1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
|
.. _fq-nmod:
**fq_nmod.h** -- finite fields (word-size characteristic)
===============================================================================
We represent an element of the finite field `\mathbf{F}_{p^n} \cong
\mathbf{F}_p[X]/(f(X))`, where `f(X) \in \mathbf{F}_p[X]` is a monic,
irreducible polynomial of degree `n`, as a polynomial in
`\mathbf{F}_p[X]` of degree less than `n`. The underlying data
structure is an :type:`nmod_poly_t`.
The default choice for `f(X)` is the Conway polynomial for the pair `(p,n)`,
enabled by Frank Lübeck's data base of Conway polynomials using the
:func:`_nmod_poly_conway` function. If a Conway polynomial is not available,
then a random irreducible polynomial will be chosen for `f(X)`. Additionally,
the user is able to supply their own `f(X)`.
Types, macros and constants
-------------------------------------------------------------------------------
.. type:: fq_nmod_ctx_struct
.. type:: fq_nmod_ctx_t
.. type:: fq_nmod_struct
.. type:: fq_nmod_t
Context Management
--------------------------------------------------------------------------------
.. function:: void fq_nmod_ctx_init_ui(fq_nmod_ctx_t ctx, ulong p, slong d, const char * var)
Initialises the context for prime `p` and extension degree `d`,
with name ``var`` for the generator. By default, it will try
use a Conway polynomial; if one is not available, a minimal weight
irreducible polynomial will be used.
Assumes that `p` is a prime.
Assumes that the string ``var`` is a null-terminated string
of length at least one.
.. function:: void fq_nmod_ctx_init_minimal_weight_ui(fq_nmod_ctx_t ctx, ulong p, slong d, const char * var)
Initialises the context for prime `p` and extension degree `d`,
with name ``var`` for the generator, choosing a modulus polynomial
with minimal number of nonzero terms for efficient arithmetic.
Assumes that `p` is a prime.
Assumes that the string ``var`` is a null-terminated string
of length at least one.
.. function:: int _fq_nmod_ctx_init_conway_ui(fq_nmod_ctx_t ctx, ulong p, slong d, const char * var)
Attempts to initialise the context for prime `p` and extension
degree `d`, with name ``var`` for the generator using a Conway
polynomial for the modulus.
Returns `1` if the Conway polynomial is in the database for the
given size and the initialization is successful; otherwise,
returns `0`.
Assumes that `p` is a prime.
Assumes that the string ``var`` is a null-terminated string
of length at least one.
.. function:: void fq_nmod_ctx_init_conway_ui(fq_nmod_ctx_t ctx, ulong p, slong d, const char * var)
Initialises the context for prime `p` and extension degree `d`,
with name ``var`` for the generator using a Conway polynomial
for the modulus.
Assumes that `p` is a prime.
Assumes that the string ``var`` is a null-terminated string
of length at least one.
.. function:: void fq_nmod_ctx_init_modulus(fq_nmod_ctx_t ctx, const nmod_poly_t modulus, const char * var)
Initialises the context for given ``modulus`` with name
``var`` for the generator.
Assumes that ``modulus`` is an irreducible polynomial over
`\mathbf{F}_{p}`.
Assumes that the string ``var`` is a null-terminated string
of length at least one.
.. function:: void fq_nmod_ctx_init_randtest(fq_nmod_ctx_t ctx, flint_rand_t state, int type)
Initialises ``ctx`` to a random finite field, where the prime and degree is
set according to ``type``. To see what prime and degrees may be output, see
``type`` in :func:`_nmod_poly_conway_rand`.
.. function:: void fq_nmod_ctx_init_randtest_reducible(fq_nmod_ctx_t ctx, flint_rand_t state, int type)
Initializes ``ctx`` to a random extension of a word-sized prime field, where
the prime and degree is set according to ``type``. If ``type`` is `0` the
prime and degree may be large, else if ``type`` is `1` the degree is small
but the prime may be large, else if ``type`` is `2` the prime is small but
the degree may be large, else if ``type`` is `3` both prime and degree are
small.
