File: fmpz_mpoly.rst

package info (click to toggle)
flint 3.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 68,996 kB
  • sloc: ansic: 915,350; asm: 14,605; python: 5,340; sh: 4,512; lisp: 2,621; makefile: 787; cpp: 341
file content (1029 lines) | stat: -rw-r--r-- 56,317 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
.. _fmpz-mpoly:

**fmpz_mpoly.h** -- multivariate polynomials over the integers
===============================================================================

    The exponents follow the ``mpoly`` interface.
    A coefficient may be referenced as a ``fmpz *``.

Types, macros and constants
-------------------------------------------------------------------------------

.. type:: fmpz_mpoly_struct

    A structure holding a multivariate integer polynomial.

.. type:: fmpz_mpoly_t

    An array of length `1` of ``fmpz_mpoly_struct``.

.. type:: fmpz_mpoly_ctx_struct

    Context structure representing the parent ring of an ``fmpz_mpoly``.

.. type:: fmpz_mpoly_ctx_t

    An array of length `1` of ``fmpz_mpoly_ctx_struct``.


Context object
--------------------------------------------------------------------------------


.. function:: void fmpz_mpoly_ctx_init(fmpz_mpoly_ctx_t ctx, slong nvars, const ordering_t ord)

    Initialise a context object for a polynomial ring with the given number of variables and the given ordering.
    The possibilities for the ordering are ``ORD_LEX``, ``ORD_DEGLEX`` and ``ORD_DEGREVLEX``.

.. function:: slong fmpz_mpoly_ctx_nvars(const fmpz_mpoly_ctx_t ctx)

    Return the number of variables used to initialize the context.

.. function:: ordering_t fmpz_mpoly_ctx_ord(const fmpz_mpoly_ctx_t ctx)

    Return the ordering used to initialize the context.

.. function:: void fmpz_mpoly_ctx_clear(fmpz_mpoly_ctx_t ctx)

    Release up any space allocated by *ctx*.


Memory management
--------------------------------------------------------------------------------


.. function:: void fmpz_mpoly_init(fmpz_mpoly_t A, const fmpz_mpoly_ctx_t ctx)

    Initialise *A* for use with the given and initialised context object. Its value is set to zero.

.. function:: void fmpz_mpoly_init2(fmpz_mpoly_t A, slong alloc, const fmpz_mpoly_ctx_t ctx)

    Initialise *A* for use with the given and initialised context object. Its value is set to zero.
    It is allocated with space for *alloc* terms and at least ``MPOLY_MIN_BITS`` bits for the exponents.

.. function:: void fmpz_mpoly_init3(fmpz_mpoly_t A, slong alloc, flint_bitcnt_t bits, const fmpz_mpoly_ctx_t ctx)

    Initialise *A* for use with the given and initialised context object. Its value is set to zero.
    It is allocated with space for *alloc* terms and *bits* bits for the exponents.

.. function:: void fmpz_mpoly_fit_length(fmpz_mpoly_t A, slong len, const fmpz_mpoly_ctx_t ctx)

    Ensure that *A* has space for at least *len* terms.

.. function:: void fmpz_mpoly_fit_bits(fmpz_mpoly_t A, flint_bitcnt_t bits, const fmpz_mpoly_ctx_t ctx)

    Ensure that the exponent fields of *A* have at least *bits* bits.

.. function:: void fmpz_mpoly_realloc(fmpz_mpoly_t A, slong alloc, const fmpz_mpoly_ctx_t ctx)

    Reallocate *A* to have space for *alloc* terms. 
    Assumes the current length of the polynomial is not greater than *alloc*.

.. function:: void fmpz_mpoly_clear(fmpz_mpoly_t A, const fmpz_mpoly_ctx_t ctx)

    Release any space allocated for *A*.


Input/Output
--------------------------------------------------------------------------------

    The variable strings in *x* start with the variable of most significance at index `0`. If *x* is ``NULL``, the variables are named ``x1``, ``x2``, etc.

.. function:: char * fmpz_mpoly_get_str_pretty(const fmpz_mpoly_t A, const char ** x, const fmpz_mpoly_ctx_t ctx)

    Return a string, which the user is responsible for cleaning up, representing *A*, given an array of variable strings *x*.

.. function:: int fmpz_mpoly_fprint_pretty(FILE * file, const fmpz_mpoly_t A, const char ** x, const fmpz_mpoly_ctx_t ctx)

    Print a string representing *A* to *file*.

.. function:: int fmpz_mpoly_print_pretty(const fmpz_mpoly_t A, const char ** x, const fmpz_mpoly_ctx_t ctx)

    Print a string representing *A* to ``stdout``.

.. function:: int fmpz_mpoly_set_str_pretty(fmpz_mpoly_t A, const char * str, const char ** x, const fmpz_mpoly_ctx_t ctx)

    Set *A* to the polynomial in the null-terminates string *str* given an array *x* of variable strings.
    If parsing *str* fails, *A* is set to zero, and `-1` is returned. Otherwise, `0` is returned.
    The operations ``+``, ``-``, ``*``, and ``/`` are permitted along with integers and the variables in *x*. The character ``^`` must be immediately followed by the (integer) exponent.
    If any division is not exact, parsing fails.


Basic manipulation
--------------------------------------------------------------------------------


.. function:: void fmpz_mpoly_gen(fmpz_mpoly_t A, slong var, const fmpz_mpoly_ctx_t ctx)

    Set *A* to the variable of index *var*, where `var = 0` corresponds to the variable with the most significance with respect to the ordering. 

.. function:: int fmpz_mpoly_is_gen(const fmpz_mpoly_t A, slong var, const fmpz_mpoly_ctx_t ctx)

    If `var \ge 0`, return `1` if *A* is equal to the `var`-th generator, otherwise return `0`.
    If `var < 0`, return `1` if the polynomial is equal to any generator, otherwise return `0`.

.. function:: void fmpz_mpoly_set(fmpz_mpoly_t A, const fmpz_mpoly_t B, const fmpz_mpoly_ctx_t ctx)
    
    Set *A* to *B*.

.. function:: int fmpz_mpoly_equal(const fmpz_mpoly_t A, const fmpz_mpoly_t B, const fmpz_mpoly_ctx_t ctx)

    Return `1` if *A* is equal to *B*, else return `0`.

.. function:: void fmpz_mpoly_swap(fmpz_mpoly_t poly1, fmpz_mpoly_t poly2, const fmpz_mpoly_ctx_t ctx)

    Efficiently swap *A* and *B*.

.. function:: int _fmpz_mpoly_fits_small(const fmpz * poly, slong len)

    Return 1 if the array of coefficients of length *len* consists
    entirely of values that are small ``fmpz`` values, i.e. of at most
    ``FLINT_BITS - 2`` bits plus a sign bit.

.. function:: slong fmpz_mpoly_max_bits(const fmpz_mpoly_t A)

    Computes the maximum number of bits `b` required to represent the absolute
    values of the coefficients of *A*. If all of the coefficients are
    positive, `b` is returned, otherwise `-b` is returned.


Constants
--------------------------------------------------------------------------------


.. function:: int fmpz_mpoly_is_fmpz(const fmpz_mpoly_t A, const fmpz_mpoly_ctx_t ctx)

    Return `1` if *A* is a constant, else return `0`.

.. function:: void fmpz_mpoly_get_fmpz(fmpz_t c, const fmpz_mpoly_t A, const fmpz_mpoly_ctx_t ctx)

    Assuming that *A* is a constant, set *c* to this constant.
    This function throws if *A* is not a constant.

.. function:: void fmpz_mpoly_set_fmpz(fmpz_mpoly_t A, const fmpz_t c, const fmpz_mpoly_ctx_t ctx)
              void fmpz_mpoly_set_ui(fmpz_mpoly_t A, ulong c, const fmpz_mpoly_ctx_t ctx)
              void fmpz_mpoly_set_si(fmpz_mpoly_t A, slong c, const fmpz_mpoly_ctx_t ctx)

    Set *A* to the constant *c*.

.. function:: void fmpz_mpoly_zero(fmpz_mpoly_t A, const fmpz_mpoly_ctx_t ctx)

    Set *A* to the constant `0`.

.. function:: void fmpz_mpoly_one(fmpz_mpoly_t A, const fmpz_mpoly_ctx_t ctx)

    Set *A* to the constant `1`.

