1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
|
.. _fq_nmod-mpoly:
**fq_nmod_mpoly.h** -- multivariate polynomials over finite fields of word-sized characteristic
================================================================================================
The exponents follow the ``mpoly`` interface.
No references to the coefficients are available.
Types, macros and constants
-------------------------------------------------------------------------------
.. type:: fq_nmod_mpoly_struct
A structure holding a multivariate polynomial over a finite field of word-sized characteristic.
.. type:: fq_nmod_mpoly_t
An array of length `1` of ``fq_nmod_mpoly_struct``.
.. type:: fq_nmod_mpoly_ctx_struct
Context structure representing the parent ring of an ``fq_nmod_mpoly``.
.. type:: fq_nmod_mpoly_ctx_t
An array of length `1` of ``fq_nmod_mpoly_ctx_struct``.
Context object
--------------------------------------------------------------------------------
.. function:: void fq_nmod_mpoly_ctx_init(fq_nmod_mpoly_ctx_t ctx, slong nvars, const ordering_t ord, const fq_nmod_ctx_t fqctx)
Initialise a context object for a polynomial ring with the given number of variables and the given ordering.
It will have coefficients in the finite field *fqctx*.
The possibilities for the ordering are ``ORD_LEX``, ``ORD_DEGLEX`` and ``ORD_DEGREVLEX``.
.. function:: slong fq_nmod_mpoly_ctx_nvars(const fq_nmod_mpoly_ctx_t ctx)
Return the number of variables used to initialize the context.
.. function:: ordering_t fq_nmod_mpoly_ctx_ord(const fq_nmod_mpoly_ctx_t ctx)
Return the ordering used to initialize the context.
.. function:: void fq_nmod_mpoly_ctx_clear(fq_nmod_mpoly_ctx_t ctx)
Release any space allocated by an *ctx*.
Memory management
--------------------------------------------------------------------------------
.. function:: void fq_nmod_mpoly_init(fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)
Initialise *A* for use with the given an initialised context object. Its value is set to zero.
.. function:: void fq_nmod_mpoly_init2(fq_nmod_mpoly_t A, slong alloc, const fq_nmod_mpoly_ctx_t ctx)
Initialise *A* for use with the given an initialised context object. Its value is set to zero.
It is allocated with space for *alloc* terms and at least ``MPOLY_MIN_BITS`` bits for the exponents.
.. function:: void fq_nmod_mpoly_init3(fq_nmod_mpoly_t A, slong alloc, flint_bitcnt_t bits, const fq_nmod_mpoly_ctx_t ctx)
Initialise *A* for use with the given an initialised context object. Its value is set to zero.
It is allocated with space for *alloc* terms and *bits* bits for the exponents.
.. function:: void fq_nmod_mpoly_fit_length(fq_nmod_mpoly_t A, slong len, const fq_nmod_mpoly_ctx_t ctx)
Ensure that *A* has space for at least *len* terms.
.. function:: void fq_nmod_mpoly_realloc(fq_nmod_mpoly_t A, slong alloc, const fq_nmod_mpoly_ctx_t ctx)
Reallocate *A* to have space for *alloc* terms.
Assumes the current length of the polynomial is not greater than *alloc*.
.. function:: void fq_nmod_mpoly_clear(fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)
Release any space allocated for *A*.
Input/Output
--------------------------------------------------------------------------------
The variable strings in *x* start with the variable of most significance at index `0`. If *x* is ``NULL``, the variables are named ``x1``, ``x2``, etc.
.. function:: char * fq_nmod_mpoly_get_str_pretty(const fq_nmod_mpoly_t A, const char ** x, const fq_nmod_mpoly_ctx_t ctx)
Return a string, which the user is responsible for cleaning up, representing *A*, given an array of variable strings *x*.
.. function:: int fq_nmod_mpoly_fprint_pretty(FILE * file, const fq_nmod_mpoly_t A, const char ** x, const fq_nmod_mpoly_ctx_t ctx)
Print a string representing *A* to *file*.
.. function:: int fq_nmod_mpoly_print_pretty(const fq_nmod_mpoly_t A, const char ** x, const fq_nmod_mpoly_ctx_t ctx)
Print a string representing *A* to ``stdout``.
