1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
|
.. _fmpz-poly:
**fmpz_poly.h** -- univariate polynomials over the integers
===============================================================================
Introduction
------------
The :type:`fmpz_poly_t` data type represents elements of
`\mathbb{Z}[x]`. The :type:`fmpz_poly` module provides routines for
memory management, basic arithmetic, and conversions from or to other
types.
Each coefficient of an :type:`fmpz_poly_t` is an integer of the FLINT
:type:`fmpz_t` type. There are two advantages of this model. Firstly,
the :type:`fmpz_t` type is memory managed, so the user can manipulate
individual coefficients of a polynomial without having to deal with
tedious memory management. Secondly, a coefficient of an
:type:`fmpz_poly_t` can be changed without changing the size of any of
the other coefficients.
Unless otherwise specified, all functions in this section permit
aliasing between their input arguments and between their input and
output arguments.
.. _simple-example-2:
Simple example
--------------
The following example computes the square of the polynomial `5x^3 -
1`.
.. code:: c
#include "fmpz_poly.h"
int main()
{
fmpz_poly_t x, y;
fmpz_poly_init(x);
fmpz_poly_init(y);
fmpz_poly_set_coeff_ui(x, 3, 5);
fmpz_poly_set_coeff_si(x, 0, -1);
fmpz_poly_mul(y, x, x);
fmpz_poly_print(x); flint_printf("\n");
fmpz_poly_print(y); flint_printf("\n");
fmpz_poly_clear(x);
fmpz_poly_clear(y);
}
The output is:
::
4 -1 0 0 5
7 1 0 0 -10 0 0 25
Definition of the fmpz_poly_t type
----------------------------------
The :type:`fmpz_poly_t` type is a typedef for an array of length 1 of
:type:`fmpz_poly_struct`'s. This permits passing parameters of type
:type:`fmpz_poly_t` by reference in a manner similar to the way GMP
integers of type ``mpz_t`` can be passed by reference.
In reality one never deals directly with the ``struct`` and simply
deals with objects of type :type:`fmpz_poly_t`. For simplicity we will
think of an :type:`fmpz_poly_t` as a ``struct``, though in practice to
access fields of this ``struct``, one needs to dereference first, e.g.
to access the ``length`` field of an :type:`fmpz_poly_t` called
``poly1`` one writes ``poly1->length``.
An :type:`fmpz_poly_t` is said to be *normalised* if either ``length``
is zero, or if the leading coefficient of the polynomial is non-zero.
All :type:`fmpz_poly` functions expect their inputs to be normalised,
and unless otherwise specified they produce output that is normalised.
It is recommended that users do not access the fields of an
:type:`fmpz_poly_t` or its coefficient data directly, but make use of
the functions designed for this purpose, detailed below.
Functions in ``fmpz_poly`` do all the memory management for the user.
One does not need to specify the maximum length or number of limbs per
coefficient in advance before using a polynomial object. FLINT
reallocates space automatically as the computation proceeds, if more
space is required. Each coefficient is also managed separately, being
resized as needed, independently of the other coefficients.
Types, macros and constants
-------------------------------------------------------------------------------
.. type:: fmpz_poly_struct
.. type:: fmpz_poly_t
Memory management
--------------------------------------------------------------------------------
.. function:: void fmpz_poly_init(fmpz_poly_t poly)
Initialises ``poly`` for use, setting its length to zero.
A corresponding call to :func:`fmpz_poly_clear` must be made after
finishing with the ``fmpz_poly_t`` to free the memory used by
the polynomial.
.. function:: void fmpz_poly_init2(fmpz_poly_t poly, slong alloc)
Initialises ``poly`` with space for at least ``alloc`` coefficients
and sets the length to zero. The allocated coefficients are all set to
zero.
.. function:: void fmpz_poly_realloc(fmpz_poly_t poly, slong alloc)
Reallocates the given polynomial to have space for ``alloc``
coefficients. If ``alloc`` is zero the polynomial is cleared
and then reinitialised. If the current length is greater than
``alloc`` the polynomial is first truncated to length ``alloc``.
.. function:: void fmpz_poly_fit_length(fmpz_poly_t poly, slong len)
If ``len`` is greater than the number of coefficients currently
allocated, then the polynomial is reallocated to have space for at
least ``len`` coefficients. No data is lost when calling this
function.
The function efficiently deals with the case where ``fit_length`` is
called many times in small increments by at least doubling the number
of allocated coefficients when length is larger than the number of
coefficients currently allocated.
.. function:: void fmpz_poly_clear(fmpz_poly_t poly)
Clears the given polynomial, releasing any memory used. It must
be reinitialised in order to be used again.
.. function:: void _fmpz_poly_normalise(fmpz_poly_t poly)
Sets the length of ``poly`` so that the top coefficient is non-zero.
If all coefficients are zero, the length is set to zero. This function
is mainly used internally, as all functions guarantee normalisation.
.. function:: void _fmpz_poly_set_length(fmpz_poly_t poly, slong newlen)
Demotes the coefficients of ``poly`` beyond ``newlen`` and sets
the length of ``poly`` to ``newlen``.
.. function:: void fmpz_poly_attach_truncate(fmpz_poly_t trunc, const fmpz_poly_t poly, slong n)
This function sets the uninitialised polynomial ``trunc`` to the low
`n` coefficients of ``poly``, or to ``poly`` if the latter doesn't
have `n` coefficients. The polynomial ``trunc`` not be cleared or used
as the output of any FLINT functions.
.. function:: void fmpz_poly_attach_shift(fmpz_poly_t trunc, const fmpz_poly_t poly, slong n)
This function sets the uninitialised polynomial ``trunc`` to the
high coefficients of ``poly``, i.e. the coefficients not among the low
`n` coefficients of ``poly``. If the latter doesn't have `n`
coefficients ``trunc`` is set to the zero polynomial. The polynomial
``trunc`` not be cleared or used as the output of any FLINT functions.
Polynomial parameters
--------------------------------------------------------------------------------
.. function:: slong fmpz_poly_length(const fmpz_poly_t poly)
Returns the length of ``poly``. The zero polynomial has length zero.
.. function:: slong fmpz_poly_degree(const fmpz_poly_t poly)
Returns the degree of ``poly``, which is one less than its length.
Assignment and basic manipulation
--------------------------------------------------------------------------------
.. function:: void fmpz_poly_set(fmpz_poly_t poly1, const fmpz_poly_t poly2)
Sets ``poly1`` to equal ``poly2``.
.. function:: void fmpz_poly_set_si(fmpz_poly_t poly, slong c)
Sets ``poly`` to the signed integer ``c``.
.. function:: void fmpz_poly_set_ui(fmpz_poly_t poly, ulong c)
Sets ``poly`` to the unsigned integer ``c``.
.. function:: void fmpz_poly_set_fmpz(fmpz_poly_t poly, const fmpz_t c)
Sets ``poly`` to the integer ``c``.
.. function:: int _fmpz_poly_set_str(fmpz * poly, const char * str)
Sets ``poly`` to the polynomial encoded in the null-terminated
string ``str``. Assumes that ``poly`` is allocated as a
sufficiently large array suitable for the number of coefficients
present in ``str``.
Returns `0` if no error occurred. Otherwise, returns a non-zero
value, in which case the resulting value of ``poly`` is undefined.
If ``str`` is not null-terminated, calling this method might result
in a segmentation fault.
.. function:: int fmpz_poly_set_str(fmpz_poly_t poly, const char * str)
Imports a polynomial from a null-terminated string. If the string
``str`` represents a valid polynomial returns `0`, otherwise
returns `1`.
Returns `0` if no error occurred. Otherwise, returns a non-zero value,
in which case the resulting value of ``poly`` is undefined. If
``str`` is not null-terminated, calling this method might result in
a segmentation fault.
.. function:: char * _fmpz_poly_get_str(const fmpz * poly, slong len)
Returns the plain FLINT string representation of the polynomial
``(poly, len)``.
.. function:: char * fmpz_poly_get_str(const fmpz_poly_t poly)
Returns the plain FLINT string representation of the polynomial
``poly``.
.. function:: char * _fmpz_poly_get_str_pretty(const fmpz * poly, slong len, const char * x)
Returns a pretty representation of the polynomial
``(poly, len)`` using the null-terminated string ``x`` as the
variable name.
.. function:: char * fmpz_poly_get_str_pretty(const fmpz_poly_t poly, const char * x)
Returns a pretty representation of the polynomial ``poly`` using the
null-terminated string ``x`` as the variable name.
.. function:: void fmpz_poly_zero(fmpz_poly_t poly)
Sets ``poly`` to the zero polynomial.
.. function:: void fmpz_poly_one(fmpz_poly_t poly)
Sets ``poly`` to the constant polynomial one.
.. function:: void fmpz_poly_zero_coeffs(fmpz_poly_t poly, slong i, slong j)
Sets the coefficients of `x^i, \dotsc, x^{j-1}` to zero.
.. function:: void fmpz_poly_swap(fmpz_poly_t poly1, fmpz_poly_t poly2)
Swaps ``poly1`` and ``poly2``. This is done efficiently without
copying data by swapping pointers, etc.
.. function:: void _fmpz_poly_reverse(fmpz * res, const fmpz * poly, slong len, slong n)
Sets ``(res, n)`` to the reverse of ``(poly, n)``, where
``poly`` is in fact an array of length ``len``. Assumes that
``0 < len <= n``. Supports aliasing of ``res`` and ``poly``,
but the behaviour is undefined in case of partial overlap.
.. function:: void fmpz_poly_reverse(fmpz_poly_t res, const fmpz_poly_t poly, slong n)
This function considers the polynomial ``poly`` to be of length `n`,
notionally truncating and zero padding if required, and reverses
the result. Since the function normalises its result ``res`` may be
of length less than `n`.
.. function:: void fmpz_poly_truncate(fmpz_poly_t poly, slong newlen)
If the current length of ``poly`` is greater than ``newlen``, it
is truncated to have the given length. Discarded coefficients are not
necessarily set to zero.
.. function:: void fmpz_poly_set_trunc(fmpz_poly_t res, const fmpz_poly_t poly, slong n)
Sets ``res`` to a copy of ``poly``, truncated to length ``n``.
Randomisation
--------------------------------------------------------------------------------
.. function:: void fmpz_poly_randtest(fmpz_poly_t f, flint_rand_t state, slong len, flint_bitcnt_t bits)
Sets `f` to a random polynomial with up to the given length and where
each coefficient has up to the given number of bits. The coefficients
are signed randomly.
.. function:: void fmpz_poly_randtest_unsigned(fmpz_poly_t f, flint_rand_t state, slong len, flint_bitcnt_t bits)
Sets `f` to a random polynomial with up to the given length and where
each coefficient has up to the given number of bits.
.. function:: void fmpz_poly_randtest_not_zero(fmpz_poly_t f, flint_rand_t state, slong len, flint_bitcnt_t bits)
As for :func:`fmpz_poly_randtest` except that ``len`` and bits may
not be zero and the polynomial generated is guaranteed not to be the
zero polynomial.
.. function:: void fmpz_poly_randtest_no_real_root(fmpz_poly_t p, flint_rand_t state, slong len, flint_bitcnt_t bits)
Sets ``p`` to a random polynomial without any real root, whose
length is up to ``len`` and where each coefficient has up to the
given number of bits.
.. function:: void fmpz_poly_randtest_irreducible1(fmpz_poly_t pol, flint_rand_t state, slong len, flint_bitcnt_t bits)
void fmpz_poly_randtest_irreducible2(fmpz_poly_t pol, flint_rand_t state, slong len, flint_bitcnt_t bits)
void fmpz_poly_randtest_irreducible(fmpz_poly_t pol, flint_rand_t state, slong len, flint_bitcnt_t bits)
Sets ``p`` to a random irreducible polynomial, whose
length is up to ``len`` and where each coefficient has up to the
given number of bits. There are two algorithms: *irreducible1*
generates an irreducible polynomial modulo a random prime number
and lifts it to the integers; *irreducible2* generates a random
integer polynomial, factors it, and returns a random factor.
The default function chooses randomly between these methods.
Getting and setting coefficients
--------------------------------------------------------------------------------
.. function:: void fmpz_poly_get_coeff_fmpz(fmpz_t x, const fmpz_poly_t poly, slong n)
Sets `x` to the `n`-th coefficient of ``poly``. Coefficient
numbering is from zero and if `n` is set to a value beyond the end of
the polynomial, zero is returned.
.. function:: slong fmpz_poly_get_coeff_si(const fmpz_poly_t poly, slong n)
Returns coefficient `n` of ``poly`` as a ``slong``. The result is
undefined if the value does not fit into a ``slong``. Coefficient
numbering is from zero and if `n` is set to a value beyond the end of
the polynomial, zero is returned.
.. function:: ulong fmpz_poly_get_coeff_ui(const fmpz_poly_t poly, slong n)
Returns coefficient `n` of ``poly`` as a ``ulong``. The result is
undefined if the value does not fit into a ``ulong``. Coefficient
numbering is from zero and if `n` is set to a value beyond the end of the
polynomial, zero is returned.
.. function:: fmpz * fmpz_poly_get_coeff_ptr(const fmpz_poly_t poly, slong n)
Returns a reference to the coefficient of `x^n` in the polynomial,
as an ``fmpz *``. This function is provided so that individual
coefficients can be accessed and operated on by functions in the
``fmpz`` module. This function does not make a copy of the
data, but returns a reference to the actual coefficient.
Returns ``NULL`` when `n` exceeds the degree of the polynomial.
This function is implemented as a macro.
.. function:: fmpz * fmpz_poly_lead(const fmpz_poly_t poly)
Returns a reference to the leading coefficient of the polynomial,
as an ``fmpz *``. This function is provided so that the leading
coefficient can be easily accessed and operated on by functions in
the ``fmpz`` module. This function does not make a copy of the
data, but returns a reference to the actual coefficient.
Returns ``NULL`` when the polynomial is zero.
This function is implemented as a macro.
.. function:: void fmpz_poly_set_coeff_fmpz(fmpz_poly_t poly, slong n, const fmpz_t x)
Sets coefficient `n` of ``poly`` to the ``fmpz`` value ``x``.
Coefficient numbering starts from zero and if `n` is beyond the current
length of ``poly`` then the polynomial is extended and zero
coefficients inserted if necessary.
.. function:: void fmpz_poly_set_coeff_si(fmpz_poly_t poly, slong n, slong x)
Sets coefficient `n` of ``poly`` to the ``slong`` value ``x``.
Coefficient numbering starts from zero and if `n` is beyond the current
length of ``poly`` then the polynomial is extended and zero
coefficients inserted if necessary.
.. function:: void fmpz_poly_set_coeff_ui(fmpz_poly_t poly, slong n, ulong x)
Sets coefficient `n` of ``poly`` to the ``ulong`` value
``x``. Coefficient numbering starts from zero and if `n` is beyond
the current length of ``poly`` then the polynomial is extended and
zero coefficients inserted if necessary.
Comparison
--------------------------------------------------------------------------------
.. function:: int fmpz_poly_equal(const fmpz_poly_t poly1, const fmpz_poly_t poly2)
Returns `1` if ``poly1`` is equal to ``poly2``, otherwise
returns `0`. The polynomials are assumed to be normalised.
.. function:: int fmpz_poly_equal_trunc(const fmpz_poly_t poly1, const fmpz_poly_t poly2, slong n)
Return `1` if ``poly1`` and ``poly2``, notionally truncated to
length `n` are equal, otherwise return `0`.
.. function:: int fmpz_poly_is_zero(const fmpz_poly_t poly)
Returns `1` if the polynomial is zero and `0` otherwise.
This function is implemented as a macro.
.. function:: int fmpz_poly_is_one(const fmpz_poly_t poly)
Returns `1` if the polynomial is one and `0` otherwise.
.. function:: int fmpz_poly_is_unit(const fmpz_poly_t poly)
Returns `1` if the polynomial is the constant polynomial `\pm 1`,
and `0` otherwise.
.. function:: int fmpz_poly_is_gen(const fmpz_poly_t poly)
Returns `1` if the polynomial is the degree `1` polynomial `x`, and `0`
otherwise.
Addition and subtraction
--------------------------------------------------------------------------------
.. function:: void _fmpz_poly_add(fmpz * res, const fmpz * poly1, slong len1, const fmpz * poly2, slong len2)
Sets ``res`` to the sum of ``(poly1, len1)`` and
``(poly2, len2)``. It is assumed that ``res`` has
sufficient space for the longer of the two polynomials.
.. function:: void fmpz_poly_add(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2)
Sets ``res`` to the sum of ``poly1`` and ``poly2``.
.. function:: void fmpz_poly_add_series(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2, slong n)
Notionally truncate ``poly1`` and ``poly2`` to length `n` and then
set ``res`` to the sum.
.. function:: void _fmpz_poly_sub(fmpz * res, const fmpz * poly1, slong len1, const fmpz * poly2, slong len2)
Sets ``res`` to ``(poly1, len1)`` minus ``(poly2, len2)``. It
is assumed that ``res`` has sufficient space for the longer of the
two polynomials.
.. function:: void fmpz_poly_sub(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2)
Sets ``res`` to ``poly1`` minus ``poly2``.
.. function:: void fmpz_poly_sub_series(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2, slong n)
Notionally truncate ``poly1`` and ``poly2`` to length `n` and then
set ``res`` to the sum.
.. function:: void fmpz_poly_neg(fmpz_poly_t res, const fmpz_poly_t poly)
Sets ``res`` to ``-poly``.
Scalar absolute value, multiplication and division
--------------------------------------------------------------------------------
.. function:: void fmpz_poly_scalar_abs(fmpz_poly_t res, const fmpz_poly_t poly)
Sets ``poly1`` to the polynomial whose coefficients are the absolute
value of those of ``poly2``.
.. function:: void fmpz_poly_scalar_mul_fmpz(fmpz_poly_t poly1, const fmpz_poly_t poly2, const fmpz_t x)
Sets ``poly1`` to ``poly2`` times `x`.
.. function:: void fmpz_poly_scalar_mul_si(fmpz_poly_t poly1, const fmpz_poly_t poly2, slong x)
Sets ``poly1`` to ``poly2`` times the signed ``slong x``.
.. function:: void fmpz_poly_scalar_mul_ui(fmpz_poly_t poly1, const fmpz_poly_t poly2, ulong x)
Sets ``poly1`` to ``poly2`` times the ``ulong x``.
.. function:: void fmpz_poly_scalar_mul_2exp(fmpz_poly_t poly1, const fmpz_poly_t poly2, ulong exp)
Sets ``poly1`` to ``poly2`` times ``2^exp``.
.. function:: void fmpz_poly_scalar_addmul_si(fmpz_poly_t poly1, const fmpz_poly_t poly2, slong x)
.. function:: void fmpz_poly_scalar_addmul_ui(fmpz_poly_t poly1, const fmpz_poly_t poly2, ulong x)
.. function:: void fmpz_poly_scalar_addmul_fmpz(fmpz_poly_t poly1, const fmpz_poly_t poly2, const fmpz_t x)
Sets ``poly1`` to ``poly1 + x * poly2``.
.. function:: void fmpz_poly_scalar_submul_fmpz(fmpz_poly_t poly1, const fmpz_poly_t poly2, const fmpz_t x)
Sets ``poly1`` to ``poly1 - x * poly2``.
.. function:: void fmpz_poly_scalar_fdiv_fmpz(fmpz_poly_t poly1, const fmpz_poly_t poly2, const fmpz_t x)
Sets ``poly1`` to ``poly2`` divided by the ``fmpz_t x``,
rounding coefficients down toward `- \infty`.