.. function:: int fmpz_mpoly_equal_fmpz(const fmpz_mpoly_t A, const fmpz_t c, const fmpz_mpoly_ctx_t ctx)
              int fmpz_mpoly_equal_ui(const fmpz_mpoly_t A, ulong c, const fmpz_mpoly_ctx_t ctx)
              int fmpz_mpoly_equal_si(const fmpz_mpoly_t A, slong c, const fmpz_mpoly_ctx_t ctx)

    Return `1` if *A* is equal to the constant *c*, else return `0`.

.. function:: int fmpz_mpoly_is_zero(const fmpz_mpoly_t A, const fmpz_mpoly_ctx_t ctx)

    Return `1` if *A* is the constant `0`, else return `0`.

.. function:: int fmpz_mpoly_is_one(const fmpz_mpoly_t A, const fmpz_mpoly_ctx_t ctx)

    Return `1` if *A* is the constant `1`, else return `0`.


Degrees
--------------------------------------------------------------------------------


.. function:: int fmpz_mpoly_degrees_fit_si(const fmpz_mpoly_t A, const fmpz_mpoly_ctx_t ctx)

    Return `1` if the degrees of *A* with respect to each variable fit into an ``slong``, otherwise return `0`.

.. function:: void fmpz_mpoly_degrees_fmpz(fmpz ** degs, const fmpz_mpoly_t A, const fmpz_mpoly_ctx_t ctx)
              void fmpz_mpoly_degrees_si(slong * degs, const fmpz_mpoly_t A, const fmpz_mpoly_ctx_t ctx)

    Set *degs* to the degrees of *A* with respect to each variable.
    If *A* is zero, all degrees are set to `-1`.

.. function:: void fmpz_mpoly_degree_fmpz(fmpz_t deg, const fmpz_mpoly_t A, slong var, const fmpz_mpoly_ctx_t ctx)
              slong fmpz_mpoly_degree_si(const fmpz_mpoly_t A, slong var, const fmpz_mpoly_ctx_t ctx)

    Either return or set *deg* to the degree of *A* with respect to the variable of index *var*.
    If *A* is zero, the degree is defined to be `-1`.

.. function:: int fmpz_mpoly_total_degree_fits_si(const fmpz_mpoly_t A, const fmpz_mpoly_ctx_t ctx)

    Return `1` if the total degree of *A* fits into an ``slong``, otherwise return `0`.

.. function:: void fmpz_mpoly_total_degree_fmpz(fmpz_t tdeg, const fmpz_mpoly_t A, const fmpz_mpoly_ctx_t ctx)
              slong fmpz_mpoly_total_degree_si(const fmpz_mpoly_t A, const fmpz_mpoly_ctx_t ctx)

    Either return or set *tdeg* to the total degree of *A*.
    If *A* is zero, the total degree is defined to be `-1`.

.. function:: void fmpz_mpoly_used_vars(int * used, const fmpz_mpoly_t A, const fmpz_mpoly_ctx_t ctx)

    For each variable index *i*, set ``used[i]`` to nonzero if the variable of index *i* appears in *A* and to zero otherwise.


Coefficients
--------------------------------------------------------------------------------


.. function:: void fmpz_mpoly_get_coeff_fmpz_monomial(fmpz_t c, const fmpz_mpoly_t A, const fmpz_mpoly_t M, const fmpz_mpoly_ctx_t ctx)

    Assuming that *M* is a monomial, set *c* to the coefficient of the corresponding monomial in *A*.
    This function throws if *M* is not a monomial.

.. function:: void fmpz_mpoly_set_coeff_fmpz_monomial(fmpz_mpoly_t poly, const fmpz_t c, const fmpz_mpoly_t poly2, const fmpz_mpoly_ctx_t ctx)

    Assuming that *M* is a monomial, set the coefficient of the corresponding monomial in *A* to *c*.
    This function throws if *M* is not a monomial.

.. function:: void fmpz_mpoly_get_coeff_fmpz_fmpz(fmpz_t c, const fmpz_mpoly_t A, fmpz * const * exp, const fmpz_mpoly_ctx_t ctx)
              ulong fmpz_mpoly_get_coeff_ui_fmpz(const fmpz_mpoly_t A, fmpz * const * exp, const fmpz_mpoly_ctx_t ctx)
              slong fmpz_mpoly_get_coeff_si_fmpz(const fmpz_mpoly_t A, fmpz * const * exp, const fmpz_mpoly_ctx_t ctx)
              void fmpz_mpoly_get_coeff_fmpz_ui(fmpz_t c, const fmpz_mpoly_t A, const ulong * exp, const fmpz_mpoly_ctx_t ctx)
              ulong fmpz_mpoly_get_coeff_ui_ui(const fmpz_mpoly_t A, const ulong * exp, const fmpz_mpoly_ctx_t ctx)
              slong fmpz_mpoly_get_coeff_si_ui(const fmpz_mpoly_t A, const ulong * exp, const fmpz_mpoly_ctx_t ctx)

    Either return or set *c* to the coefficient of the monomial with exponent vector *exp*.

.. function:: void fmpz_mpoly_set_coeff_fmpz_fmpz(fmpz_mpoly_t A, const fmpz_t c, fmpz * const * exp, const fmpz_mpoly_ctx_t ctx)
              void fmpz_mpoly_set_coeff_ui_fmpz(fmpz_mpoly_t A, ulong c, fmpz * const * exp, const fmpz_mpoly_ctx_t ctx)
              void fmpz_mpoly_set_coeff_si_fmpz(fmpz_mpoly_t A, slong c, fmpz * const * exp, const fmpz_mpoly_ctx_t ctx)
              void fmpz_mpoly_set_coeff_fmpz_ui(fmpz_mpoly_t A, const fmpz_t c, const ulong * exp, const fmpz_mpoly_ctx_t ctx)
              void fmpz_mpoly_set_coeff_ui_ui(fmpz_mpoly_t A, ulong c, const ulong * exp, const fmpz_mpoly_ctx_t ctx)
              void fmpz_mpoly_set_coeff_si_ui(fmpz_mpoly_t A, slong c, const ulong * exp, const fmpz_mpoly_ctx_t ctx)

    Set the coefficient of the monomial with exponent vector *exp* to *c*.

.. function:: void fmpz_mpoly_get_coeff_vars_ui(fmpz_mpoly_t C, const fmpz_mpoly_t A, const slong * vars, const ulong * exps, slong length, const fmpz_mpoly_ctx_t ctx)

    Set *C* to the coefficient of *A* with respect to the variables in *vars* with powers in the corresponding array *exps*.
    Both *vars* and *exps* point to array of length *length*. It is assumed that `0 < length \le nvars(A)` and that the variables in *vars* are distinct.


Comparison
--------------------------------------------------------------------------------


.. function:: int fmpz_mpoly_cmp(const fmpz_mpoly_t A, const fmpz_mpoly_t B, const fmpz_mpoly_ctx_t ctx)

    Return `1` (resp. `-1`, or `0`) if *A* is after (resp. before, same as) *B* in some arbitrary but fixed total ordering of the polynomials.
    This ordering agrees with the usual ordering of monomials when *A* and *B* are both monomials.


Conversion
--------------------------------------------------------------------------------

.. function:: int fmpz_mpoly_is_fmpz_poly(const fmpz_mpoly_t A, slong var, const fmpz_mpoly_ctx_t ctx)

    Return whether *A* is a univariate polynomial in the variable with index *var*.

.. function:: int fmpz_mpoly_get_fmpz_poly(fmpz_poly_t A, const fmpz_mpoly_t B, slong var, const fmpz_mpoly_ctx_t ctx)

    If *B* is a univariate polynomial in the variable with index *var*,
    set *A* to this polynomial and return 1; otherwise return 0.

.. function:: void fmpz_mpoly_set_fmpz_poly(fmpz_mpoly_t A, const fmpz_poly_t B, slong var, const fmpz_mpoly_ctx_t ctx)
              void fmpz_mpoly_set_gen_fmpz_poly(fmpz_mpoly_t A, slong var, const fmpz_poly_t B, const fmpz_mpoly_ctx_t ctx)

    Set *A* to the univariate polynomial *B* in the variable with index *var*.

Container operations
--------------------------------------------------------------------------------

    These functions deal with violations of the internal canonical representation.
    If a term index is negative or not strictly less than the length of the polynomial, the function will throw.

.. function:: fmpz * fmpz_mpoly_term_coeff_ref(fmpz_mpoly_t A, slong i, const fmpz_mpoly_ctx_t ctx)

    Return a reference to the coefficient of index *i* of *A*.

