File: fq_nmod_mpoly.rst

package info (click to toggle)
flint 3.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 68,996 kB
  • sloc: ansic: 915,350; asm: 14,605; python: 5,340; sh: 4,512; lisp: 2,621; makefile: 787; cpp: 341
file content (582 lines) | stat: -rw-r--r-- 29,209 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
.. _fq_nmod-mpoly:

**fq_nmod_mpoly.h** -- multivariate polynomials over finite fields of word-sized characteristic
================================================================================================

    The exponents follow the ``mpoly`` interface.
    No references to the coefficients are available.

Types, macros and constants
-------------------------------------------------------------------------------

.. type:: fq_nmod_mpoly_struct

    A structure holding a multivariate polynomial over a finite field of word-sized characteristic.

.. type:: fq_nmod_mpoly_t

    An array of length `1` of ``fq_nmod_mpoly_struct``.

.. type:: fq_nmod_mpoly_ctx_struct

    Context structure representing the parent ring of an ``fq_nmod_mpoly``.

.. type:: fq_nmod_mpoly_ctx_t

    An array of length `1` of ``fq_nmod_mpoly_ctx_struct``.


Context object
--------------------------------------------------------------------------------


.. function:: void fq_nmod_mpoly_ctx_init(fq_nmod_mpoly_ctx_t ctx, slong nvars, const ordering_t ord, const fq_nmod_ctx_t fqctx)

    Initialise a context object for a polynomial ring with the given number of variables and the given ordering.
    It will have coefficients in the finite field *fqctx*.
    The possibilities for the ordering are ``ORD_LEX``, ``ORD_DEGLEX`` and ``ORD_DEGREVLEX``.

.. function:: slong fq_nmod_mpoly_ctx_nvars(const fq_nmod_mpoly_ctx_t ctx)

    Return the number of variables used to initialize the context.

.. function:: ordering_t fq_nmod_mpoly_ctx_ord(const fq_nmod_mpoly_ctx_t ctx)

    Return the ordering used to initialize the context.

.. function:: void fq_nmod_mpoly_ctx_clear(fq_nmod_mpoly_ctx_t ctx)

    Release any space allocated by an *ctx*.


Memory management
--------------------------------------------------------------------------------


.. function:: void fq_nmod_mpoly_init(fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

    Initialise *A* for use with the given an initialised context object. Its value is set to zero.

.. function:: void fq_nmod_mpoly_init2(fq_nmod_mpoly_t A, slong alloc, const fq_nmod_mpoly_ctx_t ctx)

    Initialise *A* for use with the given an initialised context object. Its value is set to zero.
    It is allocated with space for *alloc* terms and at least ``MPOLY_MIN_BITS`` bits for the exponents.

.. function:: void fq_nmod_mpoly_init3(fq_nmod_mpoly_t A, slong alloc, flint_bitcnt_t bits, const fq_nmod_mpoly_ctx_t ctx)

    Initialise *A* for use with the given an initialised context object. Its value is set to zero.
    It is allocated with space for *alloc* terms and *bits* bits for the exponents.

.. function:: void fq_nmod_mpoly_fit_length(fq_nmod_mpoly_t A, slong len, const fq_nmod_mpoly_ctx_t ctx)

    Ensure that *A* has space for at least *len* terms.

.. function:: void fq_nmod_mpoly_realloc(fq_nmod_mpoly_t A, slong alloc, const fq_nmod_mpoly_ctx_t ctx)

    Reallocate *A* to have space for *alloc* terms. 
    Assumes the current length of the polynomial is not greater than *alloc*.

.. function:: void fq_nmod_mpoly_clear(fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

    Release any space allocated for *A*.


Input/Output
--------------------------------------------------------------------------------

    The variable strings in *x* start with the variable of most significance at index `0`. If *x* is ``NULL``, the variables are named ``x1``, ``x2``, etc.

.. function:: char * fq_nmod_mpoly_get_str_pretty(const fq_nmod_mpoly_t A, const char ** x, const fq_nmod_mpoly_ctx_t ctx)

    Return a string, which the user is responsible for cleaning up, representing *A*, given an array of variable strings *x*.

.. function:: int fq_nmod_mpoly_fprint_pretty(FILE * file, const fq_nmod_mpoly_t A, const char ** x, const fq_nmod_mpoly_ctx_t ctx)

    Print a string representing *A* to *file*.

.. function:: int fq_nmod_mpoly_print_pretty(const fq_nmod_mpoly_t A, const char ** x, const fq_nmod_mpoly_ctx_t ctx)

    Print a string representing *A* to ``stdout``.