.. function:: int fq_nmod_mpoly_set_str_pretty(fq_nmod_mpoly_t A, const char * str, const char ** x, const fq_nmod_mpoly_ctx_t ctx)
Set *A* to the polynomial in the null-terminates string *str* given an array *x* of variable strings.
If parsing *str* fails, *A* is set to zero, and `-1` is returned. Otherwise, `0` is returned.
The operations ``+``, ``-``, ``*``, and ``/`` are permitted along with integers and the variables in *x*. The character ``^`` must be immediately followed by the (integer) exponent.
If any division is not exact, parsing fails.
Basic manipulation
--------------------------------------------------------------------------------
.. function:: void fq_nmod_mpoly_gen(fq_nmod_mpoly_t A, slong var, const fq_nmod_mpoly_ctx_t ctx)
Set *A* to the variable of index *var*, where `var = 0` corresponds to the variable with the most significance with respect to the ordering.
.. function:: int fq_nmod_mpoly_is_gen(const fq_nmod_mpoly_t A, slong var, const fq_nmod_mpoly_ctx_t ctx)
If `var \ge 0`, return `1` if *A* is equal to the `var`-th generator, otherwise return `0`.
If `var < 0`, return `1` if the polynomial is equal to any generator, otherwise return `0`.
.. function:: void fq_nmod_mpoly_set(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)
Set *A* to *B*.
.. function:: int fq_nmod_mpoly_equal(const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)
Return `1` if *A* is equal to *B*, else return `0`.
.. function:: void fq_nmod_mpoly_swap(fq_nmod_mpoly_t A, fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)
Efficiently swap *A* and *B*.
Constants
--------------------------------------------------------------------------------
.. function:: int fq_nmod_mpoly_is_fq_nmod(const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)
Return `1` if *A* is a constant, else return `0`.
.. function:: void fq_nmod_mpoly_get_fq_nmod(fq_nmod_t c, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)
Assuming that *A* is a constant, set *c* to this constant.
This function throws if *A* is not a constant.
.. function:: void fq_nmod_mpoly_set_fq_nmod(fq_nmod_mpoly_t A, const fq_nmod_t c, const fq_nmod_mpoly_ctx_t ctx)
void fq_nmod_mpoly_set_ui(fq_nmod_mpoly_t A, ulong c, const fq_nmod_mpoly_ctx_t ctx)
Set *A* to the constant *c*.
.. function:: void fq_nmod_mpoly_set_fq_nmod_gen(fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)
Set *A* to the constant given by :func:`fq_nmod_gen`.
.. function:: void fq_nmod_mpoly_zero(fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)
Set *A* to the constant `0`.
.. function:: void fq_nmod_mpoly_one(fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)
Set *A* to the constant `1`.
.. function:: int fq_nmod_mpoly_equal_fq_nmod(const fq_nmod_mpoly_t A, const fq_nmod_t c, const fq_nmod_mpoly_ctx_t ctx)
Return `1` if *A* is equal to the constant *c*, else return `0`.
.. function:: int fq_nmod_mpoly_is_zero(const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)
Return `1` if *A* is the constant `0`, else return `0`.
.. function:: int fq_nmod_mpoly_is_one(const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)
Return `1` if *A* is the constant `1`, else return `0`.
Degrees
--------------------------------------------------------------------------------
.. function:: int fq_nmod_mpoly_degrees_fit_si(const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)
Return `1` if the degrees of *A* with respect to each variable fit into an ``slong``, otherwise return `0`.
.. function:: void fq_nmod_mpoly_degrees_fmpz(fmpz ** degs, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)
void fq_nmod_mpoly_degrees_si(slong * degs, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)
Set *degs* to the degrees of *A* with respect to each variable.
If *A* is zero, all degrees are set to `-1`.
.. function:: void fq_nmod_mpoly_degree_fmpz(fmpz_t deg, const fq_nmod_mpoly_t A, slong var, const fq_nmod_mpoly_ctx_t ctx)
slong fq_nmod_mpoly_degree_si(const fq_nmod_mpoly_t A, slong var, const fq_nmod_mpoly_ctx_t ctx)
Either return or set *deg* to the degree of *A* with respect to the variable of index *var*.
If *A* is zero, the degree is defined to be `-1`.
.. function:: int fq_nmod_mpoly_total_degree_fits_si(const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)
Return `1` if the total degree of *A* fits into an ``slong``, otherwise return `0`.