The modulus may or may not be irreducible.
.. function:: void fq_nmod_ctx_clear(fq_nmod_ctx_t ctx)
Clears all memory that has been allocated as part of the context.
.. function:: const nmod_poly_struct* fq_nmod_ctx_modulus(const fq_nmod_ctx_t ctx)
Returns a pointer to the modulus in the context.
.. function:: slong fq_nmod_ctx_degree(const fq_nmod_ctx_t ctx)
Returns the degree of the field extension
`[\mathbf{F}_{q} : \mathbf{F}_{p}]`, which
is equal to `\log_{p} q`.
.. function:: ulong fq_nmod_ctx_prime(const fq_nmod_ctx_t ctx)
Returns the prime `p` of the context.
.. function:: void fq_nmod_ctx_order(fmpz_t f, const fq_nmod_ctx_t ctx)
Sets `f` to be the size of the finite field.
.. function:: int fq_nmod_ctx_fprint(FILE * file, const fq_nmod_ctx_t ctx)
Prints the context information to ``file``. Returns 1 for a
success and a negative number for an error.
.. function:: void fq_nmod_ctx_print(const fq_nmod_ctx_t ctx)
Prints the context information to ``stdout``.
Memory management
--------------------------------------------------------------------------------
.. function:: void fq_nmod_init(fq_nmod_t rop, const fq_nmod_ctx_t ctx)
Initialises the element ``rop``, setting its value to `0`. Currently, the behaviour is identical to ``fq_nmod_init2``, as it also ensures ``rop`` has enough space for it to be an element of ``ctx``, this may change in the future.
.. function:: void fq_nmod_init2(fq_nmod_t rop, const fq_nmod_ctx_t ctx)
Initialises ``rop`` with at least enough space for it to be an element
of ``ctx`` and sets it to `0`.
.. function:: void fq_nmod_clear(fq_nmod_t rop, const fq_nmod_ctx_t ctx)
Clears the element ``rop``.
.. function:: void _fq_nmod_sparse_reduce(ulong * R, slong lenR, const fq_nmod_ctx_t ctx)
Reduces ``(R, lenR)`` modulo the polynomial `f` given by the
modulus of ``ctx``.
.. function:: void _fq_nmod_dense_reduce(ulong * R, slong lenR, const fq_nmod_ctx_t ctx)
Reduces ``(R, lenR)`` modulo the polynomial `f` given by the
modulus of ``ctx`` using Newton division.
.. function:: void _fq_nmod_reduce(ulong * r, slong lenR, const fq_nmod_ctx_t ctx)
Reduces ``(R, lenR)`` modulo the polynomial `f` given by the
modulus of ``ctx``. Does either sparse or dense reduction
based on ``ctx->sparse_modulus``.
.. function:: void fq_nmod_reduce(fq_nmod_t rop, const fq_nmod_ctx_t ctx)
Reduces the polynomial ``rop`` as an element of
`\mathbf{F}_p[X] / (f(X))`.
Basic arithmetic
--------------------------------------------------------------------------------
.. function:: void fq_nmod_add(fq_nmod_t rop, const fq_nmod_t op1, const fq_nmod_t op2, const fq_nmod_ctx_t ctx)
Sets ``rop`` to the sum of ``op1`` and ``op2``.
.. function:: void fq_nmod_sub(fq_nmod_t rop, const fq_nmod_t op1, const fq_nmod_t op2, const fq_nmod_ctx_t ctx)
Sets ``rop`` to the difference of ``op1`` and ``op2``.
.. function:: void fq_nmod_sub_one(fq_nmod_t rop, const fq_nmod_t op1, const fq_nmod_ctx_t ctx)
Sets ``rop`` to the difference of ``op1`` and `1`.