.. function:: void fmpz_poly_scalar_fdiv_si(fmpz_poly_t poly1, const fmpz_poly_t poly2, slong x)
Sets ``poly1`` to ``poly2`` divided by the ``slong x``,
rounding coefficients down toward `- \infty`.
.. function:: void fmpz_poly_scalar_fdiv_ui(fmpz_poly_t poly1, const fmpz_poly_t poly2, ulong x)
Sets ``poly1`` to ``poly2`` divided by the ``ulong x``,
rounding coefficients down toward `- \infty`.
.. function:: void fmpz_poly_scalar_fdiv_2exp(fmpz_poly_t poly1, const fmpz_poly_t poly2, ulong x)
Sets ``poly1`` to ``poly2`` divided by ``2^x``,
rounding coefficients down toward `- \infty`.
.. function:: void fmpz_poly_scalar_tdiv_fmpz(fmpz_poly_t poly1, const fmpz_poly_t poly2, const fmpz_t x)
Sets ``poly1`` to ``poly2`` divided by the ``fmpz_t x``,
rounding coefficients toward `0`.
.. function:: void fmpz_poly_scalar_tdiv_si(fmpz_poly_t poly1, const fmpz_poly_t poly2, slong x)
Sets ``poly1`` to ``poly2`` divided by the ``slong x``,
rounding coefficients toward `0`.
.. function:: void fmpz_poly_scalar_tdiv_ui(fmpz_poly_t poly1, const fmpz_poly_t poly2, ulong x)
Sets ``poly1`` to ``poly2`` divided by the ``ulong x``,
rounding coefficients toward `0`.
.. function:: void fmpz_poly_scalar_tdiv_2exp(fmpz_poly_t poly1, const fmpz_poly_t poly2, ulong x)
Sets ``poly1`` to ``poly2`` divided by ``2^x``,
rounding coefficients toward `0`.
.. function:: void fmpz_poly_scalar_divexact_fmpz(fmpz_poly_t poly1, const fmpz_poly_t poly2, const fmpz_t x)
Sets ``poly1`` to ``poly2`` divided by the ``fmpz_t x``,
assuming the division is exact for every coefficient.
.. function:: void fmpz_poly_scalar_divexact_si(fmpz_poly_t poly1, const fmpz_poly_t poly2, slong x)
Sets ``poly1`` to ``poly2`` divided by the ``slong x``,
assuming the coefficient is exact for every coefficient.
.. function:: void fmpz_poly_scalar_divexact_ui(fmpz_poly_t poly1, const fmpz_poly_t poly2, ulong x)
Sets ``poly1`` to ``poly2`` divided by the ``ulong x``,
assuming the coefficient is exact for every coefficient.
.. function:: void fmpz_poly_scalar_mod_fmpz(fmpz_poly_t poly1, const fmpz_poly_t poly2, const fmpz_t p)
Sets ``poly1`` to ``poly2``, reducing each coefficient
modulo `p > 0`.
.. function:: void fmpz_poly_scalar_smod_fmpz(fmpz_poly_t poly1, const fmpz_poly_t poly2, const fmpz_t p)
Sets ``poly1`` to ``poly2``, symmetrically reducing
each coefficient modulo `p > 0`, that is, choosing the unique
representative in the interval `(-p/2, p/2]`.
.. function:: slong _fmpz_poly_remove_content_2exp(fmpz * pol, slong len)
Remove the 2-content of ``pol`` and return the number `k`
that is the maximal non-negative integer so that `2^k` divides
all coefficients of the polynomial. For the zero polynomial,
`0` is returned.
.. function:: void _fmpz_poly_scale_2exp(fmpz * pol, slong len, slong k)
Scale ``(pol, len)`` to `p(2^k X)` in-place and divide by the
2-content (so that the gcd of coefficients is odd). If ``k``
is negative the polynomial is multiplied by `2^{kd}`.
Bit packing
--------------------------------------------------------------------------------
.. function:: void _fmpz_poly_bit_pack(nn_ptr arr, const fmpz * poly, slong len, flint_bitcnt_t bit_size, int negate)
Packs the coefficients of ``poly`` into bitfields of the given
``bit_size``, negating the coefficients before packing
if ``negate`` is set to `-1`.
.. function:: int _fmpz_poly_bit_unpack(fmpz * poly, slong len, nn_srcptr arr, flint_bitcnt_t bit_size, int negate)
Unpacks the polynomial of given length from the array as packed into
fields of the given ``bit_size``, finally negating the coefficients
if ``negate`` is set to `-1`. Returns borrow, which is nonzero if a
leading term with coefficient `\pm1` should be added at
position ``len`` of ``poly``.
.. function:: void _fmpz_poly_bit_unpack_unsigned(fmpz * poly, slong len, nn_srcptr arr, flint_bitcnt_t bit_size)
Unpacks the polynomial of given length from the array as packed into
fields of the given ``bit_size``. The coefficients are assumed to
be unsigned.
.. function:: void fmpz_poly_bit_pack(fmpz_t f, const fmpz_poly_t poly, flint_bitcnt_t bit_size)
Packs ``poly`` into bitfields of size ``bit_size``, writing the
result to ``f``. The sign of ``f`` will be the same as that of
the leading coefficient of ``poly``.
.. function:: void fmpz_poly_bit_unpack(fmpz_poly_t poly, const fmpz_t f, flint_bitcnt_t bit_size)
Unpacks the polynomial with signed coefficients packed into
fields of size ``bit_size`` as represented by the integer ``f``.
.. function:: void fmpz_poly_bit_unpack_unsigned(fmpz_poly_t poly, const fmpz_t f, flint_bitcnt_t bit_size)
Unpacks the polynomial with unsigned coefficients packed into
fields of size ``bit_size`` as represented by the integer ``f``.
It is required that ``f`` is nonnegative.
Multiplication
--------------------------------------------------------------------------------
.. function:: void _fmpz_poly_mul_classical(fmpz * res, const fmpz * poly1, slong len1, const fmpz * poly2, slong len2)
Sets ``(res, len1 + len2 - 1)`` to the product of ``(poly1, len1)``
and ``(poly2, len2)``.
Assumes ``len1`` and ``len2`` are positive. Allows zero-padding
of the two input polynomials. No aliasing of inputs with outputs is
allowed.
.. function:: void fmpz_poly_mul_classical(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2)
Sets ``res`` to the product of ``poly1`` and ``poly2``, computed
using the classical or schoolbook method.
.. function:: void _fmpz_poly_mullow_classical(fmpz * res, const fmpz * poly1, slong len1, const fmpz * poly2, slong len2, slong n)
Sets ``(res, n)`` to the first `n` coefficients of ``(poly1, len1)``
multiplied by ``(poly2, len2)``.
Assumes ``0 < n <= len1 + len2 - 1``. Assumes neither ``len1`` nor
``len2`` is zero.
.. function:: void fmpz_poly_mullow_classical(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2, slong n)
Sets ``res`` to the first `n` coefficients of ``poly1 * poly2``.
.. function:: void _fmpz_poly_mulhigh_classical(fmpz * res, const fmpz * poly1, slong len1, const fmpz * poly2, slong len2, slong start)
Sets the first ``start`` coefficients of ``res`` to zero and the
remainder to the corresponding coefficients of
``(poly1, len1) * (poly2, len2)``.
Assumes ``start <= len1 + len2 - 1``. Assumes neither ``len1`` nor
``len2`` is zero.
.. function:: void fmpz_poly_mulhigh_classical(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2, slong start)
Sets the first ``start`` coefficients of ``res`` to zero and the
remainder to the corresponding coefficients of the product of ``poly1``
and ``poly2``.
.. function:: void _fmpz_poly_mulmid_classical(fmpz * res, const fmpz * poly1, slong len1, const fmpz * poly2, slong len2)
Sets ``res`` to the middle ``len1 - len2 + 1`` coefficients of
the product of ``(poly1, len1)`` and ``(poly2, len2)``, i.e. the
coefficients from degree ``len2 - 1`` to ``len1 - 1`` inclusive.
Assumes that ``len1 >= len2 > 0``.
.. function:: void fmpz_poly_mulmid_classical(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2)
Sets ``res`` to the middle ``len(poly1) - len(poly2) + 1``
coefficients of ``poly1 * poly2``, i.e. the coefficient from degree
``len2 - 1`` to ``len1 - 1`` inclusive. Assumes that
``len1 >= len2``.
.. function:: void _fmpz_poly_mul_karatsuba(fmpz * res, const fmpz * poly1, slong len1, const fmpz * poly2, slong len2)
Sets ``(res, len1 + len2 - 1)`` to the product of ``(poly1, len1)``
and ``(poly2, len2)``. Assumes ``len1 >= len2 > 0``. Allows
zero-padding of the two input polynomials. No aliasing of inputs with
outputs is allowed.
.. function:: void fmpz_poly_mul_karatsuba(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2)
Sets ``res`` to the product of ``poly1`` and ``poly2``.
.. function:: void _fmpz_poly_mullow_karatsuba_n(fmpz * res, const fmpz * poly1, const fmpz * poly2, slong n)
Sets ``res`` to the product of ``poly1`` and ``poly2`` and
truncates to the given length. It is assumed that ``poly1`` and
``poly2`` are precisely the given length, possibly zero padded.
Assumes `n` is not zero.
.. function:: void fmpz_poly_mullow_karatsuba_n(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2, slong n)
Sets ``res`` to the product of ``poly1`` and ``poly2`` and
truncates to the given length.
.. function:: void _fmpz_poly_mulhigh_karatsuba_n(fmpz * res, const fmpz * poly1, const fmpz * poly2, slong len)
Sets ``res`` to the product of ``poly1`` and ``poly2`` and
truncates at the top to the given length. The first ``len - 1``
coefficients are set to zero. It is assumed that ``poly1`` and
``poly2`` are precisely the given length, possibly zero padded.
Assumes ``len`` is not zero.
.. function:: void fmpz_poly_mulhigh_karatsuba_n(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2, slong len)
Sets the first ``len - 1`` coefficients of the result to zero and the
remaining coefficients to the corresponding coefficients of the product of
``poly1`` and ``poly2``. Assumes ``poly1`` and ``poly2`` are
at most of the given length.
.. function:: void _fmpz_poly_mul_KS(fmpz * res, const fmpz * poly1, slong len1, const fmpz * poly2, slong len2)
Sets ``(res, len1 + len2 - 1)`` to the product of ``(poly1, len1)``
and ``(poly2, len2)``.
Places no assumptions on ``len1`` and ``len2``. Allows zero-padding
of the two input polynomials. Supports aliasing of inputs and outputs.
.. function:: void fmpz_poly_mul_KS(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2)
Sets ``res`` to the product of ``poly1`` and ``poly2``.
.. function:: void _fmpz_poly_mullow_KS(fmpz * res, const fmpz * poly1, slong len1, const fmpz * poly2, slong len2, slong n)
Sets ``(res, n)`` to the lowest `n` coefficients of the product of
``(poly1, len1)`` and ``(poly2, len2)``.
Assumes that ``len1`` and ``len2`` are positive, but does allow
for the polynomials to be zero-padded. The polynomials may be zero,
too. Assumes `n` is positive. Supports aliasing between ``res``,
``poly1`` and ``poly2``.
.. function:: void fmpz_poly_mullow_KS(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2, slong n)
Sets ``res`` to the lowest `n` coefficients of the product of
``poly1`` and ``poly2``.
.. function:: void _fmpz_poly_mul_SS(fmpz * output, const fmpz * input1, slong length1, const fmpz * input2, slong length2)
Sets ``(output, length1 + length2 - 1)`` to the product of
``(input1, length1)`` and ``(input2, length2)``.
We must have ``len1 > 1`` and ``len2 > 1``. Allows zero-padding
of the two input polynomials. Supports aliasing of inputs and outputs.
.. function:: void fmpz_poly_mul_SS(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2)
Sets ``res`` to the product of ``poly1`` and ``poly2``. Uses the
Schönhage-Strassen algorithm.
.. function:: void _fmpz_poly_mullow_SS(fmpz * output, const fmpz * input1, slong length1, const fmpz * input2, slong length2, slong n)
Sets ``(res, n)`` to the lowest `n` coefficients of the product of
``(poly1, len1)`` and ``(poly2, len2)``.
Assumes that ``len1`` and ``len2`` are positive, but does allow
for the polynomials to be zero-padded. We must have ``len1 > 1``
and ``len2 > 1``. Assumes `n` is positive. Supports aliasing between
``res``, ``poly1`` and ``poly2``.
.. function:: void fmpz_poly_mullow_SS(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2, slong n)
Sets ``res`` to the lowest `n` coefficients of the product of
``poly1`` and ``poly2``.
.. function:: void _fmpz_poly_mul(fmpz * res, const fmpz * poly1, slong len1, const fmpz * poly2, slong len2)
Sets ``(res, len1 + len2 - 1)`` to the product of ``(poly1, len1)``
and ``(poly2, len2)``. Assumes ``len1 >= len2 > 0``. Allows
zero-padding of the two input polynomials. Does not support aliasing
between the inputs and the output.
.. function:: void fmpz_poly_mul(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2)
Sets ``res`` to the product of ``poly1`` and ``poly2``. Chooses
an optimal algorithm from the choices above.
.. function:: void _fmpz_poly_mullow(fmpz * res, const fmpz * poly1, slong len1, const fmpz * poly2, slong len2, slong n)
Sets ``(res, n)`` to the lowest `n` coefficients of the product of
``(poly1, len1)`` and ``(poly2, len2)``.
Assumes ``len1 >= len2 > 0`` and ``0 < n <= len1 + len2 - 1``.
Allows for zero-padding in the inputs. Does not support aliasing between
the inputs and the output.
.. function:: void fmpz_poly_mullow(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2, slong n)
Sets ``res`` to the lowest `n` coefficients of the product of
``poly1`` and ``poly2``.
.. function:: void fmpz_poly_mulhigh_n(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2, slong n)
Sets the high `n` coefficients of ``res`` to the high `n` coefficients
of the product of ``poly1`` and ``poly2``, assuming the latter are
precisely `n` coefficients in length, zero padded if necessary. The
remaining `n - 1` coefficients may be arbitrary.
.. function:: void _fmpz_poly_mulhigh(fmpz * res, const fmpz * poly1, slong len1, const fmpz * poly2, slong len2, slong start)
Sets all but the low `n` coefficients of `res` to the corresponding
coefficients of the product of `poly1` of length `len1` and `poly2` of
length `len2`, the remaining coefficients being arbitrary. It is assumed
that `len1 >= len2 > 0` and that `0 < n < len1 + len2 - 1`. Aliasing of
inputs is not permitted.
FFT precached multiplication
--------------------------------------------------------------------------------
.. function:: void fmpz_poly_mul_SS_precache_init(fmpz_poly_mul_precache_t pre, slong len1, slong bits1, const fmpz_poly_t poly2)
Precompute the FFT of ``poly2`` to enable repeated multiplication of
``poly2`` by polynomials whose length does not exceed ``len1`` and
whose number of bits per coefficient does not exceed ``bits1``.
The value ``bits1`` may be negative, i.e. it may be the result of
calling ``fmpz_poly_max_bits``. The function only considers the
absolute value of ``bits1``.
Suppose ``len2`` is the length of ``poly2`` and
``len = len1 + len2 - 1`` is the maximum output length of a polynomial
multiplication using ``pre``. Then internally ``len`` is rounded up to
a power of two, `2^n` say. The truncated FFT algorithm is used to smooth
performance but note that it can only do this in the range
`(2^{n-1}, 2^n]`. Therefore, it may be more efficient to recompute `pre`
for cases where the output length will fall below `2^{n-1} + 1`. Otherwise
the implementation will zero pad them up to that length.
Note that the Schoenhage-Strassen algorithm is only efficient for
polynomials with relatively large coefficients relative to the length of
the polynomials.
Also note that there are no restrictions on the polynomials. In particular
the polynomial whose FFT is being precached does not have to be either
longer or shorter than the polynomials it is to be multiplied by.
.. function:: void fmpz_poly_mul_precache_clear(fmpz_poly_mul_precache_t pre)
Clear the space allocated by ``fmpz_poly_mul_SS_precache_init``.
.. function:: void _fmpz_poly_mullow_SS_precache(fmpz * output, const fmpz * input1, slong len1, fmpz_poly_mul_precache_t pre, slong trunc)
Write into ``output`` the first ``trunc`` coefficients of
the polynomial ``(input1, len1)`` by the polynomial whose FFT was precached
by ``fmpz_poly_mul_SS_precache_init`` and stored in ``pre``.
For performance reasons it is recommended that all polynomials be truncated
to at most ``trunc`` coefficients if possible.
.. function:: void fmpz_poly_mullow_SS_precache(fmpz_poly_t res, const fmpz_poly_t poly1, fmpz_poly_mul_precache_t pre, slong n)
Set ``res`` to the product of ``poly1`` by the polynomial whose FFT was
precached by ``fmpz_poly_mul_SS_precache_init`` (and stored in pre). The
result is truncated to `n` coefficients (and normalised).
There are no restrictions on the length of ``poly1`` other than those given
in the call to ``fmpz_poly_mul_SS_precache_init``.
.. function:: void fmpz_poly_mul_SS_precache(fmpz_poly_t res, const fmpz_poly_t poly1, fmpz_poly_mul_precache_t pre)
Set ``res`` to the product of ``poly1`` by the polynomial whose FFT was
precached by ``fmpz_poly_mul_SS_precache_init`` (and stored in pre).
There are no restrictions on the length of ``poly1`` other than those given
in the call to ``fmpz_poly_mul_SS_precache_init``.
Squaring
--------------------------------------------------------------------------------
.. function:: void _fmpz_poly_sqr_KS(fmpz * rop, const fmpz * op, slong len)
Sets ``(rop, 2*len - 1)`` to the square of ``(op, len)``,
assuming that ``len > 0``.
Supports zero-padding in ``(op, len)``. Does not support aliasing.
.. function:: void fmpz_poly_sqr_KS(fmpz_poly_t rop, const fmpz_poly_t op)
Sets ``rop`` to the square of the polynomial ``op`` using
Kronecker segmentation.
.. function:: void _fmpz_poly_sqr_karatsuba(fmpz * rop, const fmpz * op, slong len)
Sets ``(rop, 2*len - 1)`` to the square of ``(op, len)``,
assuming that ``len > 0``.
Supports zero-padding in ``(op, len)``. Does not support aliasing.
.. function:: void fmpz_poly_sqr_karatsuba(fmpz_poly_t rop, const fmpz_poly_t op)
Sets ``rop`` to the square of the polynomial ``op`` using
the Karatsuba multiplication algorithm.
.. function:: void _fmpz_poly_sqr_classical(fmpz * rop, const fmpz * op, slong len)
Sets ``(rop, 2*len - 1)`` to the square of ``(op, len)``,
assuming that ``len > 0``.
Supports zero-padding in ``(op, len)``. Does not support aliasing.
.. function:: void fmpz_poly_sqr_classical(fmpz_poly_t rop, const fmpz_poly_t op)
Sets ``rop`` to the square of the polynomial ``op`` using
the classical or schoolbook method.
.. function:: void _fmpz_poly_sqr(fmpz * rop, const fmpz * op, slong len)
Sets ``(rop, 2*len - 1)`` to the square of ``(op, len)``,
assuming that ``len > 0``.
Supports zero-padding in ``(op, len)``. Does not support aliasing.
.. function:: void fmpz_poly_sqr(fmpz_poly_t rop, const fmpz_poly_t op)
Sets ``rop`` to the square of the polynomial ``op``.