.. function:: int fmpz_mpoly_is_canonical(const fmpz_mpoly_t A, const fmpz_mpoly_ctx_t ctx)

    Return `1` if *A* is in canonical form. Otherwise, return `0`.
    To be in canonical form, all of the terms must have nonzero coefficient, and the terms must be sorted from greatest to least.

.. function:: slong fmpz_mpoly_length(const fmpz_mpoly_t A, const fmpz_mpoly_ctx_t ctx)

    Return the number of terms in *A*.
    If the polynomial is in canonical form, this will be the number of nonzero coefficients.

.. function:: void fmpz_mpoly_resize(fmpz_mpoly_t A, slong new_length, const fmpz_mpoly_ctx_t ctx)

    Set the length of *A* to `new\_length`.
    Terms are either deleted from the end, or new zero terms are appended.

.. function:: void fmpz_mpoly_get_term_coeff_fmpz(fmpz_t c, const fmpz_mpoly_t A, slong i, const fmpz_mpoly_ctx_t ctx)
              ulong fmpz_mpoly_get_term_coeff_ui(const fmpz_mpoly_t A, slong i, const fmpz_mpoly_ctx_t ctx)
              slong fmpz_mpoly_get_term_coeff_si(const fmpz_mpoly_t poly, slong i, const fmpz_mpoly_ctx_t ctx)

    Either return or set *c* to the coefficient of the term of index *i*.

.. function:: void fmpz_mpoly_set_term_coeff_fmpz(fmpz_mpoly_t A, slong i, const fmpz_t c, const fmpz_mpoly_ctx_t ctx)
              void fmpz_mpoly_set_term_coeff_ui(fmpz_mpoly_t A, slong i, ulong c, const fmpz_mpoly_ctx_t ctx)
              void fmpz_mpoly_set_term_coeff_si(fmpz_mpoly_t A, slong i, slong c, const fmpz_mpoly_ctx_t ctx)

    Set the coefficient of the term of index *i* to *c*.

.. function:: int fmpz_mpoly_term_exp_fits_si(const fmpz_mpoly_t poly, slong i, const fmpz_mpoly_ctx_t ctx)
              int fmpz_mpoly_term_exp_fits_ui(const fmpz_mpoly_t poly, slong i, const fmpz_mpoly_ctx_t ctx)

    Return `1` if all entries of the exponent vector of the term of index *i*  fit into an ``slong`` (resp. a ``ulong``). Otherwise, return `0`.

.. function:: void fmpz_mpoly_get_term_exp_fmpz(fmpz ** exp, const fmpz_mpoly_t A, slong i, const fmpz_mpoly_ctx_t ctx)
              void fmpz_mpoly_get_term_exp_ui(ulong * exp, const fmpz_mpoly_t A, slong i, const fmpz_mpoly_ctx_t ctx)
              void fmpz_mpoly_get_term_exp_si(slong * exp, const fmpz_mpoly_t A, slong i, const fmpz_mpoly_ctx_t ctx)

    Set *exp* to the exponent vector of the term of index *i*.
    The ``_ui`` (resp. ``_si``) version throws if any entry does not fit into a ``ulong`` (resp. ``slong``).

.. function:: ulong fmpz_mpoly_get_term_var_exp_ui(const fmpz_mpoly_t A, slong i, slong var, const fmpz_mpoly_ctx_t ctx)
              slong fmpz_mpoly_get_term_var_exp_si(const fmpz_mpoly_t A, slong i, slong var, const fmpz_mpoly_ctx_t ctx)

    Return the exponent of the variable `var` of the term of index *i*.
    This function throws if the exponent does not fit into a ``ulong`` (resp. ``slong``).

.. function:: void fmpz_mpoly_set_term_exp_fmpz(fmpz_mpoly_t A, slong i, fmpz * const * exp, const fmpz_mpoly_ctx_t ctx)
              void fmpz_mpoly_set_term_exp_ui(fmpz_mpoly_t A, slong i, const ulong * exp, const fmpz_mpoly_ctx_t ctx)

    Set the exponent vector of the term of index *i* to *exp*.

.. function:: void fmpz_mpoly_get_term(fmpz_mpoly_t M, const fmpz_mpoly_t A, slong i, const fmpz_mpoly_ctx_t ctx)

    Set `M` to the term of index *i* in *A*.

.. function:: void fmpz_mpoly_get_term_monomial(fmpz_mpoly_t M, const fmpz_mpoly_t A, slong i, const fmpz_mpoly_ctx_t ctx)

    Set `M` to the monomial of the term of index *i* in *A*. The coefficient of `M` will be one.

.. function:: void fmpz_mpoly_push_term_fmpz_fmpz(fmpz_mpoly_t A, const fmpz_t c, fmpz * const * exp, const fmpz_mpoly_ctx_t ctx)
              void fmpz_mpoly_push_term_fmpz_ffmpz(fmpz_mpoly_t A, const fmpz_t c, const fmpz * exp, const fmpz_mpoly_ctx_t ctx)
              void fmpz_mpoly_push_term_ui_fmpz(fmpz_mpoly_t A, ulong c, fmpz * const * exp, const fmpz_mpoly_ctx_t ctx)
              void fmpz_mpoly_push_term_ui_ffmpz(fmpz_mpoly_t A, ulong c, const fmpz * exp, const fmpz_mpoly_ctx_t ctx)
              void fmpz_mpoly_push_term_si_fmpz(fmpz_mpoly_t A, slong c, fmpz * const * exp, const fmpz_mpoly_ctx_t ctx)
              void fmpz_mpoly_push_term_si_ffmpz(fmpz_mpoly_t A, slong c, const fmpz * exp, const fmpz_mpoly_ctx_t ctx)
              void fmpz_mpoly_push_term_fmpz_ui(fmpz_mpoly_t A, const fmpz_t c, const ulong * exp, const fmpz_mpoly_ctx_t ctx)
              void fmpz_mpoly_push_term_ui_ui(fmpz_mpoly_t A, ulong c, const ulong * exp, const fmpz_mpoly_ctx_t ctx)
              void fmpz_mpoly_push_term_si_ui(fmpz_mpoly_t A, slong c, const ulong * exp, const fmpz_mpoly_ctx_t ctx)

    Append a term to *A* with coefficient *c* and exponent vector *exp*.
    This function runs in constant average time.

.. function:: void fmpz_mpoly_sort_terms(fmpz_mpoly_t A, const fmpz_mpoly_ctx_t ctx)

    Sort the terms of *A* into the canonical ordering dictated by the ordering in *ctx*.
    This function simply reorders the terms: It does not combine like terms, nor does it delete terms with coefficient zero.
    This function runs in linear time in the size of *A*.

.. function:: void fmpz_mpoly_combine_like_terms(fmpz_mpoly_t A, const fmpz_mpoly_ctx_t ctx)

    Combine adjacent like terms in *A* and delete terms with coefficient zero.
    If the terms of *A* were sorted to begin with, the result will be in canonical form.
    This function runs in linear time in the size of *A*.

.. function:: void fmpz_mpoly_reverse(fmpz_mpoly_t A, const fmpz_mpoly_t B, const fmpz_mpoly_ctx_t ctx)

    Set *A* to the reversal of *B*.


Random generation
--------------------------------------------------------------------------------


.. function:: void fmpz_mpoly_randtest_bound(fmpz_mpoly_t A, flint_rand_t state, slong length, ulong coeff_bits, ulong exp_bound, const fmpz_mpoly_ctx_t ctx)

    Generate a random polynomial with length up to *length* and exponents in the range ``[0, exp_bound - 1]``.
    The exponents of each variable are generated by calls to ``n_randint(state, exp_bound)``.

.. function:: void fmpz_mpoly_randtest_bounds(fmpz_mpoly_t A, flint_rand_t state, slong length, ulong coeff_bits, ulong * exp_bounds, const fmpz_mpoly_ctx_t ctx)

    Generate a random polynomial with length up to *length* and exponents in the range ``[0, exp_bounds[i] - 1]``.
    The exponents of the variable of index *i* are generated by calls to ``n_randint(state, exp_bounds[i])``.

.. function:: void fmpz_mpoly_randtest_bits(fmpz_mpoly_t A, flint_rand_t state, slong length, ulong coeff_bits, ulong exp_bits, const fmpz_mpoly_ctx_t ctx)

    Generate a random polynomial with length up to the given length and exponents whose packed form does not exceed the given bit count.

