File: formulas.rst

package info (click to toggle)
flint 3.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 68,996 kB
  • sloc: ansic: 915,350; asm: 14,605; python: 5,340; sh: 4,512; lisp: 2,621; makefile: 787; cpp: 341
file content (201 lines) | stat: -rw-r--r-- 5,543 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
.. _general_formulas:

General formulas and bounds
===============================================================================

This section collects some results from real and complex
analysis that are useful when deriving error bounds.
Beware of typos.

Error propagation
-------------------------------------------------------------------------------

We want to bound the error when `f(x+a)` is approximated by `f(x)`.
Specifically, the goal is to bound `f(x + a) - f(x)` in terms of `r`
for the set of values `a` with `|a| \le r`.
Most bounds will be monotone increasing with `|a|` (assuming that `x` is
fixed), so for brevity we simply express the bounds in terms of `|a|`.

**Theorem (generic first-order bound)**:

.. math::

    |f(x+a) - f(x)| \le \min(2 C_0, C_1 |a|)

where

.. math::

    C_0 = \sup_{|t| \le |a|} |f(x+t)|, \quad C_1 = \sup_{|t| \le |a|} |f'(x+t)|.

The statement is valid with either `a, t \in \mathbb{R}` or `a, t \in \mathbb{C}`.

**Theorem (product)**: For `x, y \in \mathbb{C}` and `a, b \in \mathbb{C}`,

.. math::

    \left| (x+a)(y+b) - x y \right| \le |xb| + |ya| + |ab|.

**Theorem (quotient)**: For `x, y \in \mathbb{C}` and `a, b \in \mathbb{C}`
with `|b| < |y|`,

.. math::

        \left| \frac{x}{y} - \frac{x+a}{y+b} \right|
        \le \frac{|xb|+|ya|}{|y| (|y|-|b|)}.

**Theorem (square root)**: For `x, a \in \mathbb{R}` with `0 \le |a| \le x`,

.. math::

    \left| \sqrt{x+a} - \sqrt{x} \right|
        \le \sqrt{x} \left(1 - \sqrt{1-\frac{|a|}{x}}\right)
        \le \frac{\sqrt{x}}{2} \left(\frac{|a|}{x} + \frac{|a|^2}{x^2}\right)

where the first inequality is an equality if `a \le 0`.
(When `x = a = 0`, the limiting value is 0.)

**Theorem (reciprocal square root)**: For `x, a \in \mathbb{R}` with `0 \le |a| < x`,

.. math::

    \left| \frac{1}{\sqrt{x+a}} - \frac{1}{\sqrt{x}} \right|
        \le \frac{|a|}{2 (x-|a|)^{3/2}}.

**Theorem (k-th root)**: For `k > 1` and `x, a \in \mathbb{R}` with `0 \le |a| \le x`,

.. math::

    \left| (x+a)^{1/k} - x^{1/k} \right|
        \le x^{1/k} \min\left(1, \frac{1}{k} \, \log\left(1+\frac{|a|}{x-|a|}\right)\right).

*Proof*: The error is largest when `a = -r` is negative, and

.. math::

    x^{1/k} - (x-r)^{1/k} &= x^{1/k} [1 - (1-r/x)^{1/k}]

    &= x^{1/k} [1 - \exp(\log(1-r/x)/k)] \le x^{1/k} \min(1, -\log(1-r/x)/k)

    &= x^{1/k} \min(1, \log(1+r/(x-r))/k).

**Theorem (sine, cosine)**: For `x, a \in \mathbb{R}`, `|\sin(x+a) - \sin(x)| \le \min(2, |a|)`.

**Theorem (logarithm)**: For `x, a \in \mathbb{R}` with `0 \le |a| < x`,

.. math::

    |\log(x+a) - \log(x)| \le \log\left(1 + \frac{|a|}{x-|a|}\right),

with equality if `a \le 0`.

