i]`` has space for `\deg(R)` coefficients.
The variable `k` denotes the factors of `r` that have
previously been counted for the polynomial `F`, which
is assumed to have length `2^{i+1} \deg(R)`, possibly
including zero-padding.
Assumes that `W` is a vector providing temporary space
of length `\operatorname{len}(F) = 2^{i+1} \deg(R)`.
The entire computation takes place over `\mathbf{Z} / p \mathbf{Z}`,
where `p \geq 2` is a natural number.
Thus, the top level call will have `F` as in the original
problem, and `k = 0`.
.. function:: void fmpz_mod_poly_radix(fmpz_mod_poly_struct **B, const fmpz_mod_poly_t F, const fmpz_mod_poly_radix_t D, const fmpz_mod_ctx_t ctx)
Given a polynomial `F` and the precomputed data `D` for the radix `R`,
computes polynomials `B_0, \dotsc, B_N` of degree less than `\deg(R)`
such that
.. math::
F = B_0 + B_1 R + \dotsb + B_N R^N,
where necessarily `N = \lfloor\deg(F) / \deg(R)\rfloor`.
Assumes that `R` is non-constant, i.e.\ `\deg(R) \geq 1`,
and that the leading coefficient is a unit.
Input and output
--------------------------------------------------------------------------------
The printing options supported by this module are very similar to
what can be found in the two related modules ``fmpz_poly`` and
``nmod_poly``.
Consider, for example, the polynomial `f(x) = 5x^3 + 2x + 1` in
`(\mathbf{Z}/6\mathbf{Z})[x]`. Its simple string representation
is ``"4 6 1 2 0 5"``, where the first two numbers denote the
length of the polynomial and the modulus. The pretty string
representation is ``"5*x^3+2*x+1"``.
.. function:: int _fmpz_mod_poly_fprint(FILE * file, const fmpz * poly, slong len, const fmpz_t p)
Prints the polynomial ``(poly, len)`` to the stream ``file``.
In case of success, returns a positive value. In case of failure,
returns a non-positive value.
.. function:: int fmpz_mod_poly_fprint(FILE * file, const fmpz_mod_poly_t poly, const fmpz_mod_ctx_t ctx)
Prints the polynomial to the stream ``file``.
In case of success, returns a positive value. In case of failure,
returns a non-positive value.
.. function:: int fmpz_mod_poly_fprint_pretty(FILE * file, const fmpz_mod_poly_t poly, const char * x, const fmpz_mod_ctx_t ctx)
Prints the pretty representation of ``(poly, len)`` to the stream
``file``, using the string ``x`` to represent the indeterminate.
In case of success, returns a positive value. In case of failure,
returns a non-positive value.
.. function:: int fmpz_mod_poly_print(const fmpz_mod_poly_t poly, const fmpz_mod_ctx_t ctx)
Prints the polynomial to ``stdout``.
In case of success, returns a positive value. In case of failure,
returns a non-positive value.
.. function:: int fmpz_mod_poly_print_pretty(const fmpz_mod_poly_t poly, const char * x, const fmpz_mod_ctx_t ctx)
Prints the pretty representation of ``poly`` to ``stdout``,
using the string ``x`` to represent the indeterminate.
In case of success, returns a positive value. In case of failure,
returns a non-positive value.
Inflation and deflation
--------------------------------------------------------------------------------
.. function:: void fmpz_mod_poly_inflate(fmpz_mod_poly_t result, const fmpz_mod_poly_t input, ulong inflation, const fmpz_mod_ctx_t ctx)
Sets ``result`` to the inflated polynomial `p(x^n)` where
`p` is given by ``input`` and `n` is given by ``inflation``.
.. function:: void fmpz_mod_poly_deflate(fmpz_mod_poly_t result, const fmpz_mod_poly_t input, ulong deflation, const fmpz_mod_ctx_t ctx)
Sets ``result`` to the deflated polynomial `p(x^{1/n})` where
`p` is given by ``input`` and `n` is given by ``deflation``.
Requires `n > 0`.
.. function:: ulong fmpz_mod_poly_deflation(const fmpz_mod_poly_t input, const fmpz_mod_ctx_t ctx)
Returns the largest integer by which ``input`` can be deflated.
As special cases, returns 0 if ``input`` is the zero polynomial
and 1 of ``input`` is a constant polynomial.