.. function:: void _fmpz_poly_sqrlow_KS(fmpz * res, const fmpz * poly, slong len, slong n)
Sets ``(res, n)`` to the lowest `n` coefficients
of the square of ``(poly, len)``.
Assumes that ``len`` is positive, but does allow for the polynomial
to be zero-padded. The polynomial may be zero, too. Assumes `n` is
positive. Supports aliasing between ``res`` and ``poly``.
.. function:: void fmpz_poly_sqrlow_KS(fmpz_poly_t res, const fmpz_poly_t poly, slong n)
Sets ``res`` to the lowest `n` coefficients
of the square of ``poly``.
.. function:: void _fmpz_poly_sqrlow_karatsuba_n(fmpz * res, const fmpz * poly, slong n)
Sets ``(res, n)`` to the square of ``(poly, n)`` truncated
to length `n`, which is assumed to be positive. Allows for ``poly``
to be zero-padded.
.. function:: void fmpz_poly_sqrlow_karatsuba_n(fmpz_poly_t res, const fmpz_poly_t poly, slong n)
Sets ``res`` to the square of ``poly`` and
truncates to the given length.
.. function:: void _fmpz_poly_sqrlow_classical(fmpz * res, const fmpz * poly, slong len, slong n)
Sets ``(res, n)`` to the first `n` coefficients of the square
of ``(poly, len)``.
Assumes that ``0 < n <= 2 * len - 1``.
.. function:: void fmpz_poly_sqrlow_classical(fmpz_poly_t res, const fmpz_poly_t poly, slong n)
Sets ``res`` to the first `n` coefficients of
the square of ``poly``.
.. function:: void _fmpz_poly_sqrlow(fmpz * res, const fmpz * poly, slong len, slong n)
Sets ``(res, n)`` to the lowest `n` coefficients
of the square of ``(poly, len)``.
Assumes ``len1 >= len2 > 0`` and ``0 < n <= 2 * len - 1``.
Allows for zero-padding in the input. Does not support aliasing
between the input and the output.
.. function:: void fmpz_poly_sqrlow(fmpz_poly_t res, const fmpz_poly_t poly, slong n)
Sets ``res`` to the lowest `n` coefficients
of the square of ``poly``.
Powering
--------------------------------------------------------------------------------
.. function:: void _fmpz_poly_pow_multinomial(fmpz * res, const fmpz * poly, slong len, ulong e)
Computes ``res = poly^e``. This uses the J.C.P. Miller pure
recurrence as follows:
If `\ell` is the index of the lowest non-zero coefficient in ``poly``,
as a first step this method zeros out the lowest `e \ell` coefficients of
``res``. The recurrence above is then used to compute the remaining
coefficients.
Assumes ``len > 0``, ``e > 0``. Does not support aliasing.
.. function:: void fmpz_poly_pow_multinomial(fmpz_poly_t res, const fmpz_poly_t poly, ulong e)
Computes ``res = poly^e`` using a generalisation of binomial expansion
called the J.C.P. Miller pure recurrence [1], [2].
If `e` is zero, returns one, so that in particular ``0^0 = 1``.
The formal statement of the recurrence is as follows. Write the input
polynomial as `P(x) = p_0 + p_1 x + \dotsb + p_m x^m` with `p_0 \neq 0`
and let
.. math::
P(x)^n = a(n, 0) + a(n, 1) x + \dotsb + a(n, mn) x^{mn}.
Then `a(n, 0) = p_0^n` and, for all `1 \leq k \leq mn`,
.. math::
a(n, k) =
(k p_0)^{-1} \sum_{i = 1}^m p_i \bigl( (n + 1) i - k \bigr) a(n, k-i).
[1] D. Knuth, The Art of Computer Programming Vol. 2, Seminumerical
Algorithms, Third Edition (Reading, Massachusetts: Addison-Wesley, 1997)
[2] D. Zeilberger, The J.C.P. Miller Recurrence for Exponentiating a
Polynomial, and its q-Analog, Journal of Difference Equations and
Applications, 1995, Vol. 1, pp. 57--60
.. function:: void _fmpz_poly_pow_binomial(fmpz * res, const fmpz * poly, ulong e)
Computes ``res = poly^e`` when poly is of length 2, using binomial
expansion.
Assumes `e > 0`. Does not support aliasing.
.. function:: void fmpz_poly_pow_binomial(fmpz_poly_t res, const fmpz_poly_t poly, ulong e)
Computes ``res = poly^e`` when ``poly`` is of length `2`, using
binomial expansion.
If the length of ``poly`` is not `2`, raises an exception and aborts.
.. function:: void _fmpz_poly_pow_addchains(fmpz * res, const fmpz * poly, slong len, const int * a, int n)
Given a star chain `1 = a_0 < a_1 < \dotsb < a_n = e` computes
``res = poly^e``.
A star chain is an addition chain `1 = a_0 < a_1 < \dotsb < a_n` such
that, for all `i > 0`, `a_i = a_{i-1} + a_j` for some `j < i`.
Assumes that `e > 2`, or equivalently `n > 1`, and ``len > 0``. Does
not support aliasing.
.. function:: void fmpz_poly_pow_addchains(fmpz_poly_t res, const fmpz_poly_t poly, ulong e)
Computes ``res = poly^e`` using addition chains whenever
`0 \leq e \leq 148`.
If `e > 148`, raises an exception and aborts.
.. function:: void _fmpz_poly_pow_binexp(fmpz * res, const fmpz * poly, slong len, ulong e)
Sets ``res = poly^e`` using left-to-right binary exponentiation as
described on p. 461 of [Knu1997]_.
Assumes that ``len > 0``, ``e > 1``. Assumes that ``res`` is
an array of length at least ``e*(len - 1) + 1``. Does not support
aliasing.
.. function:: void fmpz_poly_pow_binexp(fmpz_poly_t res, const fmpz_poly_t poly, ulong e)
Computes ``res = poly^e`` using the binary exponentiation algorithm.
If `e` is zero, returns one, so that in particular ``0^0 = 1``.
.. function:: void _fmpz_poly_pow_small(fmpz * res, const fmpz * poly, slong len, ulong e)
Sets ``res = poly^e`` whenever `0 \leq e \leq 4`.
Assumes that ``len > 0`` and that ``res`` is an array of length
at least ``e*(len - 1) + 1``. Does not support aliasing.
.. function:: void _fmpz_poly_pow(fmpz * res, const fmpz * poly, slong len, ulong e)
Sets ``res = poly^e``, assuming that ``e, len > 0`` and that
``res`` has space for ``e*(len - 1) + 1`` coefficients. Does
not support aliasing.
.. function:: void fmpz_poly_pow(fmpz_poly_t res, const fmpz_poly_t poly, ulong e)
Computes ``res = poly^e``. If `e` is zero, returns one,
so that in particular ``0^0 = 1``.
.. function:: void _fmpz_poly_pow_trunc(fmpz * res, const fmpz * poly, ulong e, slong n)
Sets ``(res, n)`` to ``(poly, n)`` raised to the power `e` and
truncated to length `n`.
Assumes that `e, n > 0`. Allows zero-padding of ``(poly, n)``.
Does not support aliasing of any inputs and outputs.
.. function:: void fmpz_poly_pow_trunc(fmpz_poly_t res, const fmpz_poly_t poly, ulong e, slong n)
Notationally raises ``poly`` to the power `e`, truncates the result
to length `n` and writes the result in ``res``. This is computed
much more efficiently than simply powering the polynomial and truncating.
Thus, if `n = 0` the result is zero. Otherwise, whenever `e = 0` the
result will be the constant polynomial equal to `1`.
This function can be used to raise power series to a power in an
efficient way.
Shifting
--------------------------------------------------------------------------------
.. function:: void _fmpz_poly_shift_left(fmpz * res, const fmpz * poly, slong len, slong n)
Sets ``(res, len + n)`` to ``(poly, len)`` shifted left by
`n` coefficients.
Inserts zero coefficients at the lower end. Assumes that ``len``
and `n` are positive, and that ``res`` fits ``len + n`` elements.
Supports aliasing between ``res`` and ``poly``.
.. function:: void fmpz_poly_shift_left(fmpz_poly_t res, const fmpz_poly_t poly, slong n)
Sets ``res`` to ``poly`` shifted left by `n` coeffs. Zero
coefficients are inserted.
.. function:: void _fmpz_poly_shift_right(fmpz * res, const fmpz * poly, slong len, slong n)
Sets ``(res, len - n)`` to ``(poly, len)`` shifted right by
`n` coefficients.
Assumes that ``len`` and `n` are positive, that ``len > n``,
and that ``res`` fits ``len - n`` elements. Supports aliasing
between ``res`` and ``poly``, although in this case the top
coefficients of ``poly`` are not set to zero.
.. function:: void fmpz_poly_shift_right(fmpz_poly_t res, const fmpz_poly_t poly, slong n)
Sets ``res`` to ``poly`` shifted right by `n` coefficients. If `n`
is equal to or greater than the current length of ``poly``, ``res``
is set to the zero polynomial.
Bit sizes and norms
--------------------------------------------------------------------------------
.. function:: ulong fmpz_poly_max_limbs(const fmpz_poly_t poly)
Returns the maximum number of limbs required to store the absolute value
of coefficients of ``poly``. If ``poly`` is zero, returns `0`.
.. function:: slong fmpz_poly_max_bits(const fmpz_poly_t poly)
Computes the maximum number of bits `b` required to store the absolute
value of coefficients of ``poly``. If all the coefficients of
``poly`` are non-negative, `b` is returned, otherwise `-b` is returned.
.. function:: void fmpz_poly_height(fmpz_t height, const fmpz_poly_t poly)
Computes the height of ``poly``, defined as the largest of the
absolute values of the coefficients of ``poly``. Equivalently, this
gives the infinity norm of the coefficients. If ``poly`` is zero,
the height is `0`.
.. function:: void _fmpz_poly_2norm(fmpz_t res, const fmpz * poly, slong len)
Sets ``res`` to the Euclidean norm of ``(poly, len)``, that is,
the integer square root of the sum of the squares of the coefficients
of ``poly``.
.. function:: void fmpz_poly_2norm(fmpz_t res, const fmpz_poly_t poly)
Sets ``res`` to the Euclidean norm of ``poly``, that is, the
integer square root of the sum of the squares of the coefficients of
``poly``.
.. function:: ulong _fmpz_poly_2norm_normalised_bits(const fmpz * poly, slong len)
Returns an upper bound on the number of bits of the normalised
Euclidean norm of ``(poly, len)``, i.e. the number of bits of
the Euclidean norm divided by the absolute value of the leading
coefficient. The returned value will be no more than 1 bit too
large.
This is used in the computation of the Landau-Mignotte bound.
It is assumed that ``len > 0``. The result only makes sense
if the leading coefficient is nonzero.
Greatest common divisor
--------------------------------------------------------------------------------
.. function:: void _fmpz_poly_gcd_subresultant(fmpz * res, const fmpz * poly1, slong len1, const fmpz * poly2, slong len2)
Computes the greatest common divisor ``(res, len2)`` of
``(poly1, len1)`` and ``(poly2, len2)``, assuming
``len1 >= len2 > 0``. The result is normalised to have
positive leading coefficient. Aliasing between ``res``,
``poly1`` and ``poly2`` is supported.
.. function:: void fmpz_poly_gcd_subresultant(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2)
Computes the greatest common divisor ``res`` of ``poly1`` and
``poly2``, normalised to have non-negative leading coefficient.
This function uses the subresultant algorithm as described
in Algorithm 3.3.1 of [Coh1996]_.
.. function:: int _fmpz_poly_gcd_heuristic(fmpz * res, const fmpz * poly1, slong len1, const fmpz * poly2, slong len2)
Computes the greatest common divisor ``(res, len2)`` of
``(poly1, len1)`` and ``(poly2, len2)``, assuming
``len1 >= len2 > 0``. The result is normalised to have
positive leading coefficient. Aliasing between ``res``,
``poly1`` and ``poly2`` is not supported. The function
may not always succeed in finding the GCD. If it fails, the
function returns 0, otherwise it returns 1.
.. function:: int fmpz_poly_gcd_heuristic(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2)
Computes the greatest common divisor ``res`` of ``poly1`` and
``poly2``, normalised to have non-negative leading coefficient.
The function may not always succeed in finding the GCD. If it fails,
the function returns 0, otherwise it returns 1.
This function uses the heuristic GCD algorithm (GCDHEU). The basic
strategy is to remove the content of the polynomials, pack them
using Kronecker segmentation (given a bound on the size of the
coefficients of the GCD) and take the integer GCD. Unpack the
result and test divisibility.
.. function:: void _fmpz_poly_gcd_modular(fmpz * res, const fmpz * poly1, slong len1, const fmpz * poly2, slong len2)
Computes the greatest common divisor ``(res, len2)`` of
``(poly1, len1)`` and ``(poly2, len2)``, assuming
``len1 >= len2 > 0``. The result is normalised to have
positive leading coefficient. Aliasing between ``res``,
``poly1`` and ``poly2`` is not supported.
.. function:: void fmpz_poly_gcd_modular(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2)
Computes the greatest common divisor ``res`` of ``poly1`` and
``poly2``, normalised to have non-negative leading coefficient.
This function uses the modular GCD algorithm. The basic
strategy is to remove the content of the polynomials, reduce them
modulo sufficiently many primes and do CRT reconstruction until
some bound is reached (or we can prove with trial division that
we have the GCD).
.. function:: void _fmpz_poly_gcd(fmpz * res, const fmpz * poly1, slong len1, const fmpz * poly2, slong len2)
Computes the greatest common divisor ``res`` of ``(poly1, len1)``
and ``(poly2, len2)``, assuming ``len1 >= len2 > 0``. The result
is normalised to have positive leading coefficient.
Assumes that ``res`` has space for ``len2`` coefficients.
Aliasing between ``res``, ``poly1`` and ``poly2`` is not
supported.
.. function:: void fmpz_poly_gcd(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2)
Computes the greatest common divisor ``res`` of ``poly1`` and
``poly2``, normalised to have non-negative leading coefficient.
.. function:: void _fmpz_poly_xgcd_modular(fmpz_t r, fmpz * s, fmpz * t, const fmpz * f, slong len1, const fmpz * g, slong len2)
Set `r` to the resultant of ``(f, len1)`` and ``(g, len2)``.
If the resultant is zero, the function returns immediately. Otherwise it
finds polynomials `s` and `t` such that ``s*f + t*g = r``. The length
of `s` will be no greater than ``len2`` and the length of `t` will be
no greater than ``len1`` (both are zero padded if necessary).
It is assumed that ``len1 >= len2 > 0``. No aliasing of inputs and
outputs is permitted.
The function assumes that `f` and `g` are primitive (have Gaussian content
equal to 1). The result is undefined otherwise.
Uses a multimodular algorithm. The resultant is first computed and
extended GCDs modulo various primes `p` are computed and combined using
CRT. When the CRT stabilises the resulting polynomials are simply reduced
modulo further primes until a proven bound is reached.
.. function:: void fmpz_poly_xgcd_modular(fmpz_t r, fmpz_poly_t s, fmpz_poly_t t, const fmpz_poly_t f, const fmpz_poly_t g)
Set `r` to the resultant of `f` and `g`. If the resultant is zero, the
function then returns immediately, otherwise `s` and `t` are found such
that ``s*f + t*g = r``.
The function assumes that `f` and `g` are primitive (have Gaussian content
equal to 1). The result is undefined otherwise.
Uses the multimodular algorithm.
.. function:: void _fmpz_poly_xgcd(fmpz_t r, fmpz * s, fmpz * t, const fmpz * f, slong len1, const fmpz * g, slong len2)
Set `r` to the resultant of ``(f, len1)`` and ``(g, len2)``.
If the resultant is zero, the function returns immediately. Otherwise it
finds polynomials `s` and `t` such that ``s*f + t*g = r``. The length
of `s` will be no greater than ``len2`` and the length of `t` will be
no greater than ``len1`` (both are zero padded if necessary).
The function assumes that `f` and `g` are primitive (have Gaussian content
equal to 1). The result is undefined otherwise.
It is assumed that ``len1 >= len2 > 0``. No aliasing of inputs and
outputs is permitted.
.. function:: void fmpz_poly_xgcd(fmpz_t r, fmpz_poly_t s, fmpz_poly_t t, const fmpz_poly_t f, const fmpz_poly_t g)
Set `r` to the resultant of `f` and `g`. If the resultant is zero, the
function then returns immediately, otherwise `s` and `t` are found such
that ``s*f + t*g = r``.
The function assumes that `f` and `g` are primitive (have Gaussian content
equal to 1). The result is undefined otherwise.
.. function:: void _fmpz_poly_lcm(fmpz * res, const fmpz * poly1, slong len1, const fmpz * poly2, slong len2)
Sets ``(res, len1 + len2 - 1)`` to the least common multiple
of the two polynomials ``(poly1, len1)`` and ``(poly2, len2)``,
normalised to have non-negative leading coefficient.
Assumes that ``len1 >= len2 > 0``.
Does not support aliasing.
.. function:: void fmpz_poly_lcm(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2)
Sets ``res`` to the least common multiple of the two
polynomials ``poly1`` and ``poly2``, normalised to
have non-negative leading coefficient.
If either of the two polynomials is zero, sets ``res``
to zero.
This ensures that the equality
.. math::
f g = \gcd(f, g) \operatorname{lcm}(f, g)
holds up to sign.
.. function:: void _fmpz_poly_resultant_modular(fmpz_t res, const fmpz * poly1, slong len1, const fmpz * poly2, slong len2)
Sets ``res`` to the resultant of ``(poly1, len1)`` and
``(poly2, len2)``, assuming that ``len1 >= len2 > 0``.
.. function:: void fmpz_poly_resultant_modular(fmpz_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2)
Computes the resultant of ``poly1`` and ``poly2``.
For two non-zero polynomials `f(x) = a_m x^m + \dotsb + a_0` and
`g(x) = b_n x^n + \dotsb + b_0` of degrees `m` and `n`, the resultant
is defined to be
.. math::
a_m^n b_n^m \prod_{(x, y) : f(x) = g(y) = 0} (x - y).
For convenience, we define the resultant to be equal to zero if either
of the two polynomials is zero.
This function uses the modular algorithm described
in [Col1971]_.
.. function:: void fmpz_poly_resultant_modular_div(fmpz_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2, const fmpz_t div, slong nbits)
Computes the resultant of ``poly1`` and ``poly2`` divided by
``div`` using a slight modification of the above function. It is assumed that
the resultant is exactly divisible by ``div`` and the result ``res``
has at most ``nbits`` bits.
This bypasses the computation of general bounds.
.. function:: void _fmpz_poly_resultant_euclidean(fmpz_t res, const fmpz * poly1, slong len1, const fmpz * poly2, slong len2)
Sets ``res`` to the resultant of ``(poly1, len1)`` and
``(poly2, len2)``, assuming that ``len1 >= len2 > 0``.
.. function:: void fmpz_poly_resultant_euclidean(fmpz_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2)
Computes the resultant of ``poly1`` and ``poly2``.
For two non-zero polynomials `f(x) = a_m x^m + \dotsb + a_0` and
`g(x) = b_n x^n + \dotsb + b_0` of degrees `m` and `n`, the resultant
is defined to be
.. math::
a_m^n b_n^m \prod_{(x, y) : f(x) = g(y) = 0} (x - y).
For convenience, we define the resultant to be equal to zero if either
of the two polynomials is zero.
This function uses the algorithm described
in Algorithm 3.3.7 of [Coh1996]_.