.. function:: int fq_nmod_mpoly_set_str_pretty(fq_nmod_mpoly_t A, const char * str, const char ** x, const fq_nmod_mpoly_ctx_t ctx)

    Set *A* to the polynomial in the null-terminates string *str* given an array *x* of variable strings.
    If parsing *str* fails, *A* is set to zero, and `-1` is returned. Otherwise, `0`  is returned.
    The operations ``+``, ``-``, ``*``, and ``/`` are permitted along with integers and the variables in *x*. The character ``^`` must be immediately followed by the (integer) exponent.
    If any division is not exact, parsing fails.


Basic manipulation
--------------------------------------------------------------------------------

.. function:: void fq_nmod_mpoly_gen(fq_nmod_mpoly_t A, slong var, const fq_nmod_mpoly_ctx_t ctx)

    Set *A* to the variable of index *var*, where `var = 0` corresponds to the variable with the most significance with respect to the ordering. 

.. function:: int fq_nmod_mpoly_is_gen(const fq_nmod_mpoly_t A, slong var, const fq_nmod_mpoly_ctx_t ctx)

    If `var \ge 0`, return `1` if *A* is equal to the `var`-th generator, otherwise return `0`.
    If `var < 0`, return `1` if the polynomial is equal to any generator, otherwise return `0`.

.. function:: void fq_nmod_mpoly_set(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)
    
    Set *A* to *B*.

.. function:: int fq_nmod_mpoly_equal(const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)

    Return `1` if *A* is equal to *B*, else return `0`.

.. function:: void fq_nmod_mpoly_swap(fq_nmod_mpoly_t A, fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)

    Efficiently swap *A* and *B*.


Constants
--------------------------------------------------------------------------------


.. function:: int fq_nmod_mpoly_is_fq_nmod(const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

    Return `1` if *A* is a constant, else return `0`.

.. function:: void fq_nmod_mpoly_get_fq_nmod(fq_nmod_t c, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

    Assuming that *A* is a constant, set *c* to this constant.
    This function throws if *A* is not a constant.

.. function:: void fq_nmod_mpoly_set_fq_nmod(fq_nmod_mpoly_t A, const fq_nmod_t c, const fq_nmod_mpoly_ctx_t ctx)
              void fq_nmod_mpoly_set_ui(fq_nmod_mpoly_t A, ulong c, const fq_nmod_mpoly_ctx_t ctx)

    Set *A* to the constant *c*.

.. function:: void fq_nmod_mpoly_set_fq_nmod_gen(fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

    Set *A* to the constant given by :func:`fq_nmod_gen`.

.. function:: void fq_nmod_mpoly_zero(fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

    Set *A* to the constant `0`.

.. function:: void fq_nmod_mpoly_one(fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

    Set *A* to the constant `1`.

.. function:: int fq_nmod_mpoly_equal_fq_nmod(const fq_nmod_mpoly_t A, const fq_nmod_t c, const fq_nmod_mpoly_ctx_t ctx)

    Return `1` if *A* is equal to the constant *c*, else return `0`.

.. function:: int fq_nmod_mpoly_is_zero(const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

    Return `1` if *A* is the constant `0`, else return `0`.

.. function:: int fq_nmod_mpoly_is_one(const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

    Return `1` if *A* is the constant `1`, else return `0`.


Degrees
--------------------------------------------------------------------------------


.. function:: int fq_nmod_mpoly_degrees_fit_si(const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

    Return `1` if the degrees of *A* with respect to each variable fit into an ``slong``, otherwise return `0`.

.. function:: void fq_nmod_mpoly_degrees_fmpz(fmpz ** degs, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)
              void fq_nmod_mpoly_degrees_si(slong * degs, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

    Set *degs* to the degrees of *A* with respect to each variable.
    If *A* is zero, all degrees are set to `-1`.

.. function:: void fq_nmod_mpoly_degree_fmpz(fmpz_t deg, const fq_nmod_mpoly_t A, slong var, const fq_nmod_mpoly_ctx_t ctx)
              slong fq_nmod_mpoly_degree_si(const fq_nmod_mpoly_t A, slong var, const fq_nmod_mpoly_ctx_t ctx)

    Either return or set *deg* to the degree of *A* with respect to the variable of index *var*.
    If *A* is zero, the degree is defined to be `-1`.

.. function:: int fq_nmod_mpoly_total_degree_fits_si(const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

    Return `1` if the total degree of *A* fits into an ``slong``, otherwise return `0`.

.. function:: void fq_nmod_mpoly_total_degree_fmpz(fmpz_t tdeg, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)
              slong fq_nmod_mpoly_total_degree_si(const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

    Either return or set *tdeg* to the total degree of *A*.
    If *A* is zero, the total degree is defined to be `-1`.

.. function:: void fq_nmod_mpoly_used_vars(int * used, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

    For each variable index `i`, set ``used[i]`` to nonzero if the variable of index `i` appears in *A* and to zero otherwise.