.. function:: void fq_nmod_mpoly_total_degree_fmpz(fmpz_t tdeg, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)
slong fq_nmod_mpoly_total_degree_si(const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)
Either return or set *tdeg* to the total degree of *A*.
If *A* is zero, the total degree is defined to be `-1`.
.. function:: void fq_nmod_mpoly_used_vars(int * used, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)
For each variable index `i`, set ``used[i]`` to nonzero if the variable of index `i` appears in *A* and to zero otherwise.
Coefficients
--------------------------------------------------------------------------------
.. function:: void fq_nmod_mpoly_get_coeff_fq_nmod_monomial(fq_nmod_t c, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t M, const fq_nmod_mpoly_ctx_t ctx)
Assuming that *M* is a monomial, set *c* to the coefficient of the corresponding monomial in *A*.
This function throws if *M* is not a monomial.
.. function:: void fq_nmod_mpoly_set_coeff_fq_nmod_monomial(fq_nmod_mpoly_t A, const fq_nmod_t c, const fq_nmod_mpoly_t M, const fq_nmod_mpoly_ctx_t ctx)
Assuming that *M* is a monomial, set the coefficient of the corresponding monomial in *A* to *c*.
This function throws if *M* is not a monomial.
.. function:: void fq_nmod_mpoly_get_coeff_fq_nmod_fmpz(fq_nmod_t c, const fq_nmod_mpoly_t A, fmpz * const * exp, const fq_nmod_mpoly_ctx_t ctx)
void fq_nmod_mpoly_get_coeff_fq_nmod_ui(fq_nmod_t c, const fq_nmod_mpoly_t A, const ulong * exp, const fq_nmod_mpoly_ctx_t ctx)
Set *c* to the coefficient of the monomial with exponent vector *exp*.
.. function:: void fq_nmod_mpoly_set_coeff_fq_nmod_fmpz(fq_nmod_mpoly_t A, const fq_nmod_t c, fmpz * const * exp, const fq_nmod_mpoly_ctx_t ctx)
void fq_nmod_mpoly_set_coeff_fq_nmod_ui(fq_nmod_mpoly_t A, const fq_nmod_t c, const ulong * exp, const fq_nmod_mpoly_ctx_t ctx)
Set the coefficient of the monomial with exponent *exp* to *c*.
.. function:: void fq_nmod_mpoly_get_coeff_vars_ui(fq_nmod_mpoly_t C, const fq_nmod_mpoly_t A, const slong * vars, const ulong * exps, slong length, const fq_nmod_mpoly_ctx_t ctx)
Set *C* to the coefficient of *A* with respect to the variables in *vars* with powers in the corresponding array *exps*.
Both *vars* and *exps* point to array of length *length*. It is assumed that `0 < length \le nvars(A)` and that the variables in *vars* are distinct.
Comparison
--------------------------------------------------------------------------------
.. function:: int fq_nmod_mpoly_cmp(const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)
Return `1` (resp. `-1`, or `0`) if *A* is after (resp. before, same as) *B* in some arbitrary but fixed total ordering of the polynomials.
This ordering agrees with the usual ordering of monomials when *A* and *B* are both monomials.
Container operations
--------------------------------------------------------------------------------
These functions deal with violations of the internal canonical representation.
If a term index is negative or not strictly less than the length of the polynomial, the function will throw.
.. function:: int fq_nmod_mpoly_is_canonical(const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)
Return `1` if *A* is in canonical form. Otherwise, return `0`.
To be in canonical form, all of the terms must have nonzero coefficients, and the terms must be sorted from greatest to least.
.. function:: slong fq_nmod_mpoly_length(const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)
Return the number of terms in *A*.
If the polynomial is in canonical form, this will be the number of nonzero coefficients.
.. function:: void fq_nmod_mpoly_resize(fq_nmod_mpoly_t A, slong new_length, const fq_nmod_mpoly_ctx_t ctx)
Set the length of *A* to ``new_length``.
Terms are either deleted from the end, or new zero terms are appended.
.. function:: void fq_nmod_mpoly_get_term_coeff_fq_nmod(fq_nmod_t c, const fq_nmod_mpoly_t A, slong i, const fq_nmod_mpoly_ctx_t ctx)
Set *c* to the coefficient of the term of index *i*.