.. function:: void _fmpz_poly_resultant(fmpz_t res, const fmpz * poly1, slong len1, const fmpz * poly2, slong len2)
Sets ``res`` to the resultant of ``(poly1, len1)`` and
``(poly2, len2)``, assuming that ``len1 >= len2 > 0``.
.. function:: void fmpz_poly_resultant(fmpz_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2)
Computes the resultant of ``poly1`` and ``poly2``.
For two non-zero polynomials `f(x) = a_m x^m + \dotsb + a_0` and
`g(x) = b_n x^n + \dotsb + b_0` of degrees `m` and `n`, the resultant
is defined to be
.. math::
a_m^n b_n^m \prod_{(x, y) : f(x) = g(y) = 0} (x - y).
For convenience, we define the resultant to be equal to zero if either
of the two polynomials is zero.
Discriminant
--------------------------------------------------------------------------------
.. function:: void _fmpz_poly_discriminant(fmpz_t res, const fmpz * poly, slong len)
Set ``res`` to the discriminant of ``(poly, len)``. Assumes
``len > 1``.
.. function:: void fmpz_poly_discriminant(fmpz_t res, const fmpz_poly_t poly)
Set ``res`` to the discriminant of ``poly``. We normalise the
discriminant so that `\operatorname{disc}(f) = (-1)^{(n(n-1)/2)}
\operatorname{res}(f, f')/\operatorname{lc}(f)`, thus
`\operatorname{disc}(f) = \operatorname{lc}(f)^{(2n - 2)} \prod_{i < j} (r_i
- r_j)^2`, where `\operatorname{lc}(f)` is the leading coefficient of `f`,
`n` is the degree of `f` and `r_i` are the roots of `f`.
Gaussian content
--------------------------------------------------------------------------------
.. function:: void _fmpz_poly_content(fmpz_t res, const fmpz * poly, slong len)
Sets ``res`` to the non-negative content of ``(poly, len)``.
Aliasing between ``res`` and the coefficients of ``poly`` is
not supported.
.. function:: void fmpz_poly_content(fmpz_t res, const fmpz_poly_t poly)
Sets ``res`` to the non-negative content of ``poly``. The content
of the zero polynomial is defined to be zero. Supports aliasing, that is,
``res`` is allowed to be one of the coefficients of ``poly``.
.. function:: void _fmpz_poly_primitive_part(fmpz * res, const fmpz * poly, slong len)
Sets ``(res, len)`` to ``(poly, len)`` divided by the content
of ``(poly, len)``, and normalises the result to have non-negative
leading coefficient.
Assumes that ``(poly, len)`` is non-zero. Supports aliasing of
``res`` and ``poly``.
.. function:: void fmpz_poly_primitive_part(fmpz_poly_t res, const fmpz_poly_t poly)
Sets ``res`` to ``poly`` divided by the content of ``poly``,
and normalises the result to have non-negative leading coefficient.
If ``poly`` is zero, sets ``res`` to zero.
Square-free
--------------------------------------------------------------------------------
.. function:: int _fmpz_poly_is_squarefree(const fmpz * poly, slong len)
Returns whether the polynomial ``(poly, len)`` is square-free.
.. function:: int fmpz_poly_is_squarefree(const fmpz_poly_t poly)
Returns whether the polynomial ``poly`` is square-free. A non-zero
polynomial is defined to be square-free if it has no non-unit square
factors. We also define the zero polynomial to be square-free.
Returns `1` if the length of ``poly`` is at most `2`. Returns whether
the discriminant is zero for quadratic polynomials. Otherwise, returns
whether the greatest common divisor of ``poly`` and its derivative has
length `1`.
Euclidean division
--------------------------------------------------------------------------------
.. function:: int _fmpz_poly_divrem_basecase(fmpz * Q, fmpz * R, const fmpz * A, slong lenA, const fmpz * B, slong lenB, int exact)
Computes ``(Q, lenA - lenB + 1)``, ``(R, lenA)`` such that
`A = B Q + R` and each coefficient of `R` beyond ``lenB`` is reduced
modulo the leading coefficient of `B`.
If the leading coefficient of `B` is `\pm 1` or the division is exact,
this is the same thing as division over `\mathbb{Q}`.
Assumes that `\operatorname{len}(A), \operatorname{len}(B) > 0`. Allows zero-padding in
``(A, lenA)``. `R` and `A` may be aliased, but apart from this no
aliasing of input and output operands is allowed.
If the flag ``exact`` is `1`, the function stops if an inexact division
is encountered, upon which the function will return `0`. If no inexact
division is encountered, the function returns `1`. Note that this does not
guarantee the remainder of the polynomial division is zero, merely that
its length is less than that of B. This feature is useful for series
division and for divisibility testing (upon testing the remainder).
For ordinary use set the flag ``exact`` to `0`. In this case, no checks
or early aborts occur and the function always returns `1`.
.. function:: void fmpz_poly_divrem_basecase(fmpz_poly_t Q, fmpz_poly_t R, const fmpz_poly_t A, const fmpz_poly_t B)
Computes `Q`, `R` such that `A = B Q + R` and each coefficient of `R`
beyond `\operatorname{len}(B) - 1` is reduced modulo the leading coefficient of `B`.
If the leading coefficient of `B` is `\pm 1` or the division is exact,
this is the same thing as division over `\mathbb{Q}`. An exception is raised
if `B` is zero.
.. function:: int _fmpz_poly_divrem_divconquer_recursive(fmpz * Q, fmpz * BQ, fmpz * W, const fmpz * A, const fmpz * B, slong lenB, int exact)
Computes ``(Q, lenB)``, ``(BQ, 2 lenB - 1)`` such that
`BQ = B \times Q` and `A = B Q + R` where each coefficient of `R` beyond
`\operatorname{len}(B) - 1` is reduced modulo the leading coefficient of `B`. We
assume that `\operatorname{len}(A) = 2 \operatorname{len}(B) - 1`. If the leading coefficient
of `B` is `\pm 1` or the division is exact, this is the same as division
over `\mathbb{Q}`.
Assumes `\operatorname{len}(B) > 0`. Allows zero-padding in ``(A, lenA)``. Requires
a temporary array ``(W, 2 lenB - 1)``. No aliasing of input and output
operands is allowed.
This function does not read the bottom `\operatorname{len}(B) - 1` coefficients from
`A`, which means that they might not even need to exist in allocated
memory.
If the flag ``exact`` is `1`, the function stops if an inexact division
is encountered, upon which the function will return `0`. If no inexact
division is encountered, the function returns `1`. Note that this does not
guarantee the remainder of the polynomial division is zero, merely that
its length is less than that of B. This feature is useful for series
division and for divisibility testing (upon testing the remainder).
For ordinary use set the flag ``exact`` to `0`. In this case, no checks
or early aborts occur and the function always returns `1`.
.. function:: int _fmpz_poly_divrem_divconquer(fmpz * Q, fmpz * R, const fmpz * A, slong lenA, const fmpz * B, slong lenB, int exact)
Computes ``(Q, lenA - lenB + 1)``, ``(R, lenA)`` such that
`A = B Q + R` and each coefficient of `R` beyond `\operatorname{len}(B) - 1` is
reduced modulo the leading coefficient of `B`. If the leading
coefficient of `B` is `\pm 1` or the division is exact, this is
the same as division over `\mathbb{Q}`.
Assumes `\operatorname{len}(A) \geq \operatorname{len}(B) > 0`. Allows zero-padding in
``(A, lenA)``. No aliasing of input and output operands is
allowed.
If the flag ``exact`` is `1`, the function stops if an inexact division
is encountered, upon which the function will return `0`. If no inexact
division is encountered, the function returns `1`. Note that this does not
guarantee the remainder of the polynomial division is zero, merely that
its length is less than that of B. This feature is useful for series
division and for divisibility testing (upon testing the remainder).
For ordinary use set the flag ``exact`` to `0`. In this case, no checks
or early aborts occur and the function always returns `1`.
.. function:: void fmpz_poly_divrem_divconquer(fmpz_poly_t Q, fmpz_poly_t R, const fmpz_poly_t A, const fmpz_poly_t B)
Computes `Q`, `R` such that `A = B Q + R` and each coefficient of `R`
beyond `\operatorname{len}(B) - 1` is reduced modulo the leading coefficient of `B`.
If the leading coefficient of `B` is `\pm 1` or the division is exact,
this is the same as division over `\mathbb{Q}`. An exception is raised if `B`
is zero.
.. function:: int _fmpz_poly_divrem(fmpz * Q, fmpz * R, const fmpz * A, slong lenA, const fmpz * B, slong lenB, int exact)
Computes ``(Q, lenA - lenB + 1)``, ``(R, lenA)`` such that
`A = B Q + R` and each coefficient of `R` beyond `\operatorname{len}(B) - 1` is
reduced modulo the leading coefficient of `B`. If the leading
coefficient of `B` is `\pm 1` or the division is exact, this is
the same thing as division over `\mathbb{Q}`.
Assumes `\operatorname{len}(A) \geq \operatorname{len}(B) > 0`. Allows zero-padding in
``(A, lenA)``. No aliasing of input and output operands is
allowed.
If the flag ``exact`` is `1`, the function stops if an inexact division
is encountered, upon which the function will return `0`. If no inexact
division is encountered, the function returns `1`. Note that this does not
guarantee the remainder of the polynomial division is zero, merely that
its length is less than that of B. This feature is useful for series
division and for divisibility testing (upon testing the remainder).
For ordinary use set the flag ``exact`` to `0`. In this case, no checks
or early aborts occur and the function always returns `1`.
.. function:: void fmpz_poly_divrem(fmpz_poly_t Q, fmpz_poly_t R, const fmpz_poly_t A, const fmpz_poly_t B)
Computes `Q`, `R` such that `A = B Q + R` and each coefficient of `R`
beyond `\operatorname{len}(B) - 1` is reduced modulo the leading coefficient of `B`.
If the leading coefficient of `B` is `\pm 1` or the division is exact,
this is the same as division over `\mathbb{Q}`. An exception is raised if `B`
is zero.
.. function:: int _fmpz_poly_div_basecase(fmpz * Q, fmpz * R, const fmpz * A, slong lenA, const fmpz * B, slong lenB, int exact)
Computes the quotient ``(Q, lenA - lenB + 1)`` of ``(A, lenA)``
divided by ``(B, lenB)``.
Notationally, computes `Q`, `R` such that `A = B Q + R` and each
coefficient of `R` beyond `\operatorname{len}(B) - 1` is reduced modulo the leading
coefficient of `B`.
If the leading coefficient of `B` is `\pm 1` or the division is exact,
this is the same as division over `\mathbb{Q}`.
Assumes `\operatorname{len}(A), \operatorname{len}(B) > 0`. Allows zero-padding in ``(A, lenA)``.
Requires a temporary array `R` of size at least the (actual) length
of `A`. For convenience, `R` may be ``NULL``. `R` and `A` may be
aliased, but apart from this no aliasing of input and output operands
is allowed.
If the flag ``exact`` is `1`, the function stops if an inexact division
is encountered, upon which the function will return `0`. If no inexact
division is encountered, the function returns `1`. Note that this does not
guarantee the remainder of the polynomial division is zero, merely that
its length is less than that of B. This feature is useful for series
division and for divisibility testing (upon testing the remainder).
For ordinary use set the flag ``exact`` to `0`. In this case, no checks
or early aborts occur and the function always returns `1`.
.. function:: void fmpz_poly_div_basecase(fmpz_poly_t Q, const fmpz_poly_t A, const fmpz_poly_t B)
Computes the quotient `Q` of `A` divided by `Q`.
Notationally, computes `Q`, `R` such that `A = B Q + R` and each
coefficient of `R` beyond `\operatorname{len}(B) - 1` is reduced modulo the leading
coefficient of `B`.
If the leading coefficient of `B` is `\pm 1` or the division is exact,
this is the same as division over `\mathbb{Q}`. An exception is raised if `B`
is zero.
.. function:: int _fmpz_poly_divremlow_divconquer_recursive(fmpz * Q, fmpz * BQ, const fmpz * A, const fmpz * B, slong lenB, int exact)
Divide and conquer division of ``(A, 2 lenB - 1)`` by ``(B, lenB)``,
computing only the bottom `\operatorname{len}(B) - 1` coefficients of `B Q`.
Assumes `\operatorname{len}(B) > 0`. Requires `B Q` to have length at least
`2 \operatorname{len}(B) - 1`, although only the bottom `\operatorname{len}(B) - 1` coefficients will
carry meaningful output. Does not support any aliasing. Allows
zero-padding in `A`, but not in `B`.
If the flag ``exact`` is `1`, the function stops if an inexact division
is encountered, upon which the function will return `0`. If no inexact
division is encountered, the function returns `1`. Note that this does not
guarantee the remainder of the polynomial division is zero, merely that
its length is less than that of B. This feature is useful for series
division and for divisibility testing (upon testing the remainder).
For ordinary use set the flag ``exact`` to `0`. In this case, no checks
or early aborts occur and the function always returns `1`.
.. function:: int _fmpz_poly_div_divconquer_recursive(fmpz * Q, fmpz * temp, const fmpz * A, const fmpz * B, slong lenB, int exact)
Recursive short division in the balanced case.
Computes the quotient ``(Q, lenB)`` of ``(A, 2 lenB - 1)`` upon
division by ``(B, lenB)``. Requires `\operatorname{len}(B) > 0`. Needs a
temporary array ``temp`` of length `2 \operatorname{len}(B) - 1`. Does not support
any aliasing.
For further details, see [Mul2000]_.
If the flag ``exact`` is `1`, the function stops if an inexact division
is encountered, upon which the function will return `0`. If no inexact
division is encountered, the function returns `1`. Note that this does not
guarantee the remainder of the polynomial division is zero, merely that
its length is less than that of B. This feature is useful for series
division and for divisibility testing (upon testing the remainder).
For ordinary use set the flag ``exact`` to `0`. In this case, no checks
or early aborts occur and the function always returns `1`.
.. function:: int _fmpz_poly_div_divconquer(fmpz * Q, const fmpz * A, slong lenA, const fmpz * B, slong lenB, int exact)
Computes the quotient ``(Q, lenA - lenB + 1)`` of ``(A, lenA)``
upon division by ``(B, lenB)``. Assumes that
`\operatorname{len}(A) \geq \operatorname{len}(B) > 0`. Does not support aliasing.
If the flag ``exact`` is `1`, the function stops if an inexact division
is encountered, upon which the function will return `0`. If no inexact
division is encountered, the function returns `1`. Note that this does not
guarantee the remainder of the polynomial division is zero, merely that
its length is less than that of B. This feature is useful for series
division and for divisibility testing (upon testing the remainder).
For ordinary use set the flag ``exact`` to `0`. In this case, no checks
or early aborts occur and the function always returns `1`.
.. function:: void fmpz_poly_div_divconquer(fmpz_poly_t Q, const fmpz_poly_t A, const fmpz_poly_t B)
Computes the quotient `Q` of `A` divided by `B`.
Notationally, computes `Q`, `R` such that `A = B Q + R` and each
coefficient of `R` beyond `\operatorname{len}(B) - 1` is reduced modulo the leading
coefficient of `B`.
If the leading coefficient of `B` is `\pm 1` or the division is exact,
this is the same as division over `\mathbb{Q}`. An exception is raised if `B`
is zero.
.. function:: int _fmpz_poly_div(fmpz * Q, const fmpz * A, slong lenA, const fmpz * B, slong lenB, int exact)
Computes the quotient ``(Q, lenA - lenB + 1)`` of ``(A, lenA)``
divided by ``(B, lenB)``.
Notationally, computes `Q`, `R` such that `A = B Q + R` and each
coefficient of `R` beyond `\operatorname{len}(B) - 1` is reduced modulo the leading
coefficient of `B`. If the leading coefficient of `B` is `\pm 1` or
the division is exact, this is the same as division over `\mathbb{Q}`.
Assumes `\operatorname{len}(A) \geq \operatorname{len}(B) > 0`. Allows zero-padding in
``(A, lenA)``. Aliasing of input and output operands is not
allowed.
If the flag ``exact`` is `1`, the function stops if an inexact division
is encountered, upon which the function will return `0`. If no inexact
division is encountered, the function returns `1`. Note that this does not
guarantee the remainder of the polynomial division is zero, merely that
its length is less than that of B. This feature is useful for series
division and for divisibility testing (upon testing the remainder).
For ordinary use set the flag ``exact`` to `0`. In this case, no checks
or early aborts occur and the function always returns `1`.
.. function:: void fmpz_poly_div(fmpz_poly_t Q, const fmpz_poly_t A, const fmpz_poly_t B)
Computes the quotient `Q` of `A` divided by `B`.
Notationally, computes `Q`, `R` such that `A = B Q + R` and each
coefficient of `R` beyond `\operatorname{len}(B) - 1` is reduced modulo the leading
coefficient of `B`. If the leading coefficient of `B` is `\pm 1` or
the division is exact, this is the same as division over `Q`. An
exception is raised if `B` is zero.
.. function:: void _fmpz_poly_rem_basecase(fmpz * R, const fmpz * A, slong lenA, const fmpz * B, slong lenB)
Computes the remainder ``(R, lenA)`` of ``(A, lenA)`` upon
division by ``(B, lenB)``.
Notationally, computes `Q`, `R` such that `A = B Q + R` and each
coefficient of `R` beyond `\operatorname{len}(B) - 1` is reduced modulo the leading
coefficient of `B`. If the leading coefficient of `B` is `\pm 1` or
the division is exact, this is the same thing as division over `\mathbb{Q}`.
Assumes that `\operatorname{len}(A), \operatorname{len}(B) > 0`. Allows zero-padding in
``(A, lenA)``. `R` and `A` may be aliased, but apart from this no
aliasing of input and output operands is allowed.
.. function:: void fmpz_poly_rem_basecase(fmpz_poly_t R, const fmpz_poly_t A, const fmpz_poly_t B)
Computes the remainder `R` of `A` upon division by `B`.
Notationally, computes `Q`, `R` such that `A = B Q + R` and each
coefficient of `R` beyond `\operatorname{len}(B) - 1` is reduced modulo the leading
coefficient of `B`. If the leading coefficient of `B` is `\pm 1` or
the division is exact, this is the same as division over `\mathbb{Q}`. An
exception is raised if `B` is zero.
.. function:: void _fmpz_poly_rem(fmpz * R, const fmpz * A, slong lenA, const fmpz * B, slong lenB)
Computes the remainder ``(R, lenA)`` of ``(A, lenA)`` upon division
by ``(B, lenB)``.
Notationally, computes `Q`, `R` such that `A = B Q + R` and each
coefficient of `R` beyond `\operatorname{len}(B) - 1` is reduced modulo the leading
coefficient of `B`. If the leading coefficient of `B` is `\pm 1` or
the division is exact, this is the same thing as division over `\mathbb{Q}`.
Assumes that `\operatorname{len}(A) \geq \operatorname{len}(B) > 0`. Allows zero-padding in
``(A, lenA)``. Aliasing of input and output operands is not allowed.
.. function:: void fmpz_poly_rem(fmpz_poly_t R, const fmpz_poly_t A, const fmpz_poly_t B)
Computes the remainder `R` of `A` upon division by `B`.
Notationally, computes `Q`, `R` such that `A = B Q + R` and each
coefficient of `R` beyond `\operatorname{len}(B) - 1` is reduced modulo the leading
coefficient of `B`. If the leading coefficient of `B` is `\pm 1` or
the division is exact, this is the same as division over `\mathbb{Q}`. An
exception is raised if `B` is zero.