    The parameter ``coeff_bits`` to the three functions ``fmpz_mpoly_randtest_{bound|bounds|bits}`` is merely a suggestion for the approximate bit count of the resulting signed coefficients.
    The function :func:`fmpz_mpoly_max_bits` will give the exact bit count of the result.


Addition/Subtraction
--------------------------------------------------------------------------------


.. function:: void fmpz_mpoly_add_fmpz(fmpz_mpoly_t A, const fmpz_mpoly_t B, const fmpz_t c, const fmpz_mpoly_ctx_t ctx)
              void fmpz_mpoly_add_ui(fmpz_mpoly_t A, const fmpz_mpoly_t B, ulong c, const fmpz_mpoly_ctx_t ctx)
              void fmpz_mpoly_add_si(fmpz_mpoly_t A, const fmpz_mpoly_t B, slong c, const fmpz_mpoly_ctx_t ctx)

    Set *A* to `B + c`.
    If *A* and *B* are aliased, this function will probably run quickly.

.. function:: void fmpz_mpoly_sub_fmpz(fmpz_mpoly_t A, const fmpz_mpoly_t B, const fmpz_t c, const fmpz_mpoly_ctx_t ctx)
              void fmpz_mpoly_sub_ui(fmpz_mpoly_t A, const fmpz_mpoly_t B, ulong c, const fmpz_mpoly_ctx_t ctx)
              void fmpz_mpoly_sub_si(fmpz_mpoly_t A, const fmpz_mpoly_t B, slong c, const fmpz_mpoly_ctx_t ctx)

    Set *A* to `B - c`.
    If *A* and *B* are aliased, this function will probably run quickly.

.. function:: void fmpz_mpoly_add(fmpz_mpoly_t A, const fmpz_mpoly_t B, const fmpz_mpoly_t C, const fmpz_mpoly_ctx_t ctx)

    Set *A* to `B + C`.
    If *A* and *B* are aliased, this function might run in time proportional to the size of `C`.
    
.. function:: void fmpz_mpoly_sub(fmpz_mpoly_t A, const fmpz_mpoly_t B, const fmpz_mpoly_t C, const fmpz_mpoly_ctx_t ctx)

    Set *A* to `B - C`.
    If *A* and *B* are aliased, this function might run in time proportional to the size of `C`.


Scalar operations
--------------------------------------------------------------------------------


.. function:: void fmpz_mpoly_neg(fmpz_mpoly_t A, const fmpz_mpoly_t B, const fmpz_mpoly_ctx_t ctx)
    
    Set *A* to `-B`.

.. function:: void fmpz_mpoly_scalar_mul_fmpz(fmpz_mpoly_t A, const fmpz_mpoly_t B, const fmpz_t c, const fmpz_mpoly_ctx_t ctx)
              void fmpz_mpoly_scalar_mul_ui(fmpz_mpoly_t A, const fmpz_mpoly_t B, ulong c, const fmpz_mpoly_ctx_t ctx)
              void fmpz_mpoly_scalar_mul_si(fmpz_mpoly_t A, const fmpz_mpoly_t B, slong c, const fmpz_mpoly_ctx_t ctx)

    Set *A* to `B \times c`.

.. function:: void fmpz_mpoly_scalar_fmma(fmpz_mpoly_t A, const fmpz_mpoly_t B, const fmpz_t c, const fmpz_mpoly_t D, const fmpz_t e, const fmpz_mpoly_ctx_t ctx)

    Sets *A* to `B \times c + D \times e`.

.. function:: void fmpz_mpoly_scalar_divexact_fmpz(fmpz_mpoly_t A, const fmpz_mpoly_t B, const fmpz_t c, const fmpz_mpoly_ctx_t ctx)
              void fmpz_mpoly_scalar_divexact_ui(fmpz_mpoly_t A, const fmpz_mpoly_t B, ulong c, const fmpz_mpoly_ctx_t ctx)
              void fmpz_mpoly_scalar_divexact_si(fmpz_mpoly_t A, const fmpz_mpoly_t B, slong c, const fmpz_mpoly_ctx_t ctx)

    Set *A* to *B* divided by *c*. The division is assumed to be exact.

.. function:: int fmpz_mpoly_scalar_divides_fmpz(fmpz_mpoly_t A, const fmpz_mpoly_t B, const fmpz_t c, const fmpz_mpoly_ctx_t ctx)
              int fmpz_mpoly_scalar_divides_ui(fmpz_mpoly_t A, const fmpz_mpoly_t B, ulong c, const fmpz_mpoly_ctx_t ctx)
              int fmpz_mpoly_scalar_divides_si(fmpz_mpoly_t A, const fmpz_mpoly_t B, slong c, const fmpz_mpoly_ctx_t ctx)

    If *B* is divisible by *c*, set *A* to the exact quotient and return `1`, otherwise set *A* to zero and return `0`.

Differentiation/Integration
--------------------------------------------------------------------------------


.. function:: void fmpz_mpoly_derivative(fmpz_mpoly_t A, const fmpz_mpoly_t B, slong var, const fmpz_mpoly_ctx_t ctx)

    Set *A* to the derivative of *B* with respect to the variable of index `var`.

.. function:: void fmpz_mpoly_integral(fmpz_mpoly_t A, fmpz_t scale, const fmpz_mpoly_t B, slong var, const fmpz_mpoly_ctx_t ctx)

    Set *A* and *scale* so that *A* is an integral of `scale \times B` with respect to the variable of index *var*, where *scale* is positive and as small as possible.


Evaluation
--------------------------------------------------------------------------------

    These functions return `0` when the operation would imply unreasonable arithmetic.

.. function:: int fmpz_mpoly_evaluate_all_fmpz(fmpz_t ev, const fmpz_mpoly_t A, fmpz * const * vals, const fmpz_mpoly_ctx_t ctx)

    Set *ev* to the evaluation of *A* where the variables are replaced by the corresponding elements of the array *vals*.
    Return `1` for success and `0` for failure.

.. function:: int fmpz_mpoly_evaluate_one_fmpz(fmpz_mpoly_t A, const fmpz_mpoly_t B, slong var, const fmpz_t val, const fmpz_mpoly_ctx_t ctx)

    Set *A* to the evaluation of *B* where the variable of index *var* is replaced by ``val``.
    Return `1` for success and `0` for failure.

.. function:: int fmpz_mpoly_compose_fmpz_poly(fmpz_poly_t A, const fmpz_mpoly_t B, fmpz_poly_struct * const * C, const fmpz_mpoly_ctx_t ctxB)

    Set *A* to the evaluation of *B* where the variables are replaced by the corresponding elements of the array *C*.
    The context object of *B* is *ctxB*.
    Return `1` for success and `0` for failure.

.. function:: int fmpz_mpoly_compose_fmpz_mpoly_geobucket(fmpz_mpoly_t A, const fmpz_mpoly_t B, fmpz_mpoly_struct * const * C, const fmpz_mpoly_ctx_t ctxB, const fmpz_mpoly_ctx_t ctxAC)
              int fmpz_mpoly_compose_fmpz_mpoly_horner(fmpz_mpoly_t A, const fmpz_mpoly_t B, fmpz_mpoly_struct * const * C, const fmpz_mpoly_ctx_t ctxB, const fmpz_mpoly_ctx_t ctxAC)
              int fmpz_mpoly_compose_fmpz_mpoly(fmpz_mpoly_t A, const fmpz_mpoly_t B, fmpz_mpoly_struct * const * C, const fmpz_mpoly_ctx_t ctxB, const fmpz_mpoly_ctx_t ctxAC)

    Set *A* to the evaluation of *B* where the variables are replaced by the corresponding elements of the array *C*.
    Both *A* and the elements of *C* have context object *ctxAC*, while *B* has context object *ctxB*.
    The length of the array *C* is the number of variables in *ctxB*.
    Neither *A* nor *B* is allowed to alias any other polynomial.
    Return `1` for success and `0` for failure.
    The main method attempts to perform the calculation using matrices and chooses heuristically between the ``geobucket`` and ``horner`` methods if needed.

.. function:: void fmpz_mpoly_compose_fmpz_mpoly_gen(fmpz_mpoly_t A, const fmpz_mpoly_t B, const slong * c, const fmpz_mpoly_ctx_t ctxB, const fmpz_mpoly_ctx_t ctxAC)

    Set *A* to the evaluation of *B* where the variable of index *i* in *ctxB* is replaced by the variable of index ``c[i]`` in *ctxAC*.
    The length of the array *C* is the number of variables in *ctxB*.
    If any ``c[i]`` is negative, the corresponding variable of *B* is replaced by zero. Otherwise, it is expected that ``c[i]`` is less than the number of variables in *ctxAC*.