.. function:: void fq_nmod_neg(fq_nmod_t rop, const fq_nmod_t op, const fq_nmod_ctx_t ctx)
Sets ``rop`` to the negative of ``op``.
.. function:: void fq_nmod_mul(fq_nmod_t rop, const fq_nmod_t op1, const fq_nmod_t op2, const fq_nmod_ctx_t ctx)
Sets ``rop`` to the product of ``op1`` and ``op2``,
reducing the output in the given context.
.. function:: void fq_nmod_mul_fmpz(fq_nmod_t rop, const fq_nmod_t op, const fmpz_t x, const fq_nmod_ctx_t ctx)
Sets ``rop`` to the product of ``op`` and `x`,
reducing the output in the given context.
.. function:: void fq_nmod_mul_si(fq_nmod_t rop, const fq_nmod_t op, slong x, const fq_nmod_ctx_t ctx)
Sets ``rop`` to the product of ``op`` and `x`,
reducing the output in the given context.
.. function:: void fq_nmod_mul_ui(fq_nmod_t rop, const fq_nmod_t op, ulong x, const fq_nmod_ctx_t ctx)
Sets ``rop`` to the product of ``op`` and `x`,
reducing the output in the given context.
.. function:: void fq_nmod_sqr(fq_nmod_t rop, const fq_nmod_t op, const fq_nmod_ctx_t ctx)
Sets ``rop`` to the square of ``op``,
reducing the output in the given context.
.. function:: void _fq_nmod_inv(nn_ptr * rop, nn_srcptr * op, slong len, const fq_nmod_ctx_t ctx)
Sets ``(rop, d)`` to the inverse of the non-zero element
``(op, len)``.
.. function:: void fq_nmod_inv(fq_nmod_t rop, const fq_nmod_t op, const fq_nmod_ctx_t ctx)
Sets ``rop`` to the inverse of the non-zero element ``op``.
.. function:: void fq_nmod_gcdinv(fq_nmod_t f, fq_nmod_t inv, const fq_nmod_t op, const fq_nmod_ctx_t ctx)
Sets ``inv`` to be the inverse of ``op`` modulo the modulus
of ``ctx``. If ``op`` is not invertible, then ``f`` is
set to a factor of the modulus; otherwise, it is set to one.
.. function:: void _fq_nmod_pow(ulong * rop, const ulong * op, slong len, const fmpz_t e, const fq_nmod_ctx_t ctx)
Sets ``(rop, 2*d-1)`` to ``(op,len)`` raised to the power `e`,
reduced modulo `f(X)`, the modulus of ``ctx``.
Assumes that `e \geq 0` and that ``len`` is positive and at most `d`.
Although we require that ``rop`` provides space for
`2d - 1` coefficients, the output will be reduced modulo
`f(X)`, which is a polynomial of degree `d`.
Does not support aliasing.
.. function:: void fq_nmod_pow(fq_nmod_t rop, const fq_nmod_t op, const fmpz_t e, const fq_nmod_ctx_t ctx)
Sets ``rop`` to ``op`` raised to the power `e`.
Currently assumes that `e \geq 0`.
Note that for any input ``op``, ``rop`` is set to `1`
whenever `e = 0`.
.. function:: void fq_nmod_pow_ui(fq_nmod_t rop, const fq_nmod_t op, const ulong e, const fq_nmod_ctx_t ctx)
Sets ``rop`` to ``op`` raised to the power `e`.
Currently assumes that `e \geq 0`.
Note that for any input ``op``, ``rop`` is set to `1`
whenever `e = 0`.
Roots
--------------------------------------------------------------------------------
.. function:: int fq_nmod_sqrt(fq_nmod_t rop, const fq_nmod_t op1, const fq_nmod_ctx_t ctx)
Sets ``rop`` to the square root of ``op1`` if it is a square, and return
`1`, otherwise return `0`.