.. function:: void _fmpz_poly_div_root_fmpz(fmpz * Q, const fmpz * A, slong len, const fmpz_t c)
Computes the quotient ``(Q, len-1)`` of ``(A, len)`` upon
division by `x - c`.
Supports aliasing of ``Q`` and ``A``, but the result is
undefined in case of partial overlap.
.. function:: void fmpz_poly_div_root_fmpz(fmpz_poly_t Q, const fmpz_poly_t A, const fmpz_t c)
Computes the quotient ``(Q, len-1)`` of ``(A, len)`` upon
division by `x - c`.
.. function:: void _fmpz_poly_divexact(fmpz * Q, const fmpz * A, slong lenA, const fmpz * B, slong lenB)
void fmpz_poly_divexact(fmpz_poly_t Q, const fmpz_poly_t A, const fmpz_poly_t B)
Like :func:`fmpz_poly_div`, but assumes that the division is exact.
.. function:: void _fmpz_poly_divexact_root_fmpq(fmpz * Q, const fmpz * A, slong len, const fmpq_t c)
Computes the quotient ``(Q, len-1)`` of ``(A, len)`` upon
division by `q x - p` where `c = p/q`. Assumes the division is exact.
Supports aliasing of ``Q`` and ``A``, but the result is
undefined in case of partial overlap.
.. function:: void fmpz_poly_divexact_root_fmpq(fmpz_poly_t Q, const fmpz_poly_t A, const fmpq_t c)
Computes the quotient ``(Q, len-1)`` of ``(A, len)`` upon
division by `q x - p` where `c = p/q`. Assumes the division is exact.
Division with precomputed inverse
--------------------------------------------------------------------------------
.. function:: void _fmpz_poly_preinvert(fmpz * B_inv, const fmpz * B, slong n)
Given a monic polynomial ``B`` of length ``n``, compute a precomputed
inverse ``B_inv`` of length ``n`` for use in the functions below. No
aliasing of ``B`` and ``B_inv`` is permitted. We assume ``n`` is not zero.
.. function:: void fmpz_poly_preinvert(fmpz_poly_t B_inv, const fmpz_poly_t B)
Given a monic polynomial ``B``, compute a precomputed inverse
``B_inv`` for use in the functions below. An exception is raised if
``B`` is zero.
.. function:: void _fmpz_poly_div_preinv(fmpz * Q, const fmpz * A, slong len1, const fmpz * B, const fmpz * B_inv, slong len2)
Given a precomputed inverse ``B_inv`` of the polynomial ``B`` of
length ``len2``, compute the quotient ``Q`` of ``A`` by ``B``.
We assume the length ``len1`` of ``A`` is at least ``len2``. The
polynomial ``Q`` must have space for ``len1 - len2 + 1``
coefficients. No aliasing of operands is permitted.
.. function:: void fmpz_poly_div_preinv(fmpz_poly_t Q, const fmpz_poly_t A, const fmpz_poly_t B, const fmpz_poly_t B_inv)
Given a precomputed inverse ``B_inv`` of the polynomial ``B``,
compute the quotient ``Q`` of ``A`` by ``B``. Aliasing of ``B``
and ``B_inv`` is not permitted.
.. function:: void _fmpz_poly_divrem_preinv(fmpz * Q, fmpz * A, slong len1, const fmpz * B, const fmpz * B_inv, slong len2)
Given a precomputed inverse ``B_inv`` of the polynomial ``B`` of
length ``len2``, compute the quotient ``Q`` of ``A`` by ``B``.
The remainder is then placed in ``A``. We assume the length ``len1``
of ``A`` is at least ``len2``. The polynomial ``Q`` must have
space for ``len1 - len2 + 1`` coefficients. No aliasing of operands is
permitted.
.. function:: void fmpz_poly_divrem_preinv(fmpz_poly_t Q, fmpz_poly_t R, const fmpz_poly_t A, const fmpz_poly_t B, const fmpz_poly_t B_inv)
Given a precomputed inverse ``B_inv`` of the polynomial ``B``,
compute the quotient ``Q`` of ``A`` by ``B`` and the remainder
``R``. Aliasing of ``B`` and ``B_inv`` is not permitted.
.. function:: fmpz ** _fmpz_poly_powers_precompute(const fmpz * B, slong len)
Computes ``2*len - 1`` powers of `x` modulo the polynomial `B` of
the given length. This is used as a kind of precomputed inverse in
the remainder routine below.
.. function:: void fmpz_poly_powers_precompute(fmpz_poly_powers_precomp_t pinv, fmpz_poly_t poly)
Computes ``2*len - 1`` powers of `x` modulo the polynomial `B` of
the given length. This is used as a kind of precomputed inverse in
the remainder routine below.
.. function:: void _fmpz_poly_powers_clear(fmpz ** powers, slong len)
Clean up resources used by precomputed powers which have been computed
by ``_fmpz_poly_powers_precompute``.
.. function:: void fmpz_poly_powers_clear(fmpz_poly_powers_precomp_t pinv)
Clean up resources used by precomputed powers which have been computed
by ``fmpz_poly_powers_precompute``.
.. function:: void _fmpz_poly_rem_powers_precomp(fmpz * A, slong m, const fmpz * B, slong n, fmpz ** const powers)
Set `A` to the remainder of `A` divide `B` given precomputed powers mod `B`
provided by ``_fmpz_poly_powers_precompute``. No aliasing is allowed.
.. function:: void fmpz_poly_rem_powers_precomp(fmpz_poly_t R, const fmpz_poly_t A, const fmpz_poly_t B, const fmpz_poly_powers_precomp_t B_inv)
Set `R` to the remainder of `A` divide `B` given precomputed powers mod `B`
provided by ``fmpz_poly_powers_precompute``.
Divisibility testing
--------------------------------------------------------------------------------
.. function:: int _fmpz_poly_divides(fmpz * Q, const fmpz * A, slong lenA, const fmpz * B, slong lenB)
Returns 1 if ``(B, lenB)`` divides ``(A, lenA)`` exactly and
sets `Q` to the quotient, otherwise returns 0.
It is assumed that `\operatorname{len}(A) \geq \operatorname{len}(B) > 0` and that `Q` has space
for `\operatorname{len}(A) - \operatorname{len}(B) + 1` coefficients.
Aliasing of `Q` with either of the inputs is not permitted.
This function is currently unoptimised and provided for convenience
only.
.. function:: int fmpz_poly_divides(fmpz_poly_t Q, const fmpz_poly_t A, const fmpz_poly_t B)
Returns 1 if `B` divides `A` exactly and sets `Q` to the quotient,
otherwise returns 0.
This function is currently unoptimised and provided for convenience
only.
.. function:: slong fmpz_poly_remove(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2)
Set ``res`` to ``poly1`` divided by the highest power of ``poly2`` that
divides it and return the power. The divisor ``poly2`` must not be zero or
`\pm 1`, otherwise an exception is raised.
Division mod p
--------------------------------------------------------------------------------
.. function:: void fmpz_poly_divlow_smodp(fmpz * res, const fmpz_poly_t f, const fmpz_poly_t g, const fmpz_t p, slong n)
Compute the `n` lowest coefficients of `f` divided by `g`, assuming the
division is exact modulo `p`. The computed coefficients are reduced modulo
`p` using the symmetric remainder system. We require `f` to be at least `n`
in length. The function can handle trailing zeroes, but the low nonzero
coefficient of `g` must be coprime to `p`. This is a bespoke function used
by factoring.
.. function:: void fmpz_poly_divhigh_smodp(fmpz * res, const fmpz_poly_t f, const fmpz_poly_t g, const fmpz_t p, slong n)
Compute the `n` highest coefficients of `f` divided by `g`, assuming the
division is exact modulo `p`. The computed coefficients are reduced modulo
`p` using the symmetric remainder system. We require `f` to be as output
by ``fmpz_poly_mulhigh_n`` given polynomials `g` and a polynomial of
length `n` as inputs. The leading coefficient of `g` must be coprime to
`p`. This is a bespoke function used by factoring.
Power series division
--------------------------------------------------------------------------------
.. function:: void _fmpz_poly_inv_series_basecase(fmpz * Qinv, const fmpz * Q, slong Qlen, slong n)
Computes the first `n` terms of the inverse power series of
``(Q, lenQ)`` using a recurrence.
Assumes that `n \geq 1` and that `Q` has constant term `\pm 1`.
Does not support aliasing.
.. function:: void fmpz_poly_inv_series_basecase(fmpz_poly_t Qinv, const fmpz_poly_t Q, slong n)
Computes the first `n` terms of the inverse power series of `Q`
using a recurrence, assuming that `Q` has constant term `\pm 1`
and `n \geq 1`.
.. function:: void _fmpz_poly_inv_series_newton(fmpz * Qinv, const fmpz * Q, slong Qlen, slong n)
Computes the first `n` terms of the inverse power series of
``(Q, lenQ)`` using Newton iteration.
Assumes that `n \geq 1` and that `Q` has constant term `\pm 1`.
Does not support aliasing.
.. function:: void fmpz_poly_inv_series_newton(fmpz_poly_t Qinv, const fmpz_poly_t Q, slong n)
Computes the first `n` terms of the inverse power series of `Q` using
Newton iteration, assuming `Q` has constant term `\pm 1` and `n \geq 1`.
.. function:: void _fmpz_poly_inv_series(fmpz * Qinv, const fmpz * Q, slong Qlen, slong n)
Computes the first `n` terms of the inverse power series of
``(Q, lenQ)``.
Assumes that `n \geq 1` and that `Q` has constant term `\pm 1`.
Does not support aliasing.
.. function:: void fmpz_poly_inv_series(fmpz_poly_t Qinv, const fmpz_poly_t Q, slong n)
Computes the first `n` terms of the inverse power series of `Q`,
assuming `Q` has constant term `\pm 1` and `n \geq 1`.
.. function:: void _fmpz_poly_div_series_basecase(fmpz * Q, const fmpz * A, slong Alen, const fmpz * B, slong Blen, slong n)
.. function:: void _fmpz_poly_div_series_divconquer(fmpz * Q, const fmpz * A, slong Alen, const fmpz * B, slong Blen, slong n)
.. function:: void _fmpz_poly_div_series(fmpz * Q, const fmpz * A, slong Alen, const fmpz * B, slong Blen, slong n)
Divides ``(A, Alen)`` by ``(B, Blen)`` as power series over `\mathbb{Z}`,
assuming `B` has constant term `\pm 1` and `n \geq 1`.
Aliasing is not supported.
.. function:: void fmpz_poly_div_series_basecase(fmpz_poly_t Q, const fmpz_poly_t A, const fmpz_poly_t B, slong n)
.. function:: void fmpz_poly_div_series_divconquer(fmpz_poly_t Q, const fmpz_poly_t A, const fmpz_poly_t B, slong n)
.. function:: void fmpz_poly_div_series(fmpz_poly_t Q, const fmpz_poly_t A, const fmpz_poly_t B, slong n)
Performs power series division in `\mathbb{Z}[[x]] / (x^n)`. The function
considers the polynomials `A` and `B` as power series of length `n`
starting with the constant terms. The function assumes that `B` has
constant term `\pm 1` and `n \geq 1`.
Pseudo division
--------------------------------------------------------------------------------
.. function:: void _fmpz_poly_pseudo_divrem_basecase(fmpz * Q, fmpz * R, ulong * d, const fmpz * A, slong lenA, const fmpz * B, slong lenB, const fmpz_preinvn_t inv)
If `\ell` is the leading coefficient of `B`, then computes `Q`, `R` such
that `\ell^d A = Q B + R`. This function is used for simulating division
over `\mathbb{Q}`.
Assumes that `\operatorname{len}(A) \geq \operatorname{len}(B) > 0`. Assumes that `Q` can fit
`\operatorname{len}(A) - \operatorname{len}(B) + 1` coefficients, and that `R` can fit `\operatorname{len}(A)`
coefficients. Supports aliasing of ``(R, lenA)`` and ``(A, lenA)``.
But other than this, no aliasing of the inputs and outputs is supported.
An optional precomputed inverse of the leading coefficient of `B` from
``fmpz_preinvn_init`` can be supplied. Otherwise ``inv`` should be
``NULL``.
Note: ``fmpz.h`` has to be included before ``fmpz_poly.h`` in order for
``fmpz_poly.h`` to declare this function.
.. function:: void fmpz_poly_pseudo_divrem_basecase(fmpz_poly_t Q, fmpz_poly_t R, ulong * d, const fmpz_poly_t A, const fmpz_poly_t B)
If `\ell` is the leading coefficient of `B`, then computes `Q`, `R` such
that `\ell^d A = Q B + R`. This function is used for simulating division
over `\mathbb{Q}`.
.. function:: void _fmpz_poly_pseudo_divrem_divconquer(fmpz * Q, fmpz * R, ulong * d, const fmpz * A, slong lenA, const fmpz * B, slong lenB, const fmpz_preinvn_t inv)
Computes ``(Q, lenA - lenB + 1)``, ``(R, lenA)`` such that
`\ell^d A = B Q + R`, only setting the bottom `\operatorname{len}(B) - 1` coefficients
of `R` to their correct values. The remaining top coefficients of
``(R, lenA)`` may be arbitrary.
Assumes `\operatorname{len}(A) \geq \operatorname{len}(B) > 0`. Allows zero-padding in
``(A, lenA)``. No aliasing of input and output operands is allowed.
An optional precomputed inverse of the leading coefficient of `B` from
``fmpz_preinvn_init`` can be supplied. Otherwise ``inv`` should be
``NULL``.
Note: ``fmpz.h`` has to be included before ``fmpz_poly.h`` in order for
``fmpz_poly.h`` to declare this function.
.. function:: void fmpz_poly_pseudo_divrem_divconquer(fmpz_poly_t Q, fmpz_poly_t R, ulong * d, const fmpz_poly_t A, const fmpz_poly_t B)
Computes `Q`, `R`, and `d` such that `\ell^d A = B Q + R`, where `R` has
length less than the length of `B` and `\ell` is the leading coefficient
of `B`. An exception is raised if `B` is zero.
.. function:: void _fmpz_poly_pseudo_divrem_cohen(fmpz * Q, fmpz * R, const fmpz * A, slong lenA, const fmpz * B, slong lenB)
Assumes that `\operatorname{len}(A) \geq \operatorname{len}(B) > 0`. Assumes that `Q` can fit
`\operatorname{len}(A) - \operatorname{len}(B) + 1` coefficients, and that `R` can fit `\operatorname{len}(A)`
coefficients. Supports aliasing of ``(R, lenA)`` and ``(A, lenA)``.
But other than this, no aliasing of the inputs and outputs is supported.
.. function:: void fmpz_poly_pseudo_divrem_cohen(fmpz_poly_t Q, fmpz_poly_t R, const fmpz_poly_t A, const fmpz_poly_t B)
This is a variant of ``fmpz_poly_pseudo_divrem`` which computes
polynomials `Q` and `R` such that `\ell^d A = B Q + R`. However, the
value of `d` is fixed at `\max{\{0, \operatorname{len}(A) - \operatorname{len}(B) + 1\}}`.
This function is faster when the remainder is not well behaved, i.e.
where it is not expected to be close to zero. Note that this function
is not asymptotically fast. It is efficient only for short polynomials,
e.g. when `\operatorname{len}(B) < 32`.
.. function:: void _fmpz_poly_pseudo_rem_cohen(fmpz * R, const fmpz * A, slong lenA, const fmpz * B, slong lenB)
Assumes that `\operatorname{len}(A) \geq \operatorname{len}(B) > 0`. Assumes that `R` can fit
`\operatorname{len}(A)` coefficients. Supports aliasing of ``(R, lenA)`` and
``(A, lenA)``. But other than this, no aliasing of the inputs and
outputs is supported.
.. function:: void fmpz_poly_pseudo_rem_cohen(fmpz_poly_t R, const fmpz_poly_t A, const fmpz_poly_t B)
This is a variant of :func:`fmpz_poly_pseudo_rem` which computes
polynomials `Q` and `R` such that `\ell^d A = B Q + R`, but only
returns `R`. However, the value of `d` is fixed at
`\max{\{0, \operatorname{len}(A) - \operatorname{len}(B) + 1\}}`.
This function is faster when the remainder is not well behaved, i.e.
where it is not expected to be close to zero. Note that this function
is not asymptotically fast. It is efficient only for short polynomials,
e.g. when `\operatorname{len}(B) < 32`.
This function uses the algorithm described
in Algorithm 3.1.2 of [Coh1996]_.
.. function:: void _fmpz_poly_pseudo_divrem(fmpz * Q, fmpz * R, ulong * d, const fmpz * A, slong lenA, const fmpz * B, slong lenB, const fmpz_preinvn_t inv)
If `\ell` is the leading coefficient of `B`, then computes
``(Q, lenA - lenB + 1)``, ``(R, lenB - 1)`` and `d` such that
`\ell^d A = B Q + R`. This function is used for simulating division
over `\mathbb{Q}`.
Assumes that `\operatorname{len}(A) \geq \operatorname{len}(B) > 0`. Assumes that `Q` can fit
`\operatorname{len}(A) - \operatorname{len}(B) + 1` coefficients, and that `R` can fit `\operatorname{len}(A)`
coefficients, although on exit only the bottom `\operatorname{len}(B)` coefficients
will carry meaningful data.
Supports aliasing of ``(R, lenA)`` and ``(A, lenA)``. But other
than this, no aliasing of the inputs and outputs is supported.
An optional precomputed inverse of the leading coefficient of `B` from
``fmpz_preinvn_init`` can be supplied. Otherwise ``inv`` should be
``NULL``.
Note: ``fmpz.h`` has to be included before ``fmpz_poly.h`` in order for
``fmpz_poly.h`` to declare this function.
.. function:: void fmpz_poly_pseudo_divrem(fmpz_poly_t Q, fmpz_poly_t R, ulong * d, const fmpz_poly_t A, const fmpz_poly_t B)
Computes `Q`, `R`, and `d` such that `\ell^d A = B Q + R`.
.. function:: void _fmpz_poly_pseudo_div(fmpz * Q, ulong * d, const fmpz * A, slong lenA, const fmpz * B, slong lenB, const fmpz_preinvn_t inv)
Pseudo-division, only returning the quotient.
Note: ``fmpz.h`` has to be included before ``fmpz_poly.h`` in order for
``fmpz_poly.h`` to declare this function.
.. function:: void fmpz_poly_pseudo_div(fmpz_poly_t Q, ulong * d, const fmpz_poly_t A, const fmpz_poly_t B)
Pseudo-division, only returning the quotient.
.. function:: void _fmpz_poly_pseudo_rem(fmpz * R, ulong * d, const fmpz * A, slong lenA, const fmpz * B, slong lenB, const fmpz_preinvn_t inv)
Pseudo-division, only returning the remainder.
Note: ``fmpz.h`` has to be included before ``fmpz_poly.h`` in order for
``fmpz_poly.h`` to declare this function.
.. function:: void fmpz_poly_pseudo_rem(fmpz_poly_t R, ulong * d, const fmpz_poly_t A, const fmpz_poly_t B)
Pseudo-division, only returning the remainder.
Derivative
--------------------------------------------------------------------------------
.. function:: void _fmpz_poly_derivative(fmpz * rpoly, const fmpz * poly, slong len)
Sets ``(rpoly, len - 1)`` to the derivative of ``(poly, len)``.
Also handles the cases where ``len`` is `0` or `1` correctly.
Supports aliasing of ``rpoly`` and ``poly``.
.. function:: void fmpz_poly_derivative(fmpz_poly_t res, const fmpz_poly_t poly)
Sets ``res`` to the derivative of ``poly``.