Multiplication
--------------------------------------------------------------------------------


.. function:: void fmpz_mpoly_mul(fmpz_mpoly_t A, const fmpz_mpoly_t B, const fmpz_mpoly_t C, const fmpz_mpoly_ctx_t ctx)
              void fmpz_mpoly_mul_threaded(fmpz_mpoly_t A, const fmpz_mpoly_t B, const fmpz_mpoly_t C, const fmpz_mpoly_ctx_t ctx, slong thread_limit)

    Set *A* to `B \times C`.

.. function:: void fmpz_mpoly_mul_johnson(fmpz_mpoly_t A, const fmpz_mpoly_t B, const fmpz_mpoly_t C, const fmpz_mpoly_ctx_t ctx)
              void fmpz_mpoly_mul_heap_threaded(fmpz_mpoly_t A, const fmpz_mpoly_t B, const fmpz_mpoly_t C, const fmpz_mpoly_ctx_t ctx)

    Set *A* to `B \times C` using Johnson's heap-based method.
    The first version always uses one thread.

.. function:: int fmpz_mpoly_mul_array(fmpz_mpoly_t A, const fmpz_mpoly_t B, const fmpz_mpoly_t C, const fmpz_mpoly_ctx_t ctx)
              int fmpz_mpoly_mul_array_threaded(fmpz_mpoly_t A, const fmpz_mpoly_t B, const fmpz_mpoly_t C, const fmpz_mpoly_ctx_t ctx)

    Try to set *A* to `B \times C` using arrays.
    If the return is `0`, the operation was unsuccessful. Otherwise, it was successful and the return is `1`.
    The first version always uses one thread.

.. function:: int fmpz_mpoly_mul_dense(fmpz_mpoly_t A, const fmpz_mpoly_t B, const fmpz_mpoly_t C, const fmpz_mpoly_ctx_t ctx)

    Try to set *A* to `B \times C` using dense arithmetic.
    If the return is `0`, the operation was unsuccessful. Otherwise, it was successful and the return is `1`.


Powering
--------------------------------------------------------------------------------

    These functions return `0` when the operation would imply unreasonable arithmetic.

.. function:: int fmpz_mpoly_pow_fmpz(fmpz_mpoly_t A, const fmpz_mpoly_t B, const fmpz_t k, const fmpz_mpoly_ctx_t ctx)

    Set *A* to *B* raised to the *k*-th power.
    Return `1` for success and `0` for failure.

.. function:: int fmpz_mpoly_pow_ui(fmpz_mpoly_t A, const fmpz_mpoly_t B, ulong k, const fmpz_mpoly_ctx_t ctx)

    Set *A* to *B* raised to the *k*-th power.
    Return `1` for success and `0` for failure.


Division
--------------------------------------------------------------------------------

.. function:: int fmpz_mpoly_divides(fmpz_mpoly_t Q, const fmpz_mpoly_t A, const fmpz_mpoly_t B, const fmpz_mpoly_ctx_t ctx)

    If *A* is divisible by *B*, set *Q* to the exact quotient and return `1`. Otherwise, set `Q` to zero and return `0`.

.. function:: void fmpz_mpoly_divrem(fmpz_mpoly_t Q, fmpz_mpoly_t R, const fmpz_mpoly_t A, const fmpz_mpoly_t B, const fmpz_mpoly_ctx_t ctx)

    Set `Q` and `R` to the quotient and remainder of *A* divided by *B*. The monomials in *R* divisible by the leading monomial of *B* will have coefficients reduced modulo the absolute value of the leading coefficient of *B*.
    Note that this function is not very useful if the leading coefficient *B* is not a unit.

.. function:: void fmpz_mpoly_quasidivrem(fmpz_t scale, fmpz_mpoly_t Q, fmpz_mpoly_t R, const fmpz_mpoly_t A, const fmpz_mpoly_t B, const fmpz_mpoly_ctx_t ctx)

    Set *scale*, *Q* and *R* so that *Q* and *R* are the quotient and remainder of `scale \times A` divided by *B*. No monomials in *R* will be divisible by the leading monomial of *B*.

.. function:: void fmpz_mpoly_div(fmpz_mpoly_t Q, const fmpz_mpoly_t A, const fmpz_mpoly_t B, const fmpz_mpoly_ctx_t ctx)

    Perform the operation of :func:`fmpz_mpoly_divrem` and discard *R*.
    Note that this function is not very useful if the division is not exact and the leading coefficient *B* is not a unit.

.. function:: void fmpz_mpoly_quasidiv(fmpz_t scale, fmpz_mpoly_t Q, const fmpz_mpoly_t A, const fmpz_mpoly_t B, const fmpz_mpoly_ctx_t ctx)

    Perform the operation of :func:`fmpz_mpoly_quasidivrem` and discard *R*.

.. function:: void fmpz_mpoly_divrem_ideal(fmpz_mpoly_struct ** Q, fmpz_mpoly_t R, const fmpz_mpoly_t A, fmpz_mpoly_struct * const * B, slong len, const fmpz_mpoly_ctx_t ctx)

    This function is as per :func:`fmpz_mpoly_divrem` except that it takes an array of divisor polynomials *B* and it returns an array of quotient polynomials *Q*.
    The number of divisor (and hence quotient) polynomials is given by *len*.
    Note that this function is not very useful if there is no unit among the leading coefficients in the array *B*.

.. function:: void fmpz_mpoly_quasidivrem_ideal(fmpz_t scale, fmpz_mpoly_struct ** Q, fmpz_mpoly_t R, const fmpz_mpoly_t A, fmpz_mpoly_struct * const * B, slong len, const fmpz_mpoly_ctx_t ctx)

    This function is as per :func:`fmpz_mpoly_quasidivrem` except that it takes an array of divisor polynomials *B* and it returns an array of quotient polynomials *Q*.
    The number of divisor (and hence quotient) polynomials is given by *len*.


Greatest Common Divisor
--------------------------------------------------------------------------------

.. function:: void fmpz_mpoly_term_content(fmpz_mpoly_t M, const fmpz_mpoly_t A, const fmpz_mpoly_ctx_t ctx)

    Set *M* to the GCD of the terms of *A*.
    If *A* is zero, *M* will be zero. Otherwise, *M* will be a monomial with positive coefficient.

.. function:: int fmpz_mpoly_content_vars(fmpz_mpoly_t g, const fmpz_mpoly_t A, slong * vars, slong vars_length, const fmpz_mpoly_ctx_t ctx)

    Set *g* to the GCD of the coefficients of *A* when viewed as a polynomial in the variables *vars*.
    Return `1` for success and `0` for failure. Upon success, *g* will be independent of the variables *vars*.

.. function:: int fmpz_mpoly_gcd(fmpz_mpoly_t G, const fmpz_mpoly_t A, const fmpz_mpoly_t B, const fmpz_mpoly_ctx_t ctx)

    Try to set *G* to the GCD of *A* and *B* with positive leading coefficient. The GCD of zero and zero is defined to be zero.
    If the return is `1` the function was successful. Otherwise the return is  `0` and *G* is left untouched.

.. function:: int fmpz_mpoly_gcd_cofactors(fmpz_mpoly_t G, fmpz_mpoly_t Abar, fmpz_mpoly_t Bbar, const fmpz_mpoly_t A, const fmpz_mpoly_t B, const fmpz_mpoly_ctx_t ctx)

    Do the operation of :func:`fmpz_mpoly_gcd` and also compute `Abar = A/G` and `Bbar = B/G` if successful.

.. function:: int fmpz_mpoly_gcd_brown(fmpz_mpoly_t G, const fmpz_mpoly_t A, const fmpz_mpoly_t B, const fmpz_mpoly_ctx_t ctx)
              int fmpz_mpoly_gcd_hensel(fmpz_mpoly_t G, const fmpz_mpoly_t A, const fmpz_mpoly_t B, const fmpz_mpoly_ctx_t ctx)
              int fmpz_mpoly_gcd_subresultant(fmpz_mpoly_t G, const fmpz_mpoly_t A, const fmpz_mpoly_t B, const fmpz_mpoly_ctx_t ctx)
              int fmpz_mpoly_gcd_zippel(fmpz_mpoly_t G, const fmpz_mpoly_t A, const fmpz_mpoly_t B, const fmpz_mpoly_ctx_t ctx)
              int fmpz_mpoly_gcd_zippel2(fmpz_mpoly_t G, const fmpz_mpoly_t A, const fmpz_mpoly_t B, const fmpz_mpoly_ctx_t ctx)

    Try to set *G* to the GCD of *A* and *B* using various algorithms.