.. function:: void fq_nmod_mpoly_set_term_coeff_ui(fq_nmod_mpoly_t A, slong i, ulong c, const fq_nmod_mpoly_ctx_t ctx)
Set the coefficient of the term of index *i* to *c*.
.. function:: int fq_nmod_mpoly_term_exp_fits_si(const fq_nmod_mpoly_t A, slong i, const fq_nmod_mpoly_ctx_t ctx)
int fq_nmod_mpoly_term_exp_fits_ui(const fq_nmod_mpoly_t A, slong i, const fq_nmod_mpoly_ctx_t ctx)
Return `1` if all entries of the exponent vector of the term of index `i` fit into an ``slong`` (resp. a ``ulong``). Otherwise, return `0`.
.. function:: void fq_nmod_mpoly_get_term_exp_fmpz(fmpz ** exp, const fq_nmod_mpoly_t A, slong i, const fq_nmod_mpoly_ctx_t ctx)
void fq_nmod_mpoly_get_term_exp_ui(ulong * exp, const fq_nmod_mpoly_t A, slong i, const fq_nmod_mpoly_ctx_t ctx)
void fq_nmod_mpoly_get_term_exp_si(slong * exp, const fq_nmod_mpoly_t A, slong i, const fq_nmod_mpoly_ctx_t ctx)
Set *exp* to the exponent vector of the term of index *i*.
The ``_ui`` (resp. ``_si``) version throws if any entry does not fit into a ``ulong`` (resp. ``slong``).
.. function:: ulong fq_nmod_mpoly_get_term_var_exp_ui(const fq_nmod_mpoly_t A, slong i, slong var, const fq_nmod_mpoly_ctx_t ctx)
slong fq_nmod_mpoly_get_term_var_exp_si(const fq_nmod_mpoly_t A, slong i, slong var, const fq_nmod_mpoly_ctx_t ctx)
Return the exponent of the variable *var* of the term of index *i*.
This function throws if the exponent does not fit into a ``ulong`` (resp. ``slong``).
.. function:: void fq_nmod_mpoly_set_term_exp_fmpz(fq_nmod_mpoly_t A, slong i, fmpz * const * exp, const fq_nmod_mpoly_ctx_t ctx)
void fq_nmod_mpoly_set_term_exp_ui(fq_nmod_mpoly_t A, slong i, const ulong * exp, const fq_nmod_mpoly_ctx_t ctx)
Set the exponent of the term of index *i* to *exp*.
.. function:: void fq_nmod_mpoly_get_term(fq_nmod_mpoly_t M, const fq_nmod_mpoly_t A, slong i, const fq_nmod_mpoly_ctx_t ctx)
Set *M* to the term of index *i* in *A*.
.. function:: void fq_nmod_mpoly_get_term_monomial(fq_nmod_mpoly_t M, const fq_nmod_mpoly_t A, slong i, const fq_nmod_mpoly_ctx_t ctx)
Set *M* to the monomial of the term of index *i* in *A*. The coefficient of *M* will be one.
.. function:: void fq_nmod_mpoly_push_term_fq_nmod_fmpz(fq_nmod_mpoly_t A, const fq_nmod_t c, fmpz * const * exp, const fq_nmod_mpoly_ctx_t ctx)
void fq_nmod_mpoly_push_term_fq_nmod_ffmpz(fq_nmod_mpoly_t A, const fq_nmod_t c, const fmpz * exp, const fq_nmod_mpoly_ctx_t ctx)
void fq_nmod_mpoly_push_term_fq_nmod_ui(fq_nmod_mpoly_t A, const fq_nmod_t c, const ulong * exp, const fq_nmod_mpoly_ctx_t ctx)
Append a term to *A* with coefficient *c* and exponent vector *exp*.
This function runs in constant average time.
.. function:: void fq_nmod_mpoly_sort_terms(fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)
Sort the terms of *A* into the canonical ordering dictated by the ordering in *ctx*.
This function simply reorders the terms: It does not combine like terms, nor does it delete terms with coefficient zero.
This function runs in linear time in the bit size of *A*.
.. function:: void fq_nmod_mpoly_combine_like_terms(fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)
Combine adjacent like terms in *A* and delete terms with coefficient zero.
If the terms of *A* were sorted to begin with, the result will be in canonical form.
This function runs in linear time in the bit size of *A*.
.. function:: void fq_nmod_mpoly_reverse(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)
Set *A* to the reversal of *B*.