.. function:: void _fmpz_poly_nth_derivative(fmpz * rpoly, const fmpz * poly, ulong n, slong len)
Sets ``(rpoly, len - n)`` to the nth derivative of ``(poly, len)``.
Also handles the cases where ``len <= n`` correctly.
Supports aliasing of ``rpoly`` and ``poly``.
.. function:: void fmpz_poly_nth_derivative(fmpz_poly_t res, const fmpz_poly_t poly, ulong n)
Sets ``res`` to the nth derivative of ``poly``.
Evaluation
--------------------------------------------------------------------------------
.. function:: void _fmpz_poly_evaluate_divconquer_fmpz(fmpz_t res, const fmpz * poly, slong len, const fmpz_t a)
Evaluates the polynomial ``(poly, len)`` at the integer `a` using
a divide and conquer approach. Assumes that the length of the polynomial
is at least one. Allows zero padding. Does not allow aliasing between
``res`` and ``x``.
.. function:: void fmpz_poly_evaluate_divconquer_fmpz(fmpz_t res, const fmpz_poly_t poly, const fmpz_t a)
Evaluates the polynomial ``poly`` at the integer `a` using a divide
and conquer approach.
Aliasing between ``res`` and ``a`` is supported, however,
``res`` may not be part of ``poly``.
.. function:: void _fmpz_poly_evaluate_horner_fmpz(fmpz_t res, const fmpz * f, slong len, const fmpz_t a)
Evaluates the polynomial ``(f, len)`` at the integer `a` using
Horner's rule, and sets ``res`` to the result. Aliasing between
``res`` and `a` or any of the coefficients of `f` is not supported.
.. function:: void fmpz_poly_evaluate_horner_fmpz(fmpz_t res, const fmpz_poly_t f, const fmpz_t a)
Evaluates the polynomial `f` at the integer `a` using Horner's rule, and
sets ``res`` to the result.
As expected, aliasing between ``res`` and ``a`` is supported.
However, ``res`` may not be aliased with a coefficient of `f`.
.. function:: void _fmpz_poly_evaluate_fmpz(fmpz_t res, const fmpz * f, slong len, const fmpz_t a)
Evaluates the polynomial ``(f, len)`` at the integer `a` and sets
``res`` to the result. Aliasing between ``res`` and `a` or any
of the coefficients of `f` is not supported.
.. function:: void fmpz_poly_evaluate_fmpz(fmpz_t res, const fmpz_poly_t f, const fmpz_t a)
Evaluates the polynomial `f` at the integer `a` and sets ``res``
to the result.
As expected, aliasing between ``res`` and `a` is supported. However,
``res`` may not be aliased with a coefficient of `f`.
.. function:: void _fmpz_poly_evaluate_divconquer_fmpq(fmpz_t rnum, fmpz_t rden, const fmpz * f, slong len, const fmpz_t anum, const fmpz_t aden)
Evaluates the polynomial ``(f, len)`` at the rational
``(anum, aden)`` using a divide and conquer approach, and sets
``(rnum, rden)`` to the result in lowest terms. Assumes that
the length of the polynomial is at least one.
Aliasing between ``(rnum, rden)`` and ``(anum, aden)`` or any of
the coefficients of `f` is not supported.
.. function:: void fmpz_poly_evaluate_divconquer_fmpq(fmpq_t res, const fmpz_poly_t f, const fmpq_t a)
Evaluates the polynomial `f` at the rational `a` using a divide
and conquer approach, and sets ``res`` to the result.
.. function:: void _fmpz_poly_evaluate_horner_fmpq(fmpz_t rnum, fmpz_t rden, const fmpz * f, slong len, const fmpz_t anum, const fmpz_t aden)
Evaluates the polynomial ``(f, len)`` at the rational
``(anum, aden)`` using Horner's rule, and sets ``(rnum, rden)`` to
the result in lowest terms.
Aliasing between ``(rnum, rden)`` and ``(anum, aden)`` or any of
the coefficients of `f` is not supported.
.. function:: void fmpz_poly_evaluate_horner_fmpq(fmpq_t res, const fmpz_poly_t f, const fmpq_t a)
Evaluates the polynomial `f` at the rational `a` using Horner's rule, and
sets ``res`` to the result.
.. function:: void _fmpz_poly_evaluate_fmpq(fmpz_t rnum, fmpz_t rden, const fmpz * f, slong len, const fmpz_t anum, const fmpz_t aden)
Evaluates the polynomial ``(f, len)`` at the rational
``(anum, aden)`` and sets ``(rnum, rden)`` to the result in lowest
terms.
Aliasing between ``(rnum, rden)`` and ``(anum, aden)`` or any of
the coefficients of `f` is not supported.
.. function:: void fmpz_poly_evaluate_fmpq(fmpq_t res, const fmpz_poly_t f, const fmpq_t a)
Evaluates the polynomial `f` at the rational `a`, and
sets ``res`` to the result.
.. function:: ulong _fmpz_poly_evaluate_mod(const fmpz * poly, slong len, ulong a, ulong n, ulong ninv)
Evaluates ``(poly, len)`` at the value `a` modulo `n` and
returns the result. The last argument ``ninv`` must be set
to the precomputed inverse of `n`, which can be obtained using
the function :func:`n_preinvert_limb`.
.. function:: ulong fmpz_poly_evaluate_mod(const fmpz_poly_t poly, ulong a, ulong n)
Evaluates ``poly`` at the value `a` modulo `n` and returns the result.
.. function:: void fmpz_poly_evaluate_fmpz_vec(fmpz * res, const fmpz_poly_t f, const fmpz * a, slong n)
Evaluates ``f`` at the `n` values given in the vector ``f``,
writing the results to ``res``.
.. function:: double _fmpz_poly_evaluate_horner_d(const fmpz * poly, slong n, double d)
Evaluate ``(poly, n)`` at the double `d`. No attempt is made to do this
efficiently or in a numerically stable way. It is currently only used in
FLINT for quick and dirty evaluations of polynomials with all coefficients
positive.
.. function:: double fmpz_poly_evaluate_horner_d(const fmpz_poly_t poly, double d)
Evaluate ``poly`` at the double `d`. No attempt is made to do this
efficiently or in a numerically stable way. It is currently only used in
FLINT for quick and dirty evaluations of polynomials with all coefficients
positive.
.. function:: double _fmpz_poly_evaluate_horner_d_2exp(slong * exp, const fmpz * poly, slong n, double d)
Evaluate ``(poly, n)`` at the double `d`. Return the result as a double
and an exponent ``exp`` combination. No attempt is made to do this
efficiently or in a numerically stable way. It is currently only used in
FLINT for quick and dirty evaluations of polynomials with all coefficients
positive.
.. function:: double fmpz_poly_evaluate_horner_d_2exp(slong * exp, const fmpz_poly_t poly, double d)
Evaluate ``poly`` at the double `d`. Return the result as a double
and an exponent ``exp`` combination. No attempt is made to do this
efficiently or in a numerically stable way. It is currently only used in
FLINT for quick and dirty evaluations of polynomials with all coefficients
positive.
.. function:: double _fmpz_poly_evaluate_horner_d_2exp2(slong * exp, const fmpz * poly, slong n, double d, slong dexp)
Evaluate ``poly`` at ``d*2^dexp``. Return the result as a double
and an exponent ``exp`` combination. No attempt is made to do this
efficiently or in a numerically stable way. It is currently only used in
FLINT for quick and dirty evaluations of polynomials with all coefficients
positive.
Newton basis
--------------------------------------------------------------------------------
.. function:: void _fmpz_poly_monomial_to_newton(fmpz * poly, const fmpz * roots, slong n)
Converts ``(poly, n)`` in-place from its coefficients given
in the standard monomial basis to the Newton basis
for the roots `r_0, r_1, \ldots, r_{n-2}`.
In other words, this determines output coefficients `c_i` such that
`c_0 + c_1(x-r_0) + c_2(x-r_0)(x-r_1) + \ldots + c_{n-1}(x-r_0)(x-r_1)\cdots(x-r_{n-2})`
is equal to the input polynomial.
Uses repeated polynomial division.
.. function:: void _fmpz_poly_newton_to_monomial(fmpz * poly, const fmpz * roots, slong n)
Converts ``(poly, n)`` in-place from its coefficients given
in the Newton basis for the roots `r_0, r_1, \ldots, r_{n-2}`
to the standard monomial basis. In other words, this evaluates
`c_0 + c_1(x-r_0) + c_2(x-r_0)(x-r_1) + \ldots + c_{n-1}(x-r_0)(x-r_1)\cdots(x-r_{n-2})`
where `c_i` are the input coefficients for ``poly``.
Uses Horner's rule.
Interpolation
--------------------------------------------------------------------------------
.. function:: int _fmpz_poly_interpolate_newton(fmpz * poly, const fmpz * xs, const fmpz * ys, slong n)
int fmpz_poly_interpolate_newton(fmpz_poly_t poly, const fmpz * xs, const fmpz * ys, slong n)
int _fmpz_poly_interpolate_multi_mod(fmpz * poly, const fmpz * xs, const fmpz * ys, slong n)
int fmpz_poly_interpolate_multi_mod(fmpz_poly_t poly, const fmpz * xs, const fmpz * ys, slong n)
int _fmpz_poly_interpolate(fmpz * poly, const fmpz * xs, const fmpz * ys, slong n)
int fmpz_poly_interpolate(fmpz_poly_t poly, const fmpz * xs, const fmpz * ys, slong n)
Sets ``poly`` to the unique interpolating polynomial of
degree at most `n - 1` satisfying `f(x_i) = y_i` for every pair `x_i, y_i` in
``xs`` and ``ys``, assuming that this polynomial has integer
coefficients and that the evaluation points `x_i` are distinct.
If the `x_i` are not distinct or if the interpolating polynomial does
not have integer coefficients, returns 0 indicating failure.
Otherwise returns 1 indicating success.
The *newton* algorithm first interpolates in the Newton basis
and then converts to the monomial basis.
The *multi_mod* algorithm interpolates modulo one or more prime numbers
and combines the results using CRT, using adaptive termination.
The default implementation chooses automatically between the *newton* and
*multi_mod* algorithms.
.. function:: void _fmpz_poly_interpolate_exact_newton(fmpz * poly, const fmpz * xs, const fmpz * ys, slong n)
void fmpz_poly_interpolate_exact_newton(fmpz_poly_t poly, const fmpz * xs, const fmpz * ys, slong n)
void _fmpz_poly_interpolate_exact(fmpz * poly, const fmpz * xs, const fmpz * ys, slong n)
void fmpz_poly_interpolate_exact(fmpz_poly_t poly, const fmpz * xs, const fmpz * ys, slong n)
Like :func:`fmpz_poly_interpolate` etc., but optimized by omitting
error handling. If the `x_i` are not distinct or if the interpolating
polynomial does not have integer coefficients, the behavior is undefined.
The default implementation chooses automatically between the *exact_newton* and
*multi_mod* algorithms.
.. function:: void fmpz_poly_interpolate_fmpz_vec(fmpz_poly_t poly, const fmpz * xs, const fmpz * ys, slong n)
Like :func:`fmpz_poly_interpolate`, but if the `x_i` values are not distinct
or if the interpolating polynomial does not have integer coefficients,
a ``FLINT_INEXACT`` exception is thrown.
Composition
--------------------------------------------------------------------------------
.. function:: void _fmpz_poly_compose_horner(fmpz * res, const fmpz * poly1, slong len1, const fmpz * poly2, slong len2)
Sets ``res`` to the composition of ``(poly1, len1)`` and
``(poly2, len2)``.
Assumes that ``res`` has space for ``(len1-1)*(len2-1) + 1``
coefficients. Assumes that ``poly1`` and ``poly2`` are non-zero
polynomials. Does not support aliasing between any of the inputs and
the output.
.. function:: void fmpz_poly_compose_horner(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2)
Sets ``res`` to the composition of ``poly1`` and ``poly2``.
To be more precise, denoting ``res``, ``poly1``, and ``poly2``
by `f`, `g`, and `h`, sets `f(t) = g(h(t))`.
This implementation uses Horner's method.
.. function:: void _fmpz_poly_compose_divconquer(fmpz * res, const fmpz * poly1, slong len1, const fmpz * poly2, slong len2)
Computes the composition of ``(poly1, len1)`` and ``(poly2, len2)``
using a divide and conquer approach and places the result into ``res``,
assuming ``res`` can hold the output of length
``(len1 - 1) * (len2 - 1) + 1``.
Assumes ``len1, len2 > 0``. Does not support aliasing between
``res`` and any of ``(poly1, len1)`` and ``(poly2, len2)``.
.. function:: void fmpz_poly_compose_divconquer(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2)
Sets ``res`` to the composition of ``poly1`` and ``poly2``.
To be precise about the order of composition, denoting ``res``,
``poly1``, and ``poly2`` by `f`, `g`, and `h`, respectively,
sets `f(t) = g(h(t))`.
.. function:: void _fmpz_poly_compose(fmpz * res, const fmpz * poly1, slong len1, const fmpz * poly2, slong len2)
Sets ``res`` to the composition of ``(poly1, len1)`` and
``(poly2, len2)``.
Assumes that ``res`` has space for ``(len1-1)*(len2-1) + 1``
coefficients. Assumes that ``poly1`` and ``poly2`` are non-zero
polynomials. Does not support aliasing between any of the inputs and
the output.
.. function:: void fmpz_poly_compose(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2)
Sets ``res`` to the composition of ``poly1`` and ``poly2``.
To be precise about the order of composition, denoting ``res``,
``poly1``, and ``poly2`` by `f`, `g`, and `h`, respectively,
sets `f(t) = g(h(t))`.
Inflation and deflation
--------------------------------------------------------------------------------
.. function:: void fmpz_poly_inflate(fmpz_poly_t result, const fmpz_poly_t input, ulong inflation)
Sets ``result`` to the inflated polynomial `p(x^n)` where
`p` is given by ``input`` and `n` is given by ``inflation``.
.. function:: void fmpz_poly_deflate(fmpz_poly_t result, const fmpz_poly_t input, ulong deflation)
Sets ``result`` to the deflated polynomial `p(x^{1/n})` where
`p` is given by ``input`` and `n` is given by ``deflation``.
Requires `n > 0`.
.. function:: ulong fmpz_poly_deflation(const fmpz_poly_t input)
Returns the largest integer by which ``input`` can be deflated.
As special cases, returns 0 if ``input`` is the zero polynomial
and 1 if ``input`` is a constant polynomial.
Taylor shift
--------------------------------------------------------------------------------
.. function:: void _fmpz_poly_taylor_shift_horner(fmpz * poly, const fmpz_t c, slong n)
Performs the Taylor shift composing ``poly`` by `x+c` in-place.
Uses an efficient version Horner's rule.
.. function:: void fmpz_poly_taylor_shift_horner(fmpz_poly_t g, const fmpz_poly_t f, const fmpz_t c)
Performs the Taylor shift composing ``f`` by `x+c`.
.. function:: void _fmpz_poly_taylor_shift_divconquer(fmpz * poly, const fmpz_t c, slong n)
Performs the Taylor shift composing ``poly`` by `x+c` in-place.
Uses the divide-and-conquer polynomial composition algorithm.
.. function:: void fmpz_poly_taylor_shift_divconquer(fmpz_poly_t g, const fmpz_poly_t f, const fmpz_t c)
Performs the Taylor shift composing ``f`` by `x+c`.
Uses the divide-and-conquer polynomial composition algorithm.
.. function:: void _fmpz_poly_taylor_shift_multi_mod(fmpz * poly, const fmpz_t c, slong n)
Performs the Taylor shift composing ``poly`` by `x+c` in-place.
Uses a multimodular algorithm, distributing the computation
across :func:`flint_get_num_threads` threads.
.. function:: void fmpz_poly_taylor_shift_multi_mod(fmpz_poly_t g, const fmpz_poly_t f, const fmpz_t c)
Performs the Taylor shift composing ``f`` by `x+c`.
Uses a multimodular algorithm, distributing the computation
across :func:`flint_get_num_threads` threads.
.. function:: void _fmpz_poly_taylor_shift(fmpz * poly, const fmpz_t c, slong n)
Performs the Taylor shift composing ``poly`` by `x+c` in-place.
.. function:: void fmpz_poly_taylor_shift(fmpz_poly_t g, const fmpz_poly_t f, const fmpz_t c)
Performs the Taylor shift composing ``f`` by `x+c`.
Power series composition
--------------------------------------------------------------------------------
.. function:: void _fmpz_poly_compose_series_horner(fmpz * res, const fmpz * poly1, slong len1, const fmpz * poly2, slong len2, slong n)
Sets ``res`` to the composition of ``poly1`` and ``poly2``
modulo `x^n`, where the constant term of ``poly2`` is required
to be zero.
Assumes that ``len1, len2, n > 0``, that ``len1, len2 <= n``,
and that ``(len1-1) * (len2-1) + 1 <= n``, and that ``res`` has
space for ``n`` coefficients. Does not support aliasing between any
of the inputs and the output.
This implementation uses the Horner scheme.
.. function:: void fmpz_poly_compose_series_horner(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2, slong n)
Sets ``res`` to the composition of ``poly1`` and ``poly2``
modulo `x^n`, where the constant term of ``poly2`` is required
to be zero.
This implementation uses the Horner scheme.
.. function:: void _fmpz_poly_compose_series_brent_kung(fmpz * res, const fmpz * poly1, slong len1, const fmpz * poly2, slong len2, slong n)
Sets ``res`` to the composition of ``poly1`` and ``poly2``
modulo `x^n`, where the constant term of ``poly2`` is required
to be zero.
Assumes that ``len1, len2, n > 0``, that ``len1, len2 <= n``,
and that ``(len1-1) * (len2-1) + 1 <= n``, and that ``res`` has
space for ``n`` coefficients. Does not support aliasing between any
of the inputs and the output.
This implementation uses Brent-Kung algorithm 2.1 [BrentKung1978]_.
.. function:: void fmpz_poly_compose_series_brent_kung(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2, slong n)
Sets ``res`` to the composition of ``poly1`` and ``poly2``
modulo `x^n`, where the constant term of ``poly2`` is required
to be zero.
This implementation uses Brent-Kung algorithm 2.1 [BrentKung1978]_.
.. function:: void _fmpz_poly_compose_series(fmpz * res, const fmpz * poly1, slong len1, const fmpz * poly2, slong len2, slong n)
Sets ``res`` to the composition of ``poly1`` and ``poly2``
modulo `x^n`, where the constant term of ``poly2`` is required
to be zero.
Assumes that ``len1, len2, n > 0``, that ``len1, len2 <= n``,
and that ``(len1-1) * (len2-1) + 1 <= n``, and that ``res`` has
space for ``n`` coefficients. Does not support aliasing between any
of the inputs and the output.
This implementation automatically switches between the Horner scheme
and Brent-Kung algorithm 2.1 depending on the size of the inputs.
.. function:: void fmpz_poly_compose_series(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2, slong n)
Sets ``res`` to the composition of ``poly1`` and ``poly2``
modulo `x^n`, where the constant term of ``poly2`` is required
to be zero.
This implementation automatically switches between the Horner scheme
and Brent-Kung algorithm 2.1 depending on the size of the inputs.
Power series reversion
--------------------------------------------------------------------------------
.. function:: void _fmpz_poly_revert_series(fmpz * Qinv, const fmpz * Q, slong Qlen, slong n)
void fmpz_poly_revert_series(fmpz_poly_t Qinv, const fmpz_poly_t Q, slong n)
Sets ``Qinv`` to the compositional inverse or reversion of ``Q``
as a power series, i.e. computes `Q^{-1}` such that
`Q(Q^{-1}(x)) = Q^{-1}(Q(x)) = x \bmod x^n`.