.. function:: int fmpz_mpoly_resultant(fmpz_mpoly_t R, const fmpz_mpoly_t A, const fmpz_mpoly_t B, slong var, const fmpz_mpoly_ctx_t ctx)

    Try to set *R* to the resultant of *A* and *B* with respect to the variable of index *var*.

.. function:: int fmpz_mpoly_discriminant(fmpz_mpoly_t D, const fmpz_mpoly_t A, slong var, const fmpz_mpoly_ctx_t ctx)

    Try to set *D* to the discriminant of *A* with respect to the variable of index *var*.

.. function:: void fmpz_mpoly_primitive_part(fmpz_mpoly_t res, const fmpz_mpoly_t f, const fmpz_mpoly_ctx_t ctx)

    Sets *res* to the primitive part of *f*, obtained by dividing
    out the content of all coefficients and normalizing the leading
    coefficient to be positive. The zero polynomial is unchanged.


Square Root
--------------------------------------------------------------------------------

.. function:: int fmpz_mpoly_sqrt_heap(fmpz_mpoly_t Q, const fmpz_mpoly_t A, const fmpz_mpoly_ctx_t ctx, int check)

    If *A* is a perfect square return `1` and set *Q* to the square root
    with positive leading coefficient. Otherwise return `0` and set *Q* to the
    zero polynomial. If `check = 0` the polynomial is assumed to be a perfect
    square. This can be significantly faster, but it will not detect
    non-squares with any reliability, and in the event of being passed a
    non-square the result is meaningless.

.. function:: int fmpz_mpoly_sqrt(fmpz_mpoly_t q, const fmpz_mpoly_t A, const fmpz_mpoly_ctx_t ctx)

    If *A* is a perfect square return `1` and set *Q* to the square root
    with positive leading coefficient. Otherwise return `0` and set *Q* to zero.

.. function:: int fmpz_mpoly_is_square(const fmpz_mpoly_t A, const fmpz_mpoly_ctx_t ctx)

    Return `1` if *A* is a perfect square, otherwise return `0`. 

Univariate Functions
--------------------------------------------------------------------------------

    An ``fmpz_mpoly_univar_t`` holds a univariate polynomial in some main variable
    with ``fmpz_mpoly_t`` coefficients in the remaining variables. These functions
    are useful when one wants to rewrite an element of `\mathbb{Z}[x_1, \dots, x_m]`
    as an element of `(\mathbb{Z}[x_1, \dots, x_{v-1}, x_{v+1}, \dots, x_m])[x_v]`
    and vice versa.

.. function:: void fmpz_mpoly_univar_init(fmpz_mpoly_univar_t A, const fmpz_mpoly_ctx_t ctx)

    Initialize *A*.

.. function:: void fmpz_mpoly_univar_clear(fmpz_mpoly_univar_t A, const fmpz_mpoly_ctx_t ctx)

    Clear *A*.

.. function:: void fmpz_mpoly_univar_swap(fmpz_mpoly_univar_t A, fmpz_mpoly_univar_t B, const fmpz_mpoly_ctx_t ctx)

    Swap *A* and *B*.

.. function:: void fmpz_mpoly_to_univar(fmpz_mpoly_univar_t A, const fmpz_mpoly_t B, slong var, const fmpz_mpoly_ctx_t ctx)

    Set *A* to a univariate form of *B* by pulling out the variable of index *var*.
    The coefficients of *A* will still belong to the content *ctx* but will not depend on the variable of index *var*.

.. function:: void fmpz_mpoly_from_univar(fmpz_mpoly_t A, const fmpz_mpoly_univar_t B, slong var, const fmpz_mpoly_ctx_t ctx)

    Set *A* to the normal form of *B* by putting in the variable of index *var*.
    This function is undefined if the coefficients of *B* depend on the variable of index *var*.

.. function:: int fmpz_mpoly_univar_degree_fits_si(const fmpz_mpoly_univar_t A, const fmpz_mpoly_ctx_t ctx)

    Return `1` if the degree of *A* with respect to the main variable fits an ``slong``. Otherwise, return `0`.

.. function:: slong fmpz_mpoly_univar_length(const fmpz_mpoly_univar_t A, const fmpz_mpoly_ctx_t ctx)

    Return the number of terms in *A* with respect to the main variable.

.. function:: slong fmpz_mpoly_univar_get_term_exp_si(fmpz_mpoly_univar_t A, slong i, const fmpz_mpoly_ctx_t ctx)

    Return the exponent of the term of index *i* of *A*.

.. function:: void fmpz_mpoly_univar_get_term_coeff(fmpz_mpoly_t c, const fmpz_mpoly_univar_t A, slong i, const fmpz_mpoly_ctx_t ctx)
              void fmpz_mpoly_univar_swap_term_coeff(fmpz_mpoly_t c, fmpz_mpoly_univar_t A, slong i, const fmpz_mpoly_ctx_t ctx)

    Set (resp. swap) *c* to (resp. with) the coefficient of the term of index *i* of *A*.


Internal Functions
--------------------------------------------------------------------------------

.. function:: void fmpz_mpoly_inflate(fmpz_mpoly_t A, const fmpz_mpoly_t B, const fmpz * shift, const fmpz * stride, const fmpz_mpoly_ctx_t ctx)

    Apply the function ``e -> shift[v] + stride[v]*e`` to each exponent ``e`` corresponding to the variable ``v``.
    It is assumed that each shift and stride is not negative.

.. function:: void fmpz_mpoly_deflate(fmpz_mpoly_t A, const fmpz_mpoly_t B, const fmpz * shift, const fmpz * stride, const fmpz_mpoly_ctx_t ctx)

    Apply the function ``e -> (e - shift[v])/stride[v]`` to each exponent ``e`` corresponding to the variable ``v``.
    If any ``stride[v]`` is zero, the corresponding numerator ``e - shift[v]`` is assumed to be zero, and the quotient is defined as zero.
    This allows the function to undo the operation performed by :func:`fmpz_mpoly_inflate` when possible.

.. function:: void fmpz_mpoly_deflation(fmpz * shift, fmpz * stride, const fmpz_mpoly_t A, const fmpz_mpoly_ctx_t ctx)

    For each variable `v` let `S_v` be the set of exponents appearing on `v`.
    Set ``shift[v]`` to `\operatorname{min}(S_v)` and set ``stride[v]`` to `\operatorname{gcd}(S-\operatorname{min}(S_v))`.
    If *A* is zero, all shifts and strides are set to zero.


.. function:: void fmpz_mpoly_pow_fps(fmpz_mpoly_t A, const fmpz_mpoly_t B, ulong k, const fmpz_mpoly_ctx_t ctx)

    Set *A* to *B* raised to the *k*-th power, using the Monagan and Pearce FPS algorithm.
    It is assumed that *B* is not zero and `k \geq 2`.

.. function:: slong _fmpz_mpoly_divides_array(fmpz ** poly1, ulong ** exp1, slong * alloc, const fmpz * poly2, const ulong * exp2, slong len2, const fmpz * poly3, const ulong * exp3, slong len3, slong * mults, slong num, slong bits)

    Use dense array exact division to set ``(poly1, exp1, alloc)`` to
    ``(poly2, exp3, len2)`` divided by ``(poly3, exp3, len3)`` in
    ``num`` variables, given a list of multipliers to tightly pack exponents
    and a number of bits for the fields of the exponents of the result. The
    array "mults" is a list of bases to be used in encoding the array indices
    from the exponents. The function reallocates its output, hence the double
    indirection, and returns the length of its output if the quotient is exact,
    or zero if not. It is assumed that ``poly2`` is not zero. No aliasing is
    allowed.

.. function:: int fmpz_mpoly_divides_array(fmpz_mpoly_t poly1, const fmpz_mpoly_t poly2, const fmpz_mpoly_t poly3, const fmpz_mpoly_ctx_t ctx)

    Set ``poly1`` to ``poly2`` divided by ``poly3``, using a big dense
    array to accumulate coefficients, and return 1 if the quotient is exact.
    Otherwise, return 0 if the quotient is not exact. If the array will be
    larger than some internally set parameter, the function fails silently and
    returns `-1` so that some other method may be called. This function is most
    efficient on dense inputs. Note that the function 
    ``fmpz_mpoly_div_monagan_pearce`` below may be much faster if the
    quotient is known to be exact.