.. function:: void fq_nmod_pth_root(fq_nmod_t rop, const fq_nmod_t op1, const fq_nmod_ctx_t ctx)
Sets ``rop`` to a `p^{\textrm{th}}` root of ``op1``. Currently,
this computes the root by raising ``op1`` to `p^{d-1}` where
`d` is the degree of the extension.
.. function:: int fq_nmod_is_square(const fq_nmod_t op, const fq_nmod_ctx_t ctx)
Return ``1`` if ``op`` is a square.
Output
--------------------------------------------------------------------------------
.. function:: int fq_nmod_fprint_pretty(FILE * file, const fq_nmod_t op, const fq_nmod_ctx_t ctx)
Prints a pretty representation of ``op`` to ``file``.
In case of success, returns a positive value. In case of failure,
returns a non-positive value.
.. function:: void fq_nmod_print_pretty(const fq_nmod_t op, const fq_nmod_ctx_t ctx)
Prints a pretty representation of ``op`` to ``stdout``.
In case of success, returns a positive value. In case of failure,
returns a non-positive value.
.. function:: int fq_nmod_fprint(FILE * file, const fq_nmod_t op, const fq_nmod_ctx_t ctx)
Prints a representation of ``op`` to ``file``.
For further details on the representation used, see
``nmod_poly_fprint()``.
.. function:: void fq_nmod_print(const fq_nmod_t op, const fq_nmod_ctx_t ctx)
Prints a representation of ``op`` to ``stdout``.
For further details on the representation used, see
``nmod_poly_print()``.
.. function:: char * fq_nmod_get_str(const fq_nmod_t op, const fq_nmod_ctx_t ctx)
Returns the plain FLINT string representation of the element
``op``.
.. function:: char * fq_nmod_get_str_pretty(const fq_nmod_t op, const fq_nmod_ctx_t ctx)
Returns a pretty representation of the element ``op`` using the
null-terminated string ``x`` as the variable name.
Randomisation
--------------------------------------------------------------------------------
.. function:: void fq_nmod_randtest(fq_nmod_t rop, flint_rand_t state, const fq_nmod_ctx_t ctx)
Generates a random element of `\mathbf{F}_q`.
.. function:: void fq_nmod_randtest_not_zero(fq_nmod_t rop, flint_rand_t state, const fq_nmod_ctx_t ctx)
Generates a random non-zero element of `\mathbf{F}_q`.
.. function:: void fq_nmod_randtest_dense(fq_nmod_t rop, flint_rand_t state, const fq_nmod_ctx_t ctx)
Generates a random element of `\mathbf{F}_q` which has an
underlying polynomial with dense coefficients.
.. function:: void fq_nmod_rand(fq_nmod_t rop, flint_rand_t state, const fq_nmod_ctx_t ctx)
Generates a high quality random element of `\mathbf{F}_q`.
.. function:: void fq_nmod_rand_not_zero(fq_nmod_t rop, flint_rand_t state, const fq_nmod_ctx_t ctx)
Generates a high quality non-zero random element of `\mathbf{F}_q`.
Assignments and conversions
--------------------------------------------------------------------------------
.. function:: void fq_nmod_set(fq_nmod_t rop, const fq_nmod_t op, const fq_nmod_ctx_t ctx)
Sets ``rop`` to ``op``.
.. function:: void fq_nmod_set_si(fq_nmod_t rop, const slong x, const fq_nmod_ctx_t ctx)
Sets ``rop`` to ``x``, considered as an element of
`\mathbf{F}_p`.
.. function:: void fq_nmod_set_ui(fq_nmod_t rop, const ulong x, const fq_nmod_ctx_t ctx)
Sets ``rop`` to ``x``, considered as an element of
`\mathbf{F}_p`.
.. function:: void fq_nmod_set_fmpz(fq_nmod_t rop, const fmpz_t x, const fq_nmod_ctx_t ctx)
Sets ``rop`` to ``x``, considered as an element of
`\mathbf{F}_p`.