It is required that `Q_0 = 0` and `Q_1 = \pm 1`.
Wraps :func:`_gr_poly_revert_series` which chooses automatically
between various algorithms.
Square root
--------------------------------------------------------------------------------
.. function:: int _fmpz_poly_sqrtrem_classical(fmpz * res, fmpz * r, const fmpz * poly, slong len)
Returns 1 if ``(poly, len)`` can be written in the form `A^2 + R` where
deg(`R`) < deg(``poly``), otherwise returns `0`. If it can be so
written, ``(res, m - 1)`` is set to `A` and ``(res, m)`` is set to
`R`, where `m = \deg(\mathtt{poly})/2 + 1`.
For efficiency reasons, ``r`` must have room for ``len``
coefficients, and may alias ``poly``.
.. function:: int fmpz_poly_sqrtrem_classical(fmpz_poly_t b, fmpz_poly_t r, const fmpz_poly_t a)
If `a` can be written as `b^2 + r` with `\deg(r) < \deg(a)/2`, return
`1` and set `b` and `r` appropriately. Otherwise return `0`.
.. function:: int _fmpz_poly_sqrtrem_divconquer(fmpz * res, fmpz * r, const fmpz * poly, slong len, fmpz * temp)
Returns 1 if ``(poly, len)`` can be written in the form `A^2 + R` where
deg(`R`) < deg(``poly``), otherwise returns `0`. If it can be so
written, ``(res, m - 1)`` is set to `A` and ``(res, m)`` is set to
`R`, where `m = \deg(\mathtt{poly})/2 + 1`.
For efficiency reasons, ``r`` must have room for ``len``
coefficients, and may alias ``poly``. Temporary space of ``len``
coefficients is required.
.. function:: int fmpz_poly_sqrtrem_divconquer(fmpz_poly_t b, fmpz_poly_t r, const fmpz_poly_t a)
If `a` can be written as `b^2 + r` with `\deg(r) < \deg(a)/2`, return
`1` and set `b` and `r` appropriately. Otherwise return `0`.
.. function:: int _fmpz_poly_sqrt_classical(fmpz * res, const fmpz * poly, slong len, int exact)
If ``exact`` is `1` and ``(poly, len)`` is a perfect square, sets
``(res, len / 2 + 1)`` to the square root of ``poly`` with positive
leading coefficient and returns 1. Otherwise returns 0.
If ``exact`` is `0`, allows a remainder after the square root, which is
not computed.
This function first uses various tests to detect nonsquares quickly.
Then, it computes the square root iteratively from top to bottom,
requiring `O(n^2)` coefficient operations.
.. function:: int fmpz_poly_sqrt_classical(fmpz_poly_t b, const fmpz_poly_t a)
If ``a`` is a perfect square, sets ``b`` to the square root of
``a`` with positive leading coefficient and returns 1.
Otherwise returns 0.
.. function:: int _fmpz_poly_sqrt_KS(fmpz * res, const fmpz * poly, slong len)
Heuristic square root. If the return value is `-1`, the function failed,
otherwise it succeeded and the following applies.
If ``(poly, len)`` is a perfect square, sets
``(res, len / 2 + 1)`` to the square root of ``poly`` with positive
leading coefficient and returns 1. Otherwise returns 0.
This function first uses various tests to detect nonsquares quickly.
Then, it computes the square root iteratively from top to bottom.
.. function:: int fmpz_poly_sqrt_KS(fmpz_poly_t b, const fmpz_poly_t a)
Heuristic square root. If the return value is `-1`, the function failed,
otherwise it succeeded and the following applies.
If ``a`` is a perfect square, sets ``b`` to the square root of
``a`` with positive leading coefficient and returns 1.
Otherwise returns 0.
.. function:: int _fmpz_poly_sqrt_divconquer(fmpz * res, const fmpz * poly, slong len, int exact)
If ``exact`` is `1` and ``(poly, len)`` is a perfect square, sets
``(res, len / 2 + 1)`` to the square root of ``poly`` with positive
leading coefficient and returns 1. Otherwise returns 0.
If ``exact`` is `0`, allows a remainder after the square root, which is
not computed.
This function first uses various tests to detect nonsquares quickly.
Then, it computes the square root iteratively from top to bottom.
.. function:: int fmpz_poly_sqrt_divconquer(fmpz_poly_t b, const fmpz_poly_t a)
If ``a`` is a perfect square, sets ``b`` to the square root of
``a`` with positive leading coefficient and returns 1.
Otherwise returns 0.
.. function:: int _fmpz_poly_sqrt(fmpz * res, const fmpz * poly, slong len)
If ``(poly, len)`` is a perfect square, sets ``(res, len / 2 + 1)``
to the square root of ``poly`` with positive leading coefficient
and returns 1. Otherwise returns 0.
.. function:: int fmpz_poly_sqrt(fmpz_poly_t b, const fmpz_poly_t a)
If ``a`` is a perfect square, sets ``b`` to the square root of
``a`` with positive leading coefficient and returns 1.
Otherwise returns 0.
.. function:: int _fmpz_poly_sqrt_series(fmpz * res, const fmpz * poly, slong len, slong n)
Set ``(res, n)`` to the square root of the series ``(poly, n)``, if it
exists, and return `1`, otherwise, return `0`.
If the valuation of ``poly`` is not zero, ``res`` is zero padded
to make up for the fact that the square root may not be known to precision
`n`.
.. function:: int fmpz_poly_sqrt_series(fmpz_poly_t b, const fmpz_poly_t a, slong n)
Set ``b`` to the square root of the series ``a``, where the latter
is taken to be a series of precision `n`. If such a square root exists,
return `1`, otherwise, return `0`.
Note that if the valuation of ``a`` is not zero, ``b`` will
not have precision ``n``. It is given only to the precision to which
the square root can be computed.
Power sums
--------------------------------------------------------------------------------
.. function:: void _fmpz_poly_power_sums_naive(fmpz * res, const fmpz * poly, slong len, slong n)
Compute the (truncated) power sums series of the monic polynomial
``(poly,len)`` up to length `n` using Newton identities.
.. function:: void fmpz_poly_power_sums_naive(fmpz_poly_t res, const fmpz_poly_t poly, slong n)
Compute the (truncated) power sum series of the monic polynomial
``poly`` up to length `n` using Newton identities.
.. function:: void fmpz_poly_power_sums(fmpz_poly_t res, const fmpz_poly_t poly, slong n)
Compute the (truncated) power sums series of the monic polynomial ``poly``
up to length `n`. That is the power series whose coefficient of degree `i` is
the sum of the `i`-th power of all (complex) roots of the polynomial
``poly``.
.. function:: void _fmpz_poly_power_sums_to_poly(fmpz * res, const fmpz * poly, slong len)
Compute the (monic) polynomial given by its power sums series ``(poly,len)``.
.. function:: void fmpz_poly_power_sums_to_poly(fmpz_poly_t res, const fmpz_poly_t Q)
Compute the (monic) polynomial given its power sums series ``(Q)``.
Signature
--------------------------------------------------------------------------------
.. function:: void _fmpz_poly_signature(slong * r1, slong * r2, const fmpz * poly, slong len)
Computes the signature `(r_1, r_2)` of the polynomial
``(poly, len)``. Assumes that the polynomial is squarefree over `\mathbb{Q}`.
.. function:: void fmpz_poly_signature(slong * r1, slong * r2, const fmpz_poly_t poly)
Computes the signature `(r_1, r_2)` of the polynomial ``poly``,
which is assumed to be square-free over `\mathbb{Q}`. The values of `r_1` and
`2 r_2` are the number of real and complex roots of the polynomial,
respectively. For convenience, the zero polynomial is allowed, in which
case the output is `(0, 0)`.
If the polynomial is not square-free, the behaviour is undefined and an
exception may be raised.
This function uses the algorithm described
in Algorithm 4.1.11 of [Coh1996]_.
Hensel lifting
--------------------------------------------------------------------------------
.. function:: void fmpz_poly_hensel_build_tree(slong * link, fmpz_poly_t * v, fmpz_poly_t * w, const nmod_poly_factor_t fac)
Initialises and builds a Hensel tree consisting of two arrays `v`, `w`
of polynomials and an array of links, called ``link``.
The caller supplies a set of `r` local factors (in the factor structure
``fac``) of some polynomial `F` over `\mathbf{Z}`. They also supply
two arrays of initialised polynomials `v` and `w`, each of length
`2r - 2` and an array ``link``, also of length `2r - 2`.
We will have five arrays: a `v` of ``fmpz_poly_t``'s and a `V` of
``nmod_poly_t``'s and also a `w` and a `W` and ``link``. Here's
the idea: we sort each leaf and node of a factor tree by degree, in
fact choosing to multiply the two smallest factors, then the next two
smallest (factors or products) etc. until a tree is made. The tree
will be stored in the `v`'s. The first two elements of `v` will be the
smallest modular factors, the last two elements of `v` will multiply to
form `F` itself. Since `v` will be rearranging the original factors we
will need to be able to recover the original order. For this we use the
array ``link`` which has nonnegative even numbers and negative numbers.
It is an array of ``slong``\s which aligns with `V` and `v` if
``link`` has a negative number in spot `j` that means `V_j` is an
original modular factor which has been lifted, if ``link[j]`` is a
nonnegative even number then `V_j` stores a product of the two entries
at ``V[link[j]]`` and ``V[link[j]+1]``.
`W` and `w` play the role of the extended GCD, at `V_0`, `V_2`, `V_4`,
etc. we have a new product, `W_0`, `W_2`, `W_4`, etc. are the XGCD
cofactors of the `V`'s. For example,
`V_0 W_0 + V_1 W_1 \equiv 1 \pmod{p^{\ell}}` for some `\ell`. These
will be lifted along with the entries in `V`. It is not enough to just
lift each factor, we have to lift the entire tree and the tree of
XGCD cofactors.
.. function:: void fmpz_poly_hensel_lift(fmpz_poly_t G, fmpz_poly_t H, fmpz_poly_t A, fmpz_poly_t B, const fmpz_poly_t f, const fmpz_poly_t g, const fmpz_poly_t h, const fmpz_poly_t a, const fmpz_poly_t b, const fmpz_t p, const fmpz_t p1)
This is the main Hensel lifting routine, which performs a Hensel step
from polynomials mod `p` to polynomials mod `P = p p_1`. One starts with
polynomials `f`, `g`, `h` such that `f = gh \pmod p`. The polynomials
`a`, `b` satisfy `ag + bh = 1 \pmod p`.
The lifting formulae are
.. math::
G = \biggl( \bigl( \frac{f-gh}{p} \bigr) b \bmod g \biggr) p + g
H = \biggl( \bigl( \frac{f-gh}{p} \bigr) a \bmod h \biggr) p + h
B = \biggl( \bigl( \frac{1-aG-bH}{p} \bigr) b \bmod g \biggr) p + b
A = \biggl( \bigl( \frac{1-aG-bH}{p} \bigr) a \bmod h \biggr) p + a
Upon return we have `A G + B H = 1 \pmod P` and `f = G H \pmod P`,
where `G = g \pmod p` etc.
We require that `1 < p_1 \leq p` and that the input polynomials `f, g, h`
have degree at least `1` and that the input polynomials `a` and `b` are
non-zero.
The output arguments `G, H, A, B` may only be aliased with
the input arguments `g, h, a, b`, respectively.
.. function:: void fmpz_poly_hensel_lift_without_inverse(fmpz_poly_t Gout, fmpz_poly_t Hout, const fmpz_poly_t f, const fmpz_poly_t g, const fmpz_poly_t h, const fmpz_poly_t a, const fmpz_poly_t b, const fmpz_t p, const fmpz_t p1)
Given polynomials such that `f = gh \pmod p` and `ag + bh = 1 \pmod p`,
lifts only the factors `g` and `h` modulo `P = p p_1`.
See :func:`fmpz_poly_hensel_lift`.
.. function:: void fmpz_poly_hensel_lift_only_inverse(fmpz_poly_t Aout, fmpz_poly_t Bout, const fmpz_poly_t G, const fmpz_poly_t H, const fmpz_poly_t a, const fmpz_poly_t b, const fmpz_t p, const fmpz_t p1)
Given polynomials such that `f = gh \pmod p` and `ag + bh = 1 \pmod p`,
lifts only the cofactors `a` and `b` modulo `P = p p_1`.
See :func:`fmpz_poly_hensel_lift`.
.. function:: void fmpz_poly_hensel_lift_tree_recursive(slong * link, fmpz_poly_t * v, fmpz_poly_t * w, fmpz_poly_t f, slong j, slong inv, const fmpz_t p0, const fmpz_t p1)
Takes a current Hensel tree ``(link, v, w)`` and a pair `(j,j+1)`
of entries in the tree and lifts the tree from mod `p_0` to
mod `P = p_0 p_1`, where `1 < p_1 \leq p_0`.
Set ``inv`` to `-1` if restarting Hensel lifting, `0` if stopping
and `1` otherwise.
Here `f = g h` is the polynomial whose factors we are trying to lift.
We will have that ``v[j]`` is the product of ``v[link[j]]`` and
``v[link[j] + 1]`` as described above.
Does support aliasing of `f` with one of the polynomials in
the lists `v` and `w`. But the polynomials in these two lists
are not allowed to be aliases of each other.
.. function:: void fmpz_poly_hensel_lift_tree(slong * link, fmpz_poly_t * v, fmpz_poly_t * w, fmpz_poly_t f, slong r, const fmpz_t p, slong e0, slong e1, slong inv)
Computes `p_0 = p^{e_0}` and `p_1 = p^{e_1 - e_0}` for a small prime `p`
and `P = p^{e_1}`.
If we aim to lift to `p^b` then `f` is the polynomial whose factors we
wish to lift, made monic mod `p^b`. As usual, ``(link, v, w)`` is an
initialised tree.
This starts the recursion on lifting the *product tree* for lifting
from `p^{e_0}` to `p^{e_1}`. The value of ``inv`` corresponds to that
given for the function :func:`fmpz_poly_hensel_lift_tree_recursive`. We
set `r` to the number of local factors of `f`.
In terms of the notation, above `P = p^{e_1}`, `p_0 = p^{e_0}` and
`p_1 = p^{e_1-e_0}`.
Assumes that `f` is monic.
Assumes that `1 < p_1 \leq p_0`, that is, `0 < e_1 \leq e_0`.
.. function:: slong _fmpz_poly_hensel_start_lift(fmpz_poly_factor_t lifted_fac, slong * link, fmpz_poly_t * v, fmpz_poly_t * w, const fmpz_poly_t f, const nmod_poly_factor_t local_fac, slong N)
This function takes the local factors in ``local_fac``
and Hensel lifts them until they are known mod `p^N`, where
`N \geq 1`.
These lifted factors will be stored (in the same ordering) in
``lifted_fac``. It is assumed that ``link``, ``v``, and
``w`` are initialized arrays of ``fmpz_poly_t``'s with at least
`2*r - 2` entries and that `r \geq 2`. This is done outside of
this function so that you can keep them for restarting Hensel lifting
later. The product of local factors must be squarefree.
The return value is an exponent which must be passed to the function
:func:`_fmpz_poly_hensel_continue_lift` as ``prev_exp`` if the
Hensel lifting is to be resumed.
Currently, supports the case when `N = 1` for convenience,
although it is preferable in this case to simply iterate
over the local factors and convert them to polynomials over
`\mathbf{Z}`.
.. function:: slong _fmpz_poly_hensel_continue_lift(fmpz_poly_factor_t lifted_fac, slong * link, fmpz_poly_t * v, fmpz_poly_t * w, const fmpz_poly_t f, slong prev, slong curr, slong N, const fmpz_t p)
This function restarts a stopped Hensel lift.
It lifts from ``curr`` to `N`. It also requires ``prev``
(to lift the cofactors) given as the return value of the function
:func:`_fmpz_poly_hensel_start_lift` or the function
:func:`_fmpz_poly_hensel_continue_lift`. The current lifted factors
are supplied in ``lifted_fac`` and upon return are updated
there. As usual ``link``, ``v``, and ``w`` describe the
current Hensel tree, `r` is the number of local factors and `p` is
the small prime modulo whose power we are lifting to. It is required
that ``curr`` be at least `1` and that ``N > curr``.
Currently, supports the case when ``prev`` and ``curr``
are equal.
.. function:: void fmpz_poly_hensel_lift_once(fmpz_poly_factor_t lifted_fac, const fmpz_poly_t f, const nmod_poly_factor_t local_fac, slong N)
This function does a Hensel lift.
It lifts local factors stored in ``local_fac`` of `f` to `p^N`,
where `N \geq 2`. The lifted factors will be stored in ``lifted_fac``.
This lift cannot be restarted. This function is a convenience function
intended for end users. The product of local factors must be squarefree.
Input and output
--------------------------------------------------------------------------------
The functions in this section are not intended to be particularly fast.
They are intended mainly as a debugging aid.
For the string output functions there are two variants. The first uses a
simple string representation of polynomials which prints only the length
of the polynomial and the integer coefficients, whilst the latter variant,
appended with ``_pretty``, uses a more traditional string
representation of polynomials which prints a variable name as part of the
representation.
The first string representation is given by a sequence of integers, in
decimal notation, separated by white space. The first integer gives the
length of the polynomial; the remaining integers are the coefficients.
For example `5x^3 - x + 1` is represented by the string
``"4 1 -1 0 5"``, and the zero polynomial is represented by ``"0"``.
The coefficients may be signed and arbitrary precision.
The string representation of the functions appended by ``_pretty``
includes only the non-zero terms of the polynomial, starting with the
one of highest degree. Each term starts with a coefficient, prepended
with a sign, followed by the character ``*``, followed by a variable
name, which must be passed as a string parameter to the function,
followed by a caret ``^`` followed by a non-negative exponent.
If the sign of the leading coefficient is positive, it is omitted. Also
the exponents of the degree 1 and 0 terms are omitted, as is the
variable and the ``*`` character in the case of the degree 0
coefficient. If the coefficient is plus or minus one, the coefficient
is omitted, except for the sign.
Some examples of the ``_pretty`` representation are::
5*x^3+7*x-4
x^2+3
-x^4+2*x-1
x+1
5
.. function:: int _fmpz_poly_print(const fmpz * poly, slong len)
Prints the polynomial ``(poly, len)`` to ``stdout``.
In case of success, returns a positive value. In case of failure,
returns a non-positive value.
.. function:: int fmpz_poly_print(const fmpz_poly_t poly)
Prints the polynomial to ``stdout``.
In case of success, returns a positive value. In case of failure,
returns a non-positive value.
.. function:: int _fmpz_poly_print_pretty(const fmpz * poly, slong len, const char * x)
Prints the pretty representation of ``(poly, len)`` to ``stdout``,
using the string ``x`` to represent the indeterminate.
In case of success, returns a positive value. In case of failure,
returns a non-positive value.
.. function:: int fmpz_poly_print_pretty(const fmpz_poly_t poly, const char * x)
Prints the pretty representation of ``poly`` to ``stdout``,
using the string ``x`` to represent the indeterminate.
In case of success, returns a positive value. In case of failure,
returns a non-positive value.
.. function:: int _fmpz_poly_fprint(FILE * file, const fmpz * poly, slong len)
Prints the polynomial ``(poly, len)`` to the stream ``file``.
In case of success, returns a positive value. In case of failure,
returns a non-positive value.
.. function:: int fmpz_poly_fprint(FILE * file, const fmpz_poly_t poly)
Prints the polynomial to the stream ``file``.
In case of success, returns a positive value. In case of failure,
returns a non-positive value.