.. function:: slong _fmpz_mpoly_divides_monagan_pearce(fmpz ** poly1, ulong ** exp1, slong * alloc, const fmpz * poly2, const ulong * exp2, slong len2, const fmpz * poly3, const ulong * exp3, slong len3, ulong bits, slong N, const ulong * cmpmask)

    Set ``(poly1, exp1, alloc)`` to ``(poly2, exp3, len2)`` divided by
    ``(poly3, exp3, len3)`` and return 1 if the quotient is exact. Otherwise
    return 0. The function assumes exponent vectors that each fit in `N` words,
    and are packed into fields of the given number of bits. Assumes input polys
    are nonzero. Implements "Polynomial division using dynamic arrays, heaps
    and packed exponents" by Michael Monagan and Roman Pearce. No aliasing is
    allowed.

.. function:: int fmpz_mpoly_divides_monagan_pearce(fmpz_mpoly_t poly1, const fmpz_mpoly_t poly2, const fmpz_mpoly_t poly3, const fmpz_mpoly_ctx_t ctx)

    Set ``poly1`` to ``poly2`` divided by ``poly3`` and return 1 if the quotient
    is exact. Otherwise return 0. The function uses the algorithm of Michael
    Monagan and Roman Pearce. Note that the function
    ``fmpz_mpoly_div_monagan_pearce`` below may be much faster if the quotient
    is known to be exact.

.. function:: int fmpz_mpoly_divides_heap_threaded(fmpz_mpoly_t Q, const fmpz_mpoly_t A, const fmpz_mpoly_t B, const fmpz_mpoly_ctx_t ctx)

    The same method as used as in :func:`fmpz_mpoly_divides_monagan_pearce`,
    but is also multi-threaded.

.. note::

    This function is only defined if the machine is known to be strongly ordered
    during the configuration. To check whether this function is defined during
    compilation-time, use the C preprocessor macro
    ``#ifdef fmpz_mpoly_divides_heap_threaded``.

    Note that, if the system is known to be strongly ordered, the underlying
    algorithm for this function is utilized in :func:`fmpz_mpoly_divides`.
    Hence, you may find it easier to use this function instead if the C
    preprocessor is not available.

.. function:: slong _fmpz_mpoly_div_monagan_pearce(fmpz ** polyq, ulong ** expq, slong * allocq, const fmpz * poly2, const ulong * exp2, slong len2, const fmpz * poly3, const ulong * exp3, slong len3, slong bits, slong N, const ulong * cmpmask)

    Set ``(polyq, expq, allocq)`` to the quotient of
    ``(poly2, exp2, len2)`` by ``(poly3, exp3, len3)`` discarding
    remainder (with notional remainder coefficients reduced modulo the leading
    coefficient of ``(poly3, exp3, len3)``), and return the length of the
    quotient. The function reallocates its output, hence the double
    indirection. The function assumes the exponent vectors all fit in `N`
    words. The exponent vectors are assumed to have fields with the given
    number of bits. Assumes input polynomials are nonzero. Implements
    "Polynomial division using dynamic arrays, heaps and packed exponents" by
    Michael Monagan and Roman Pearce. No aliasing is allowed.

.. function:: void fmpz_mpoly_div_monagan_pearce(fmpz_mpoly_t polyq, const fmpz_mpoly_t poly2, const fmpz_mpoly_t poly3, const fmpz_mpoly_ctx_t ctx)

    Set ``polyq`` to the quotient of ``poly2`` by ``poly3``,
    discarding the remainder (with notional remainder coefficients reduced
    modulo the leading coefficient of ``poly3``). Implements "Polynomial
    division using dynamic arrays, heaps and packed exponents" by Michael
    Monagan and Roman Pearce. This function is exceptionally efficient if the
    division is known to be exact.

.. function:: slong _fmpz_mpoly_divrem_monagan_pearce(slong * lenr, fmpz ** polyq, ulong ** expq, slong * allocq, fmpz ** polyr, ulong ** expr, slong * allocr, const fmpz * poly2, const ulong * exp2, slong len2, const fmpz * poly3, const ulong * exp3, slong len3, slong bits, slong N, const ulong * cmpmask)

    Set ``(polyq, expq, allocq)`` and ``(polyr, expr, allocr)`` to the
    quotient and remainder of ``(poly2, exp2, len2)`` by
    ``(poly3, exp3, len3)`` (with remainder coefficients reduced modulo the
    leading coefficient of ``(poly3, exp3, len3)``), and return the length
    of the quotient. The function reallocates its outputs, hence the double
    indirection. The function assumes the exponent vectors all fit in `N`
    words. The exponent vectors are assumed to have fields with the given
    number of bits. Assumes input polynomials are nonzero. Implements
    "Polynomial division using dynamic arrays, heaps and packed exponents" by
    Michael Monagan and Roman Pearce. No aliasing is allowed.

.. function:: void fmpz_mpoly_divrem_monagan_pearce(fmpz_mpoly_t q, fmpz_mpoly_t r, const fmpz_mpoly_t poly2, const fmpz_mpoly_t poly3, const fmpz_mpoly_ctx_t ctx)

    Set ``polyq`` and ``polyr`` to the quotient and remainder of
    ``poly2`` divided by ``poly3`` (with remainder coefficients reduced
    modulo the leading coefficient of ``poly3``). Implements "Polynomial
    division using dynamic arrays, heaps and packed exponents" by Michael
    Monagan and Roman Pearce.

.. function:: slong _fmpz_mpoly_divrem_array(slong * lenr, fmpz ** polyq, ulong ** expq, slong * allocq, fmpz ** polyr, ulong ** expr, slong * allocr, const fmpz * poly2, const ulong * exp2, slong len2, const fmpz * poly3, const ulong * exp3, slong len3, slong * mults, slong num, slong bits)

    Use dense array division to set ``(polyq, expq, allocq)`` and
    ``(polyr, expr, allocr)`` to the quotient and remainder of
    ``(poly2, exp2, len2)`` divided by ``(poly3, exp3, len3)`` in
    ``num`` variables, given a list of multipliers to tightly pack
    exponents and a number of bits for the fields of the exponents of the
    result. The function reallocates its outputs, hence the double indirection.
    The array ``mults`` is a list of bases to be used in encoding the array
    indices from the exponents. The function returns the length of the
    quotient. It is assumed that the input polynomials are not zero. No
    aliasing is allowed.

.. function:: int fmpz_mpoly_divrem_array(fmpz_mpoly_t q, fmpz_mpoly_t r, const fmpz_mpoly_t poly2, const fmpz_mpoly_t poly3, const fmpz_mpoly_ctx_t ctx)

    Set ``polyq`` and ``polyr`` to the quotient and remainder of
    ``poly2`` divided by ``poly3`` (with remainder coefficients reduced
    modulo the leading coefficient of ``poly3``). The function is
    implemented using dense arrays, and is efficient when the inputs are fairly
    dense. If the array will be larger than some internally set parameter, the
    function silently returns 0 so that another function can be called,
    otherwise it returns 1.

.. function:: void fmpz_mpoly_quasidivrem_heap(fmpz_t scale, fmpz_mpoly_t q, fmpz_mpoly_t r, const fmpz_mpoly_t poly2, const fmpz_mpoly_t poly3, const fmpz_mpoly_ctx_t ctx)

    Set ``scale``, ``q`` and ``r`` so that
    ``scale*poly2 = q*poly3 + r`` and no monomial in ``r`` is divisible
    by the leading monomial of ``poly3``, where ``scale`` is positive
    and as small as possible. This function throws an exception if
    ``poly3`` is zero or if an exponent overflow occurs.


.. function:: slong _fmpz_mpoly_divrem_ideal_monagan_pearce(fmpz_mpoly_struct ** polyq, fmpz ** polyr, ulong ** expr, slong * allocr, const fmpz * poly2, const ulong * exp2, slong len2, fmpz_mpoly_struct * const * poly3, ulong * const * exp3, slong len, slong N, slong bits, const fmpz_mpoly_ctx_t ctx, const ulong * cmpmask)

    This function is as per ``_fmpz_mpoly_divrem_monagan_pearce`` except
    that it takes an array of divisor polynomials ``poly3`` and an array of
    repacked exponent arrays ``exp3``, which may alias the exponent arrays
    of ``poly3``, and it returns an array of quotient polynomials
    ``polyq``. The number of divisor (and hence quotient) polynomials is
    given by ``len``. The function computes polynomials `q_i` such that
    `r = a - \sum_{i=0}^{\mbox{len - 1}} q_ib_i`, where the `q_i` are the
    quotient polynomials and the `b_i` are the divisor polynomials.