Random generation
--------------------------------------------------------------------------------
.. function:: void fq_nmod_mpoly_randtest_bound(fq_nmod_mpoly_t A, flint_rand_t state, slong length, ulong exp_bound, const fq_nmod_mpoly_ctx_t ctx)
Generate a random polynomial with length up to *length* and exponents in the range ``[0, exp_bound - 1]``.
The exponents of each variable are generated by calls to ``n_randint(state, exp_bound)``.
.. function:: void fq_nmod_mpoly_randtest_bounds(fq_nmod_mpoly_t A, flint_rand_t state, slong length, ulong * exp_bounds, const fq_nmod_mpoly_ctx_t ctx)
Generate a random polynomial with length up to *length* and exponents in the range ``[0, exp_bounds[i] - 1]``.
The exponents of the variable of index *i* are generated by calls to ``n_randint(state, exp_bounds[i])``.
.. function:: void fq_nmod_mpoly_randtest_bits(fq_nmod_mpoly_t A, flint_rand_t state, slong length, ulong exp_bits, const fq_nmod_mpoly_ctx_t ctx)
Generate a random polynomial with length up to *length* and exponents whose packed form does not exceed the given bit count.
Addition/Subtraction
--------------------------------------------------------------------------------
.. function:: void fq_nmod_mpoly_add_fq_nmod(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_t C, const fq_nmod_mpoly_ctx_t ctx)
Set *A* to `B + c`.
.. function:: void fq_nmod_mpoly_sub_fq_nmod(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_t C, const fq_nmod_mpoly_ctx_t ctx)
Set *A* to `B - c`.
.. function:: void fq_nmod_mpoly_add(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_t C, const fq_nmod_mpoly_ctx_t ctx)
Set *A* to `B + C`.
.. function:: void fq_nmod_mpoly_sub(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_t C, const fq_nmod_mpoly_ctx_t ctx)
Set *A* to `B - C`.
Scalar operations
--------------------------------------------------------------------------------
.. function:: void fq_nmod_mpoly_neg(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)
Set *A* to `-B`.
.. function:: void fq_nmod_mpoly_scalar_mul_fq_nmod(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_t c, const fq_nmod_mpoly_ctx_t ctx)
Set *A* to `B \times c`.
.. function:: void fq_nmod_mpoly_make_monic(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)
Set *A* to *B* divided by the leading coefficient of *B*.
This throws if *B* is zero.
Differentiation
--------------------------------------------------------------------------------
.. function:: void fq_nmod_mpoly_derivative(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, slong var, const fq_nmod_mpoly_ctx_t ctx)
Set *A* to the derivative of *B* with respect to the variable of index *var*.
Evaluation
--------------------------------------------------------------------------------
These functions return `0` when the operation would imply unreasonable arithmetic.
.. function:: void fq_nmod_mpoly_evaluate_all_fq_nmod(fq_nmod_t ev, const fq_nmod_mpoly_t A, fq_nmod_struct * const * vals, const fq_nmod_mpoly_ctx_t ctx)
Set *ev* the evaluation of *A* where the variables are replaced by the corresponding elements of the array *vals*.
.. function:: void fq_nmod_mpoly_evaluate_one_fq_nmod(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, slong var, const fq_nmod_t val, const fq_nmod_mpoly_ctx_t ctx)
Set *A* to the evaluation of *B* where the variable of index *var* is replaced by *val*.
.. function:: int fq_nmod_mpoly_compose_fq_nmod_poly(fq_nmod_poly_t A, const fq_nmod_mpoly_t B, fq_nmod_poly_struct * const * C, const fq_nmod_mpoly_ctx_t ctx)
Set *A* to the evaluation of *B* where the variables are replaced by the corresponding elements of the array *C*.
The context object of *B* is *ctxB*.
Return `1` for success and `0` for failure.
.. function:: int fq_nmod_mpoly_compose_fq_nmod_mpoly(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, fq_nmod_mpoly_struct * const * C, const fq_nmod_mpoly_ctx_t ctxB, const fq_nmod_mpoly_ctx_t ctxAC)
Set *A* to the evaluation of *B* where the variables are replaced by the corresponding elements of the array *C*.
Both *A* and the elements of *C* have context object *ctxAC*, while *B* has context object *ctxB*.
Neither *A* nor *B* is allowed to alias any other polynomial.