.. function:: void fq_nmod_swap(fq_nmod_t op1, fq_nmod_t op2, const fq_nmod_ctx_t ctx)
Swaps the two elements ``op1`` and ``op2``.
.. function:: void fq_nmod_zero(fq_nmod_t rop, const fq_nmod_ctx_t ctx)
Sets ``rop`` to zero.
.. function:: void fq_nmod_one(fq_nmod_t rop, const fq_nmod_ctx_t ctx)
Sets ``rop`` to one, reduced in the given context.
.. function:: void fq_nmod_gen(fq_nmod_t rop, const fq_nmod_ctx_t ctx)
Sets ``rop`` to a generator for the finite field.
There is no guarantee this is a multiplicative generator of
the finite field.
.. function:: int fq_nmod_get_fmpz(fmpz_t rop, const fq_nmod_t op, const fq_nmod_ctx_t ctx)
If ``op`` has a lift to the integers, return `1` and set ``rop`` to the lift in `[0,p)`.
Otherwise, return `0` and leave `rop` undefined.
.. function:: void fq_nmod_get_nmod_poly(nmod_poly_t a, const fq_nmod_t b, const fq_nmod_ctx_t ctx)
Set ``a`` to a representative of ``b`` in ``ctx``.
The representatives are taken in `(\mathbb{Z}/p\mathbb{Z})[x]/h(x)` where `h(x)` is the defining polynomial in ``ctx``.
.. function:: void fq_nmod_set_nmod_poly(fq_nmod_t a, const nmod_poly_t b, const fq_nmod_ctx_t ctx)
Set ``a`` to the element in ``ctx`` with representative ``b``.
The representatives are taken in `(\mathbb{Z}/p\mathbb{Z})[x]/h(x)` where `h(x)` is the defining polynomial in ``ctx``.
.. function:: void fq_nmod_get_nmod_mat(nmod_mat_t col, const fq_nmod_t a, const fq_nmod_ctx_t ctx)
Convert ``a`` to a column vector of length ``degree(ctx)``.
.. function:: void fq_nmod_set_nmod_mat(fq_nmod_t a, const nmod_mat_t col, const fq_nmod_ctx_t ctx)
Convert a column vector ``col`` of length ``degree(ctx)`` to an element of ``ctx``.
Comparison
--------------------------------------------------------------------------------
.. function:: int fq_nmod_is_zero(const fq_nmod_t op, const fq_nmod_ctx_t ctx)
Returns whether ``op`` is equal to zero.
.. function:: int fq_nmod_is_one(const fq_nmod_t op, const fq_nmod_ctx_t ctx)
Returns whether ``op`` is equal to one.
.. function:: int fq_nmod_equal(const fq_nmod_t op1, const fq_nmod_t op2, const fq_nmod_ctx_t ctx)
Returns whether ``op1`` and ``op2`` are equal.
.. function:: int fq_nmod_is_invertible(const fq_nmod_t op, const fq_nmod_ctx_t ctx)
Returns whether ``op`` is an invertible element.
.. function:: int fq_nmod_is_invertible_f(fq_nmod_t f, const fq_nmod_t op, const fq_nmod_ctx_t ctx)
Returns whether ``op`` is an invertible element. If it is not,
then ``f`` is set to a factor of the modulus.
.. function:: int fq_nmod_cmp(const fq_nmod_t a, const fq_nmod_t b, const fq_nmod_ctx_t ctx)
Return ``1`` (resp. ``-1``, or ``0``) if ``a`` is after (resp. before, same as) ``b`` in some arbitrary but fixed total ordering of the elements.
Special functions
--------------------------------------------------------------------------------
.. function:: void _fq_nmod_trace(fmpz_t rop, const ulong * op, slong len, const fq_nmod_ctx_t ctx)
Sets ``rop`` to the trace of the non-zero element ``(op, len)``
in `\mathbf{F}_{q}`.