.. function:: int _fmpz_poly_fprint_pretty(FILE * file, const fmpz * poly, slong len, const char * x)
Prints the pretty representation of ``(poly, len)`` to the stream
``file``, using the string ``x`` to represent the indeterminate.
In case of success, returns a positive value. In case of failure,
returns a non-positive value.
.. function:: int fmpz_poly_fprint_pretty(FILE * file, const fmpz_poly_t poly, const char * x)
Prints the pretty representation of ``poly`` to the stream ``file``,
using the string ``x`` to represent the indeterminate.
In case of success, returns a positive value. In case of failure,
returns a non-positive value.
.. function:: int fmpz_poly_read(fmpz_poly_t poly)
Reads a polynomial from ``stdin``, storing the result in ``poly``.
In case of success, returns a positive number. In case of failure,
returns a non-positive value.
.. function:: int fmpz_poly_read_pretty(fmpz_poly_t poly, char **x)
Reads a polynomial in pretty format from ``stdin``.
For further details, see the documentation for the function
:func:`fmpz_poly_fread_pretty`.
.. function:: int fmpz_poly_fread(FILE * file, fmpz_poly_t poly)
Reads a polynomial from the stream ``file``, storing the result
in ``poly``.
In case of success, returns a positive number. In case of failure,
returns a non-positive value.
.. function:: int fmpz_poly_fread_pretty(FILE * file, fmpz_poly_t poly, char **x)
Reads a polynomial from the file ``file`` and sets ``poly``
to this polynomial. The string ``*x`` is set to the variable
name that is used in the input.
Returns a positive value, equal to the number of characters read from
the file, in case of success. Returns a non-positive value in case of
failure, which could either be a read error or the indicator of a
malformed input.
Modular reduction and reconstruction
--------------------------------------------------------------------------------
.. function:: void fmpz_poly_get_nmod_poly(nmod_poly_t Amod, const fmpz_poly_t A)
Sets the coefficients of ``Amod`` to the coefficients in ``A``,
reduced by the modulus of ``Amod``.
.. function:: void fmpz_poly_set_nmod_poly(fmpz_poly_t A, const nmod_poly_t Amod)
Sets the coefficients of ``A`` to the residues in ``Amod``,
normalised to the interval `-m/2 \le r < m/2` where `m` is the modulus.
.. function:: void fmpz_poly_set_nmod_poly_unsigned(fmpz_poly_t A, const nmod_poly_t Amod)
Sets the coefficients of ``A`` to the residues in ``Amod``,
normalised to the interval `0 \le r < m` where `m` is the modulus.
.. function:: void _fmpz_poly_CRT_ui_precomp(fmpz * res, const fmpz * poly1, slong len1, const fmpz_t m1, nn_srcptr poly2, slong len2, ulong m2, ulong m2inv, fmpz_t m1m2, ulong c, int sign)
Sets the coefficients in ``res`` to the CRT reconstruction modulo
`m_1m_2` of the residues ``(poly1, len1)`` and ``(poly2, len2)``
which are images modulo `m_1` and `m_2` respectively.
The caller must supply the precomputed product of the input moduli as
`m_1m_2`, the inverse of `m_1` modulo `m_2` as `c`, and
the precomputed inverse of `m_2` (in the form computed by
``n_preinvert_limb``) as ``m2inv``.
If ``sign`` = 0, residues `0 \le r < m_1 m_2` are computed, while
if ``sign`` = 1, residues `-m_1 m_2/2 \le r < m_1 m_2/2` are computed.
Coefficients of ``res`` are written up to the maximum of
``len1`` and ``len2``.
.. function:: void _fmpz_poly_CRT_ui(fmpz * res, const fmpz * poly1, slong len1, const fmpz_t m1, nn_srcptr poly2, slong len2, ulong m2, ulong m2inv, int sign)
This function is identical to ``_fmpz_poly_CRT_ui_precomp``,
apart from automatically computing `m_1m_2` and `c`. It also
aborts if `c` cannot be computed.
.. function:: void fmpz_poly_CRT_ui(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_t m, const nmod_poly_t poly2, int sign)
Given ``poly1`` with coefficients modulo ``m`` and ``poly2``
with modulus `n`, sets ``res`` to the CRT reconstruction modulo `mn`
with coefficients satisfying `-mn/2 \le c < mn/2` (if sign = 1)
or `0 \le c < mn` (if sign = 0).
Products
--------------------------------------------------------------------------------
.. function:: void _fmpz_poly_product_roots_fmpz_vec(fmpz * poly, const fmpz * xs, slong n)
Sets ``(poly, n + 1)`` to the monic polynomial which is the product
of `(x - x_0)(x - x_1) \cdots (x - x_{n-1})`, the roots `x_i` being
given by ``xs``.
Aliasing of the input and output is not allowed.
.. function:: void fmpz_poly_product_roots_fmpz_vec(fmpz_poly_t poly, const fmpz * xs, slong n)
Sets ``poly`` to the monic polynomial which is the product
of `(x - x_0)(x - x_1) \cdots (x - x_{n-1})`, the roots `x_i` being
given by ``xs``.
.. function:: void _fmpz_poly_product_roots_fmpq_vec(fmpz * poly, const fmpq * xs, slong n)
Sets ``(poly, n + 1)`` to the product of
`(q_0 x - p_0)(q_1 x - p_1) \cdots (q_{n-1} x - p_{n-1})`, the roots
`p_i/q_i` being given by ``xs``.
.. function:: void fmpz_poly_product_roots_fmpq_vec(fmpz_poly_t poly, const fmpq * xs, slong n)
Sets ``poly`` to the polynomial which is the product
of `(q_0 x - p_0)(q_1 x - p_1) \cdots (q_{n-1} x - p_{n-1})`, the roots
`p_i/q_i` being given by ``xs``.
Subproduct trees
--------------------------------------------------------------------------------
.. function:: fmpz ** _fmpz_poly_tree_alloc(slong len)
Allocates space for a subproduct tree of the given length, having
linear factors at the lowest level.
Entry `i` in the tree is a pointer to a single array of limbs,
capable of storing `\lfloor n / 2^i \rfloor` subproducts of
degree `2^i` adjacently, plus a trailing entry if `n / 2^i` is
not an integer.
For example, a tree of length 7 built from monic linear factors has
the following structure, where spaces have been inserted
for illustrative purposes::
X1 X1 X1 X1 X1 X1 X1
XX1 XX1 XX1 X1
XXXX1 XX1 X1
XXXXXXX1
.. function:: void _fmpz_poly_tree_free(fmpz ** tree, slong len)
Free the allocated space for the subproduct.
.. function:: void _fmpz_poly_tree_build_fmpq_vec(fmpz ** tree, const fmpq * roots, slong len)
Builds a subproduct tree in the preallocated space from
the ``len`` monic linear factors `(q_i x-p_i)` the roots `p_i/q_i`
being given by ``xs``. The top level product is not computed.
Roots
--------------------------------------------------------------------------------
.. function:: void _fmpz_poly_bound_roots(fmpz_t bound, const fmpz * poly, slong len)
void fmpz_poly_bound_roots(fmpz_t bound, const fmpz_poly_t poly)
Computes a nonnegative integer ``bound`` that bounds the absolute
value of all complex roots of ``poly``. Uses Fujiwara's bound
.. math::
2 \max \left(
\left|\frac{a_{n-1}}{a_n}\right|,
\left|\frac{a_{n-2}}{a_n}\right|^{\frac{1}{2}}, \dotsc,
\left|\frac{a_1}{a_n}\right|^{\frac{1}{n-1}},
\left|\frac{a_0}{2a_n}\right|^{\frac{1}{n}}
\right)
where the coefficients of the polynomial are `a_0, \ldots, a_n`.
.. function:: void _fmpz_poly_num_real_roots_sturm(slong * n_neg, slong * n_pos, const fmpz * pol, slong len)
Sets ``n_neg`` and ``n_pos`` to the number of negative and
positive roots of the polynomial ``(pol, len)`` using Sturm
sequence. The Sturm sequence is computed via subresultant
remainders obtained by repeated call to the function
``_fmpz_poly_pseudo_rem_cohen``.
The polynomial is assumed to be squarefree, of degree larger than 1
and with non-zero constant coefficient.
.. function:: slong fmpz_poly_num_real_roots_sturm(const fmpz_poly_t pol)
Returns the number of real roots of the squarefree polynomial ``pol``
using Sturm sequence.
The polynomial is assumed to be squarefree.
.. function:: slong _fmpz_poly_num_real_roots(const fmpz * pol, slong len)
Returns the number of real roots of the squarefree polynomial
``(pol, len)``.
The polynomial is assumed to be squarefree.
.. function:: slong fmpz_poly_num_real_roots(const fmpz_poly_t pol)
Returns the number of real roots of the squarefree polynomial ``pol``.
The polynomial is assumed to be squarefree.
Minimal polynomials
--------------------------------------------------------------------------------
.. function:: void _fmpz_poly_cyclotomic(fmpz * a, ulong n, nn_ptr factors, slong num_factors, ulong phi)
Sets ``a`` to the lower half of the cyclotomic polynomial `\Phi_n(x)`,
given `n \ge 3` which must be squarefree.
A precomputed array containing the prime factors of `n` must be provided,
as well as the value of the Euler totient function `\phi(n)` as ``phi``.
If `n` is even, 2 must be the first factor in the list.
The degree of `\Phi_n(x)` is exactly `\phi(n)`. Only the low
`(\phi(n) + 1) / 2` coefficients are written; the high coefficients
can be obtained afterwards by copying the low coefficients
in reverse order, since `\Phi_n(x)` is a palindrome for `n \ne 1`.
We use the sparse power series algorithm described as Algorithm 4
[ArnoldMonagan2011]_. The algorithm is based on the identity
.. math::
\Phi_n(x) = \prod_{d|n} (x^d - 1)^{\mu(n/d)}.
Treating the polynomial as a power series, the multiplications and
divisions can be done very cheaply using repeated additions and
subtractions. The complexity is `O(2^k \phi(n))` where `k` is the
number of prime factors in `n`.
To improve efficiency for small `n`, we treat the ``fmpz``
coefficients as machine integers when there is no risk of overflow.
The following bounds are given in Table 6 of [ArnoldMonagan2011]_:
For `n < 10163195`, the largest coefficient in any `\Phi_n(x)`
has 27 bits, so machine arithmetic is safe on 32 bits.
For `n < 169828113`, the largest coefficient in any `\Phi_n(x)`
has 60 bits, so machine arithmetic is safe on 64 bits.
Further, the coefficients are always `\pm 1` or 0 if there are
exactly two prime factors, so in this case machine arithmetic can be
used as well.
Finally, we handle two special cases: if there is exactly one prime
factor `n = p`, then `\Phi_n(x) = 1 + x + x^2 + \ldots + x^{n-1}`,
and if `n = 2m`, we use `\Phi_n(x) = \Phi_m(-x)` to fall back
to the case when `n` is odd.
.. function:: void fmpz_poly_cyclotomic(fmpz_poly_t poly, ulong n)
Sets ``poly`` to the `n`-th cyclotomic polynomial, defined as
`\Phi_n(x) = \prod_{\omega} (x-\omega)`
where `\omega` runs over all the `n`-th primitive roots of unity.
We factor `n` into `n = qs` where `q` is squarefree,
and compute `\Phi_q(x)`. Then `\Phi_n(x) = \Phi_q(x^s)`.
.. function:: ulong _fmpz_poly_is_cyclotomic(const fmpz * poly, slong len)
ulong fmpz_poly_is_cyclotomic(const fmpz_poly_t poly)
If ``poly`` is a cyclotomic polynomial, returns the index `n` of this
cyclotomic polynomial. If ``poly`` is not a cyclotomic polynomial,
returns 0.
.. function:: void _fmpz_poly_cos_minpoly(fmpz * coeffs, ulong n)
void fmpz_poly_cos_minpoly(fmpz_poly_t poly, ulong n)
Sets ``poly`` to the minimal polynomial of `2 \cos(2 \pi / n)`.
For suitable choice of `n`, this gives the minimal polynomial
of `2 \cos(a \pi)` or `2 \sin(a \pi)` for any rational `a`.
The cosine is multiplied by a factor two since this gives
a monic polynomial with integer coefficients. One can obtain
the minimal polynomial for `\cos(2 \pi / n)` by making
the substitution `x \to x / 2`.
For `n > 2`, the degree of the polynomial is `\varphi(n) / 2`.
For `n = 1, 2`, the degree is 1. For `n = 0`, we define
the output to be the constant polynomial 1.
See [WaktinsZeitlin1993]_.
.. function:: void _fmpz_poly_swinnerton_dyer(fmpz * coeffs, ulong n)
void fmpz_poly_swinnerton_dyer(fmpz_poly_t poly, ulong n)
Sets ``poly`` to the Swinnerton-Dyer polynomial `S_n`, defined as
the integer polynomial
`S_n = \prod (x \pm \sqrt{2} \pm \sqrt{3} \pm \sqrt{5} \pm \ldots \pm \sqrt{p_n})`
where `p_n` denotes the `n`-th prime number and all combinations
of signs are taken. This polynomial has degree `2^n` and is
irreducible over the integers (it is the minimal polynomial
of `\sqrt{2} + \ldots + \sqrt{p_n}`).
Orthogonal polynomials
--------------------------------------------------------------------------------
.. function:: void _fmpz_poly_chebyshev_t(fmpz * coeffs, ulong n)
void fmpz_poly_chebyshev_t(fmpz_poly_t poly, ulong n)
Sets ``poly`` to the Chebyshev polynomial of the first kind `T_n(x)`,
defined by `T_n(x) = \cos(n \cos^{-1}(x))`, for `n\ge0`. The coefficients are
calculated using a hypergeometric recurrence.
.. function:: void _fmpz_poly_chebyshev_u(fmpz * coeffs, ulong n)
void fmpz_poly_chebyshev_u(fmpz_poly_t poly, ulong n)
Sets ``poly`` to the Chebyshev polynomial of the first kind `U_n(x)`,
defined by `(n+1) U_n(x) = T'_{n+1}(x)`, for `n\ge0`.
The coefficients are calculated using a hypergeometric recurrence.
.. function:: void _fmpz_poly_legendre_pt(fmpz * coeffs, ulong n)
Sets ``coeffs`` to the coefficient array of the shifted Legendre
polynomial `\tilde{P_n}(x)`, defined by `\tilde{P_n}(x) = P_n(2x-1)`, for `n\ge0`.
The coefficients are calculated using a hypergeometric recurrence.
The length of the array will be ``n+1``.
See ``fmpq_poly`` for the Legendre polynomials.
.. function:: void fmpz_poly_legendre_pt(fmpz_poly_t poly, ulong n)
Sets ``poly`` to the shifted Legendre polynomial `\tilde{P_n}(x)`,
defined by `\tilde{P_n}(x) = P_n(2x-1)`, for `n\ge0`. The coefficients are
calculated using a hypergeometric recurrence. See ``fmpq_poly``
for the Legendre polynomials.
.. function:: void _fmpz_poly_hermite_h(fmpz * coeffs, ulong n)
Sets ``coeffs`` to the coefficient array of the Hermite
polynomial `H_n(x)`, defined by `H'_n(x) = 2nH_{n-1}(x)`, for `n\ge0`.
The coefficients are calculated using a hypergeometric recurrence.
The length of the array will be ``n+1``.
.. function:: void fmpz_poly_hermite_h(fmpz_poly_t poly, ulong n)
Sets ``poly`` to the Hermite polynomial `H_n(x)`,
defined by `H'_n(x) = 2nH_{n-1}(x)`, for `n\ge0`. The coefficients are
calculated using a hypergeometric recurrence.
.. function:: void _fmpz_poly_hermite_he(fmpz * coeffs, ulong n)
Sets ``coeffs`` to the coefficient array of the Hermite
polynomial `He_n(x)`, defined by
`He_n(x) = 2^{-\tfrac{n}{2}}H_n\left(\frac{x}{\sqrt2}\right)`, for `n\ge0`.
The coefficients are calculated using a hypergeometric recurrence.
The length of the array will be ``n+1``.
.. function:: void fmpz_poly_hermite_he(fmpz_poly_t poly, ulong n)
Sets ``poly`` to the Hermite polynomial `He_n(x)`,
defined by `He_n(x) = 2^{-\tfrac{n}{2}}H_n\left(\frac{x}{\sqrt2}\right)`, for `n\ge0`.
The coefficients are calculated using a hypergeometric recurrence.
Fibonacci polynomials
--------------------------------------------------------------------------------
.. function:: void _fmpz_poly_fibonacci(fmpz * coeffs, ulong n)
Sets ``coeffs`` to the coefficient array of the `n`-th Fibonacci polynomial.
The coefficients are calculated using a hypergeometric recurrence.
.. function:: void fmpz_poly_fibonacci(fmpz_poly_t poly, ulong n)
Sets ``poly`` to the `n`-th Fibonacci polynomial.
The coefficients are calculated using a hypergeometric recurrence.
Eulerian numbers and polynomials
--------------------------------------------------------------------------------
Eulerian numbers are the coefficients to the Eulerian polynomials
.. math::
A_n(x) = \sum_{m = 0}^{n} A(n, m) x^m,
where the Eulerian polynomials are defined by the exponential generating
function
.. math::
\frac{x - 1}{x - e^{(x - 1) t}}
= \sum_{n = 0}^{\infty} A_n(x) \frac{t^n}{n!}.
The Eulerian numbers can be expressed explicitly via the formula
.. math::
A(n, m) = \sum_{k = 0}^{m + 1} (-1)^k \binom{n + 1}{k} (m + 1 - k)^n.
Note: Not to be confused with Euler numbers and polynomials.
.. function:: void fmpz_poly_eulerian_polynomial(fmpz_poly_t res, ulong n)
Sets ``res`` to the Eulerian polynomial `A_n(x)`, where we define
`A_0(x) = 1`. The polynomial is calculated via a recursive relation.
Modular forms and q-series
--------------------------------------------------------------------------------
.. function:: void _fmpz_poly_eta_qexp(fmpz * f, slong r, slong len)
void fmpz_poly_eta_qexp(fmpz_poly_t f, slong r, slong n)
Sets `f` to the `q`-expansion to length `n` of the
Dedekind eta function (without the leading factor
`q^{1/24}`) raised to the power `r`, i.e.
`(q^{-1/24} \eta(q))^r = \prod_{k=1}^{\infty} (1 - q^k)^r`.
In particular, `r = -1` gives the generating function
of the partition function `p(k)`, and `r = 24` gives,
after multiplication by `q`,
the modular discriminant `\Delta(q)` which generates
the Ramanujan tau function `\tau(k)`.
This function uses sparse formulas for `r = 1, 2, 3, 4, 6`
and otherwise reduces to one of those cases using power series arithmetic.
.. function:: void _fmpz_poly_theta_qexp(fmpz * f, slong r, slong len)
void fmpz_poly_theta_qexp(fmpz_poly_t f, slong r, slong n)
Sets `f` to the `q`-expansion to length `n` of the
Jacobi theta function raised to the power `r`, i.e. `\vartheta(q)^r`
where `\vartheta(q) = 1 + 2 \sum_{k=1}^{\infty} q^{k^2}`.
This function uses sparse formulas for `r = 1, 2`
and otherwise reduces to those cases using power series arithmetic.
CLD bounds
--------------------------------------------------------------------------------
.. function:: void fmpz_poly_CLD_bound(fmpz_t res, const fmpz_poly_t f, slong n)
Compute a bound on the `n` coefficient of `fg'/g` where `g` is any
factor of `f`.
|