Berlekamp-Massey Algorithm
--------------------------------------------------------------------------------
The fmpz_mod_berlekamp_massey_t manages an unlimited stream of points `a_1, a_2, \dots .`
At any point in time, after, say, `n` points have been added, a call to :func:`fmpz_mod_berlekamp_massey_reduce` will
calculate the polynomials `U`, `V` and `R` in the extended euclidean remainder sequence with
.. math::
U*x^n + V*(a_1*x^{n-1} + \cdots + a_{n-1}*x + a_n) = R, \quad \deg(U) < \deg(V) \le n/2, \quad \deg(R) < n/2.
The polynomials `V` and `R` may be obtained with :func:`fmpz_mod_berlekamp_massey_V_poly` and :func:`fmpz_mod_berlekamp_massey_R_poly`.
This class differs from :func:`fmpz_mod_poly_minpoly` in the following respect. Let `v_i` denote the coefficient of `x^i` in `V`.
:func:`fmpz_mod_poly_minpoly` will return a polynomial `V` of lowest degree that annihilates the whole sequence `a_1, \dots, a_n` as
.. math::
\sum_{i} v_i a_{j + i} = 0, \quad 1 \le j \le n - \deg(V).
The cost is that a polynomial of degree `n-1` might be returned and the return is not generally uniquely determined by the input sequence.
For the fmpz_mod_berlekamp_massey_t we have
.. math::
\sum_{i,j} v_i a_{j+i} x^{-j} = -U + \frac{R}{x^n}\text{,}
and it can be seen that `\sum_{i} v_i a_{j + i}` is zero for `1 \le j < n - \deg(R)`. Thus whether or not `V` has annihilated the whole sequence may be checked by comparing the degrees of `V` and `R`.
.. function:: void fmpz_mod_berlekamp_massey_init(fmpz_mod_berlekamp_massey_t B, const fmpz_mod_ctx_t ctx)
Initialize ``B`` with an empty stream.
.. function:: void fmpz_mod_berlekamp_massey_clear(fmpz_mod_berlekamp_massey_t B, const fmpz_mod_ctx_t ctx)
Free any space used by ``B``.
.. function:: void fmpz_mod_berlekamp_massey_start_over(fmpz_mod_berlekamp_massey_t B, const fmpz_mod_ctx_t ctx)
Empty the stream of points in ``B``.
.. function:: void fmpz_mod_berlekamp_massey_add_points(fmpz_mod_berlekamp_massey_t B, const fmpz * a, slong count, const fmpz_mod_ctx_t ctx)
void fmpz_mod_berlekamp_massey_add_zeros(fmpz_mod_berlekamp_massey_t B, slong count, const fmpz_mod_ctx_t ctx)
void fmpz_mod_berlekamp_massey_add_point(fmpz_mod_berlekamp_massey_t B, const fmpz_t a, const fmpz_mod_ctx_t ctx)
Add point(s) to the stream processed by ``B``. The addition of any number of points will not update the `V` and `R` polynomial.
.. function:: int fmpz_mod_berlekamp_massey_reduce(fmpz_mod_berlekamp_massey_t B, const fmpz_mod_ctx_t ctx)
Ensure that the polynomials `V` and `R` are up to date. The return value is ``1`` if this function changed `V` and ``0`` otherwise.
For example, if this function is called twice in a row without adding any points in between, the return of the second call should be ``0``.
As another example, suppose the object is emptied, the points `1, 1, 2, 3` are added, then reduce is called. This reduce should return ``1`` with `\deg(R) < \deg(V) = 2` because the Fibonacci sequence has been recognized. The further addition of the two points `5, 8` and a reduce will result in a return value of ``0``.
.. function:: slong fmpz_mod_berlekamp_massey_point_count(const fmpz_mod_berlekamp_massey_t B)
Return the number of points stored in ``B``.
.. function:: const fmpz * fmpz_mod_berlekamp_massey_points(const fmpz_mod_berlekamp_massey_t B)
Return a pointer the array of points stored in ``B``. This may be ``NULL`` if :func:`fmpz_mod_berlekamp_massey_point_count` returns ``0``.
.. function:: const fmpz_mod_poly_struct * fmpz_mod_berlekamp_massey_V_poly(const fmpz_mod_berlekamp_massey_t B)
Return the polynomial ``V`` in ``B``.
.. function:: const fmpz_mod_poly_struct * fmpz_mod_berlekamp_massey_R_poly(const fmpz_mod_berlekamp_massey_t B)
Return the polynomial ``R`` in ``B``.
|