.. function:: void fq_nmod_trace(fmpz_t rop, const fq_nmod_t op, const fq_nmod_ctx_t ctx)
Sets ``rop`` to the trace of ``op``.
For an element `a \in \mathbf{F}_q`, multiplication by `a` defines
a `\mathbf{F}_p`-linear map on `\mathbf{F}_q`. We define the
trace of `a` as the trace of this map. Equivalently, if `\Sigma`
generates `\operatorname{Gal}(\mathbf{F}_q / \mathbf{F}_p)` then the trace of
`a` is equal to `\sum_{i=0}^{d-1} \Sigma^i (a)`, where `d =
\log_{p} q`.
.. function:: void _fq_nmod_norm(fmpz_t rop, const ulong * op, slong len, const fq_nmod_ctx_t ctx)
Sets ``rop`` to the norm of the non-zero element ``(op, len)``
in `\mathbf{F}_{q}`.
.. function:: void fq_nmod_norm(fmpz_t rop, const fq_nmod_t op, const fq_nmod_ctx_t ctx)
Computes the norm of ``op``.
For an element `a \in \mathbf{F}_q`, multiplication by `a` defines
a `\mathbf{F}_p`-linear map on `\mathbf{F}_q`. We define the norm
of `a` as the determinant of this map. Equivalently, if `\Sigma` generates
`\operatorname{Gal}(\mathbf{F}_q / \mathbf{F}_p)` then the trace of `a` is equal to
`\prod_{i=0}^{d-1} \Sigma^i (a)`, where
`d = \text{dim}_{\mathbf{F}_p}(\mathbf{F}_q)`.
Algorithm selection is automatic depending on the input.
.. function:: void _fq_nmod_frobenius(ulong * rop, const ulong * op, slong len, slong e, const fq_nmod_ctx_t ctx)
Sets ``(rop, 2d-1)`` to the image of ``(op, len)`` under the
Frobenius operator raised to the e-th power, assuming that neither
``op`` nor ``e`` are zero.
.. function:: void fq_nmod_frobenius(fq_nmod_t rop, const fq_nmod_t op, slong e, const fq_nmod_ctx_t ctx)
Evaluates the homomorphism `\Sigma^e` at ``op``.
Recall that `\mathbf{F}_q / \mathbf{F}_p` is Galois with Galois group
`\langle \sigma \rangle`, which is also isomorphic to
`\mathbf{Z}/d\mathbf{Z}`, where
`\sigma \in \operatorname{Gal}(\mathbf{F}_q/\mathbf{F}_p)` is the Frobenius element
`\sigma \colon x \mapsto x^p`.
.. function:: int fq_nmod_multiplicative_order(fmpz * ord, const fq_nmod_t op, const fq_nmod_ctx_t ctx)
Computes the order of ``op`` as an element of the
multiplicative group of ``ctx``.
Returns 0 if ``op`` is 0, otherwise it returns 1 if ``op``
is a generator of the multiplicative group, and -1 if it is not.
This function can also be used to check primitivity of a generator of
a finite field whose defining polynomial is not primitive.
.. function:: int fq_nmod_is_primitive(const fq_nmod_t op, const fq_nmod_ctx_t ctx)
Returns whether ``op`` is primitive, i.e., whether it is a
generator of the multiplicative group of ``ctx``.
Bit packing
--------------------------------------------------------------------------------
.. function:: void fq_nmod_bit_pack(fmpz_t f, const fq_nmod_t op, flint_bitcnt_t bit_size, const fq_nmod_ctx_t ctx)
Packs ``op`` into bitfields of size ``bit_size``, writing the
result to ``f``.
.. function:: void fq_nmod_bit_unpack(fq_nmod_t rop, const fmpz_t f, flint_bitcnt_t bit_size, const fq_nmod_ctx_t ctx)
Unpacks into ``rop`` the element with coefficients packed into
fields of size ``bit_size`` as represented by the integer
``f``.
|