**Theorem (exponential)**: For `x, a \in \mathbb{R}`, 
`|e^{x+a} - e^x| = e^x (e^a-1) \le e^x (e^{|a|}-1)`, with equality if `a \ge 0`.

**Theorem (inverse tangent)**: For `x, a \in \mathbb{R}`,

.. math::

    |\operatorname{atan}(x+a) - \operatorname{atan}(x)| \le \min(\pi, C_1 |a|).

where

.. math::

    C_1 = \sup_{|t| \le |a|} \frac{1}{1 + (x+t)^2}.

If `|a| < |x|`, then `C_1 = (1 + (|x| - |a|)^2)^{-1}` gives a monotone bound.

An exact bound: if `|a| < |x|` or `|x(x+a)| < 1`, then

.. math::

    |\operatorname{atan}(x+a) - \operatorname{atan}(x)| =
        \operatorname{atan}\left(\frac{|a|}{1 + x(x+a)}\right).

In the last formula, a case distinction has to be made depending on the
signs of *x* and *a*.

Sums and series
-------------------------------------------------------------------------------

**Theorem (geometric bound)**: If `|c_k| \le C` and `|z| \le D < 1`, then

.. math::

    \left| \sum_{k=N}^{\infty} c_k z^k \right| \le \frac{C D^N}{1 - D}.

**Theorem (integral bound)**: If `f(x)` is nonnegative and
monotone decreasing, then

.. math::

    \int_N^{\infty} f(x) \le \sum_{k=N}^{\infty} f(k) \le f(N) + \int_N^{\infty} f(x) dx.

Complex analytic functions
-------------------------------------------------------------------------------

**Theorem (Cauchy's integral formula)**:
If `f(z) = \sum_{k=0}^{\infty} c_k z^k` is analytic (on an open
subset of `\mathbb{C}` containing the disk `D = \{ z : |z| \le R \}`
in its interior, where `R > 0`), then

.. math::

    c_k = \frac{1}{2\pi i} \int_{|z|=R} \frac{f(z)}{z^{k+1}}\, dz.

**Corollary (derivative bound)**:

.. math::

    |c_k| \le \frac{C}{R^k}, \quad C = \max_{|z|=R} |f(z)|.

**Corollary (Taylor series tail)**:
If `0 \le r < R` and `|z| \le r`, then

.. math::

    \left|\sum_{k=N}^{\infty} c_k z^k\right| \le
        \frac{C D^N}{1-D}, \quad D = \left|\frac{r}{R}\right|.

Euler-Maclaurin formula
-------------------------------------------------------------------------------

**Theorem (Euler-Maclaurin)**:
If `f(t)` is `2M`-times differentiable, then

.. math::

    \sum_{k=L}^U f(k) = S + I + T + R

.. math::

    S = \sum_{k=L}^{N-1} f(k), \quad I = \int_N^U f(t) dt,

.. math::

    T = \frac{1}{2} \left( f(N) + f(U) \right) + 
        \sum_{k=1}^M \frac{B_{2k}}{(2k)!}
        \left(f^{(2k-1)}(U) - f^{(2k-1)}(N)\right),

.. math::

    R = -\int_N^U \frac{B_{2M}(t - \lfloor t \rfloor)}{(2M)!} f^{(2M)}(t) dt.

**Lemma (Bernoulli polynomials)**: `|B_n(t - \lfloor t \rfloor)| \le 4 n! / (2 \pi)^n`.

**Theorem (remainder bound)**:

.. math::

    |R| \le \frac{4}{(2\pi)^{2M}} \int_N^U \left| f^{(2M)}(t) \right| dt.

**Theorem (parameter derivatives)**:
If `f(t) = f(t,x) = \sum_{k=0}^{\infty} a_k(t) x^k` and
`R = R(x) = \sum_{k=0}^{\infty} c_k x^k`
are analytic functions of `x`, then

.. math::

    |c_k| \le \frac{4}{(2\pi)^{2M}} \int_N^U |a_k^{(2M)}(t)| dt.