.. function:: void fmpz_mpoly_divrem_ideal_monagan_pearce(fmpz_mpoly_struct ** q, fmpz_mpoly_t r, const fmpz_mpoly_t poly2, fmpz_mpoly_struct * const * poly3, slong len, const fmpz_mpoly_ctx_t ctx)

    This function is as per ``fmpz_mpoly_divrem_monagan_pearce`` except
    that it takes an array of divisor polynomials ``poly3``, and it returns
    an array of quotient polynomials ``q``. The number of divisor (and hence
    quotient) polynomials is given by ``len``. The function computes
    polynomials `q_i = q[i]` such that ``poly2`` is
    `r + \sum_{i=0}^{\mbox{len - 1}} q_ib_i`, where `b_i =` ``poly3[i]``.


Vectors
--------------------------------------------------------------------------------

.. type:: fmpz_mpoly_vec_struct

.. type:: fmpz_mpoly_vec_t

    A type holding a vector of :type:`fmpz_mpoly_t`.

.. macro:: fmpz_mpoly_vec_entry(vec, i)

    Macro for accessing the entry at position *i* in *vec*.

.. function:: void fmpz_mpoly_vec_init(fmpz_mpoly_vec_t vec, slong len, const fmpz_mpoly_ctx_t ctx)

    Initializes *vec* to a vector of length *len*, setting all entries to the zero polynomial.

.. function:: void fmpz_mpoly_vec_clear(fmpz_mpoly_vec_t vec, const fmpz_mpoly_ctx_t ctx)

    Clears *vec*, freeing its allocated memory.

.. function:: void fmpz_mpoly_vec_print(const fmpz_mpoly_vec_t vec, const fmpz_mpoly_ctx_t ctx)

    Prints *vec* to standard output.

.. function:: void fmpz_mpoly_vec_swap(fmpz_mpoly_vec_t x, fmpz_mpoly_vec_t y, const fmpz_mpoly_ctx_t ctx)

    Swaps *x* and *y* efficiently.

.. function:: void fmpz_mpoly_vec_fit_length(fmpz_mpoly_vec_t vec, slong len, const fmpz_mpoly_ctx_t ctx)

    Allocates room for *len* entries in *vec*.

.. function:: void fmpz_mpoly_vec_set(fmpz_mpoly_vec_t dest, const fmpz_mpoly_vec_t src, const fmpz_mpoly_ctx_t ctx)

    Sets *dest* to a copy of *src*.

.. function:: void fmpz_mpoly_vec_append(fmpz_mpoly_vec_t vec, const fmpz_mpoly_t f, const fmpz_mpoly_ctx_t ctx)

    Appends *f* to the end of *vec*.

.. function:: slong fmpz_mpoly_vec_insert_unique(fmpz_mpoly_vec_t vec, const fmpz_mpoly_t f, const fmpz_mpoly_ctx_t ctx)

    Inserts *f* without duplication into *vec* and returns its index.
    If this polynomial already exists, *vec* is unchanged. If this
    polynomial does not exist in *vec*, it is appended.

.. function:: void fmpz_mpoly_vec_set_length(fmpz_mpoly_vec_t vec, slong len, const fmpz_mpoly_ctx_t ctx)

    Sets the length of *vec* to *len*, truncating or zero-extending
    as needed.

.. function:: void fmpz_mpoly_vec_randtest_not_zero(fmpz_mpoly_vec_t vec, flint_rand_t state, slong len, slong poly_len, slong bits, ulong exp_bound, fmpz_mpoly_ctx_t ctx)

    Sets *vec* to a random vector with exactly *len* entries, all nonzero,
    with random parameters defined by *poly_len*, *bits* and *exp_bound*.

.. function:: void fmpz_mpoly_vec_set_primitive_unique(fmpz_mpoly_vec_t res, const fmpz_mpoly_vec_t src, const fmpz_mpoly_ctx_t ctx)

    Sets *res* to a vector containing all polynomials in *src* reduced
    to their primitive parts, without duplication. The zero polynomial
    is skipped if present. The output order is arbitrary.


Ideals and Gröbner bases
-------------------------------------------------------------------------------

The following methods deal with ideals in `\mathbb{Q}[X_1,\ldots,X_n]`.
We use primitive integer polynomials as normalised generators
in place of monic rational polynomials.

.. function:: void fmpz_mpoly_spoly(fmpz_mpoly_t res, const fmpz_mpoly_t f, const fmpz_mpoly_t g, const fmpz_mpoly_ctx_t ctx)

    Sets *res* to the *S*-polynomial of *f* and *g*, scaled to
    an integer polynomial by computing the LCM of the leading coefficients.

.. function:: void fmpz_mpoly_reduction_primitive_part(fmpz_mpoly_t res, const fmpz_mpoly_t f, const fmpz_mpoly_vec_t vec, const fmpz_mpoly_ctx_t ctx)

    Sets *res* to the primitive part of the reduction (remainder of multivariate
    quasidivision with remainder) with respect to the polynomials *vec*.

.. function:: int fmpz_mpoly_vec_is_groebner(const fmpz_mpoly_vec_t G, const fmpz_mpoly_vec_t F, const fmpz_mpoly_ctx_t ctx)

    If *F* is *NULL*, checks if *G* is a Gröbner basis. If *F* is not *NULL*,
    checks if *G* is a Gröbner basis for *F*.

.. function:: int fmpz_mpoly_vec_is_autoreduced(const fmpz_mpoly_vec_t F, const fmpz_mpoly_ctx_t ctx)

    Checks whether the vector *F* is autoreduced (or inter-reduced).

.. function:: void fmpz_mpoly_vec_autoreduction(fmpz_mpoly_vec_t H, const fmpz_mpoly_vec_t F, const fmpz_mpoly_ctx_t ctx)

    Sets *H* to the autoreduction (inter-reduction) of *F*.

.. function:: void fmpz_mpoly_vec_autoreduction_groebner(fmpz_mpoly_vec_t H, const fmpz_mpoly_vec_t G, const fmpz_mpoly_ctx_t ctx)

    Sets *H* to the autoreduction (inter-reduction) of *G*.
    Assumes that *G* is a Gröbner basis.
    This produces a reduced Gröbner basis, which is unique
    (up to the sort order of the entries in the vector).

.. function:: void fmpz_mpoly_buchberger_naive(fmpz_mpoly_vec_t G, const fmpz_mpoly_vec_t F, const fmpz_mpoly_ctx_t ctx)

    Sets *G* to a Gröbner basis for *F*, computed using
    a naive implementation of Buchberger's algorithm.

.. function:: int fmpz_mpoly_buchberger_naive_with_limits(fmpz_mpoly_vec_t G, const fmpz_mpoly_vec_t F, slong ideal_len_limit, slong poly_len_limit, slong poly_bits_limit, const fmpz_mpoly_ctx_t ctx)

    As :func:`fmpz_mpoly_buchberger_naive`, but halts if during the
    execution of Buchberger's algorithm the length of the
    ideal basis set exceeds *ideal_len_limit*, the length of any
    polynomial exceeds *poly_len_limit*, or the size of the
    coefficients of any polynomial exceeds *poly_bits_limit*.
    Returns 1 for success and 0 for failure. On failure, *G* is
    a valid basis for *F* but it might not be a Gröbner basis.


Special polynomials
--------------------------------------------------------------------------------

.. function:: void fmpz_mpoly_symmetric_gens(fmpz_mpoly_t res, ulong k, slong * vars, slong n, const fmpz_mpoly_ctx_t ctx)

.. function:: void fmpz_mpoly_symmetric(fmpz_mpoly_t res, ulong k, const fmpz_mpoly_ctx_t ctx)

    Sets *res* to the elementary symmetric polynomial
    `e_k(X_1,\ldots,X_n)`.

    The *gens* version takes `X_1,\ldots,X_n` to be the subset of
    generators given by *vars* and *n*.
    The indices in *vars* start from zero.
    Currently, the indices in *vars* must be distinct.