Return `1` for success and `0` for failure.
.. function:: void fq_nmod_mpoly_compose_fq_nmod_mpoly_gen(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const slong * c, const fq_nmod_mpoly_ctx_t ctxB, const fq_nmod_mpoly_ctx_t ctxAC)
Set *A* to the evaluation of *B* where the variable of index *i* in *ctxB* is replaced by the variable of index ``c[i]`` in *ctxAC*.
The length of the array *C* is the number of variables in *ctxB*.
If any ``c[i]`` is negative, the corresponding variable of *B* is replaced by zero. Otherwise, it is expected that ``c[i]`` is less than the number of variables in *ctxAC*.
Multiplication
--------------------------------------------------------------------------------
.. function:: void fq_nmod_mpoly_mul(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_t C, const fq_nmod_mpoly_ctx_t ctx)
Set *A* to *B* times *C*.
Powering
--------------------------------------------------------------------------------
These functions return `0` when the operation would imply unreasonable arithmetic.
.. function:: int fq_nmod_mpoly_pow_fmpz(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fmpz_t k, const fq_nmod_mpoly_ctx_t ctx)
Set *A* to `B` raised to the *k*-th power.
Return `1` for success and `0` for failure.
.. function:: int fq_nmod_mpoly_pow_ui(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, ulong k, const fq_nmod_mpoly_ctx_t ctx)
Set *A* to `B` raised to the *k*-th power.
Return `1` for success and `0` for failure.
Division
--------------------------------------------------------------------------------
.. function:: int fq_nmod_mpoly_divides(fq_nmod_mpoly_t Q, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)
If *A* is divisible by *B*, set *Q* to the exact quotient and return `1`. Otherwise, set *Q* to zero and return `0`.
.. function:: void fq_nmod_mpoly_div(fq_nmod_mpoly_t Q, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)
Set *Q* to the quotient of *A* by *B*, discarding the remainder.
.. function:: void fq_nmod_mpoly_divrem(fq_nmod_mpoly_t Q, fq_nmod_mpoly_t R, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)
Set *Q* and *R* to the quotient and remainder of *A* divided by *B*.
.. function:: void fq_nmod_mpoly_divrem_ideal(fq_nmod_mpoly_struct ** Q, fq_nmod_mpoly_t R, const fq_nmod_mpoly_t A, fq_nmod_mpoly_struct * const * B, slong len, const fq_nmod_mpoly_ctx_t ctx)
This function is as per :func:`fq_nmod_mpoly_divrem` except that it takes an array of divisor polynomials *B* and it returns an array of quotient polynomials *Q*.
The number of divisor (and hence quotient) polynomials, is given by *len*.
Greatest Common Divisor
--------------------------------------------------------------------------------
.. function:: void fq_nmod_mpoly_term_content(fq_nmod_mpoly_t M, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)
Set *M* to the GCD of the terms of *A*.
If *A* is zero, *M* will be zero. Otherwise, *M* will be a monomial with coefficient one.
.. function:: int fq_nmod_mpoly_content_vars(fq_nmod_mpoly_t g, const fq_nmod_mpoly_t A, slong * vars, slong vars_length, const fq_nmod_mpoly_ctx_t ctx)
Set *g* to the GCD of the coefficients of *A* when viewed as a polynomial in the variables *vars*.
Return `1` for success and `0` for failure. Upon success, *g* will be independent of the variables *vars*.
.. function:: int fq_nmod_mpoly_gcd(fq_nmod_mpoly_t G, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)
Try to set *G* to the monic GCD of *A* and *B*. The GCD of zero and zero is defined to be zero.
If the return is `1` the function was successful. Otherwise the return is `0` and *G* is left untouched.
.. function:: int fq_nmod_mpoly_gcd_cofactors(fq_nmod_mpoly_t G, fq_nmod_mpoly_t Abar, fq_nmod_mpoly_t Bbar, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)
Do the operation of :func:`fq_nmod_mpoly_gcd` and also compute `Abar = A/G` and `Bbar = B/G` if successful.
.. function:: int fq_nmod_mpoly_gcd_brown(fq_nmod_mpoly_t G, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)
int fq_nmod_mpoly_gcd_hensel(fq_nmod_mpoly_t G, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)
int fq_nmod_mpoly_gcd_zippel(fq_nmod_mpoly_t G, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)
Try to set *G* to the GCD of *A* and *B* using various algorithms.
.. function:: int fq_nmod_mpoly_resultant(fq_nmod_mpoly_t R, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, slong var, const fq_nmod_mpoly_ctx_t ctx)
Try to set *R* to the resultant of *A* and *B* with respect to the variable of index *var*.
.. function:: int fq_nmod_mpoly_discriminant(fq_nmod_mpoly_t D, const fq_nmod_mpoly_t A, slong var, const fq_nmod_mpoly_ctx_t ctx)
Try to set *D* to the discriminant of *A* with respect to the variable of index *var*.
Square Root
--------------------------------------------------------------------------------
.. function:: int fq_nmod_mpoly_sqrt(fq_nmod_mpoly_t Q, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)
If `Q^2=A` has a solution, set `Q` to a solution and return `1`, otherwise return `0` and set `Q` to zero.
.. function:: int fq_nmod_mpoly_is_square(const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)
Return `1` if *A* is a perfect square, otherwise return `0`.
.. function:: int fq_nmod_mpoly_quadratic_root(fq_nmod_mpoly_t Q, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)
If `Q^2+AQ=B` has a solution, set `Q` to a solution and return `1`, otherwise return `0`.
Univariate Functions
--------------------------------------------------------------------------------
An ``fq_nmod_mpoly_univar_t`` holds a univariate polynomial in some main variable
with ``fq_nmod_mpoly_t`` coefficients in the remaining variables. These functions
are useful when one wants to rewrite an element of `\mathbb{F}_q[x_1, \dots, x_m]`
as an element of `(\mathbb{F}_q[x_1, \dots, x_{v-1}, x_{v+1}, \dots, x_m])[x_v]`
and vice versa.
.. function:: void fq_nmod_mpoly_univar_init(fq_nmod_mpoly_univar_t A, const fq_nmod_mpoly_ctx_t ctx)
Initialize *A*.
.. function:: void fq_nmod_mpoly_univar_clear(fq_nmod_mpoly_univar_t A, const fq_nmod_mpoly_ctx_t ctx)
Clear *A*.
.. function:: void fq_nmod_mpoly_univar_swap(fq_nmod_mpoly_univar_t A, fq_nmod_mpoly_univar_t B, const fq_nmod_mpoly_ctx_t ctx)
Swap *A* and `B`.
.. function:: void fq_nmod_mpoly_to_univar(fq_nmod_mpoly_univar_t A, const fq_nmod_mpoly_t B, slong var, const fq_nmod_mpoly_ctx_t ctx)
Set *A* to a univariate form of *B* by pulling out the variable of index *var*.
The coefficients of *A* will still belong to the content *ctx* but will not depend on the variable of index *var*.
.. function:: void fq_nmod_mpoly_from_univar(fq_nmod_mpoly_t A, const fq_nmod_mpoly_univar_t B, slong var, const fq_nmod_mpoly_ctx_t ctx)
Set *A* to the normal form of *B* by putting in the variable of index *var*.
This function is undefined if the coefficients of *B* depend on the variable of index *var*.
.. function:: int fq_nmod_mpoly_univar_degree_fits_si(const fq_nmod_mpoly_univar_t A, const fq_nmod_mpoly_ctx_t ctx)
Return `1` if the degree of *A* with respect to the main variable fits an ``slong``. Otherwise, return `0`.
.. function:: slong fq_nmod_mpoly_univar_length(const fq_nmod_mpoly_univar_t A, const fq_nmod_mpoly_ctx_t ctx)
Return the number of terms in *A* with respect to the main variable.
.. function:: slong fq_nmod_mpoly_univar_get_term_exp_si(fq_nmod_mpoly_univar_t A, slong i, const fq_nmod_mpoly_ctx_t ctx)
Return the exponent of the term of index *i* of *A*.
.. function:: void fq_nmod_mpoly_univar_get_term_coeff(fq_nmod_mpoly_t c, const fq_nmod_mpoly_univar_t A, slong i, const fq_nmod_mpoly_ctx_t ctx)
void fq_nmod_mpoly_univar_swap_term_coeff(fq_nmod_mpoly_t c, fq_nmod_mpoly_univar_t A, slong i, const fq_nmod_mpoly_ctx_t ctx)
Set (resp. swap) *c* to (resp. with) the coefficient of the term of index *i* of *A*.
|