Coefficients
--------------------------------------------------------------------------------


.. function:: void fq_nmod_mpoly_get_coeff_fq_nmod_monomial(fq_nmod_t c, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t M, const fq_nmod_mpoly_ctx_t ctx)

    Assuming that *M* is a monomial, set *c* to the coefficient of the corresponding monomial in *A*.
    This function throws if *M* is not a monomial.

.. function:: void fq_nmod_mpoly_set_coeff_fq_nmod_monomial(fq_nmod_mpoly_t A, const fq_nmod_t c, const fq_nmod_mpoly_t M, const fq_nmod_mpoly_ctx_t ctx)

    Assuming that *M* is a monomial, set the coefficient of the corresponding monomial in *A* to *c*.
    This function throws if *M* is not a monomial.

.. function:: void fq_nmod_mpoly_get_coeff_fq_nmod_fmpz(fq_nmod_t c, const fq_nmod_mpoly_t A, fmpz * const * exp, const fq_nmod_mpoly_ctx_t ctx)
              void fq_nmod_mpoly_get_coeff_fq_nmod_ui(fq_nmod_t c, const fq_nmod_mpoly_t A, const ulong * exp, const fq_nmod_mpoly_ctx_t ctx)

    Set *c* to the coefficient of the monomial with exponent vector *exp*.

.. function:: void fq_nmod_mpoly_set_coeff_fq_nmod_fmpz(fq_nmod_mpoly_t A, const fq_nmod_t c, fmpz * const * exp, const fq_nmod_mpoly_ctx_t ctx)
              void fq_nmod_mpoly_set_coeff_fq_nmod_ui(fq_nmod_mpoly_t A, const fq_nmod_t c, const ulong * exp, const fq_nmod_mpoly_ctx_t ctx)

    Set the coefficient of the monomial with exponent *exp* to *c*.

.. function:: void fq_nmod_mpoly_get_coeff_vars_ui(fq_nmod_mpoly_t C, const fq_nmod_mpoly_t A, const slong * vars, const ulong * exps, slong length, const fq_nmod_mpoly_ctx_t ctx)

    Set *C* to the coefficient of *A* with respect to the variables in *vars* with powers in the corresponding array *exps*.
    Both *vars* and *exps* point to array of length *length*. It is assumed that `0 < length \le nvars(A)` and that the variables in *vars* are distinct. 


Comparison
--------------------------------------------------------------------------------


.. function:: int fq_nmod_mpoly_cmp(const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)

    Return `1` (resp. `-1`, or `0`) if *A* is after (resp. before, same as) *B* in some arbitrary but fixed total ordering of the polynomials.
    This ordering agrees with the usual ordering of monomials when *A* and *B* are both monomials.


Container operations
--------------------------------------------------------------------------------

    These functions deal with violations of the internal canonical representation.
    If a term index is negative or not strictly less than the length of the polynomial, the function will throw.

.. function:: int fq_nmod_mpoly_is_canonical(const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

    Return `1` if *A* is in canonical form. Otherwise, return `0`.
    To be in canonical form, all of the terms must have nonzero coefficients, and the terms must be sorted from greatest to least.

.. function:: slong fq_nmod_mpoly_length(const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

    Return the number of terms in *A*.
    If the polynomial is in canonical form, this will be the number of nonzero coefficients.

.. function:: void fq_nmod_mpoly_resize(fq_nmod_mpoly_t A, slong new_length, const fq_nmod_mpoly_ctx_t ctx)

    Set the length of *A* to ``new_length``.
    Terms are either deleted from the end, or new zero terms are appended.

.. function:: void fq_nmod_mpoly_get_term_coeff_fq_nmod(fq_nmod_t c, const fq_nmod_mpoly_t A, slong i, const fq_nmod_mpoly_ctx_t ctx)

    Set *c* to the coefficient of the term of index *i*.

.. function:: void fq_nmod_mpoly_set_term_coeff_ui(fq_nmod_mpoly_t A, slong i, ulong c, const fq_nmod_mpoly_ctx_t ctx)

    Set the coefficient of the term of index *i* to *c*.

.. function:: int fq_nmod_mpoly_term_exp_fits_si(const fq_nmod_mpoly_t A, slong i, const fq_nmod_mpoly_ctx_t ctx)
              int fq_nmod_mpoly_term_exp_fits_ui(const fq_nmod_mpoly_t A, slong i, const fq_nmod_mpoly_ctx_t ctx)

    Return `1` if all entries of the exponent vector of the term of index `i` fit into an ``slong`` (resp. a ``ulong``). Otherwise, return `0`.

.. function:: void fq_nmod_mpoly_get_term_exp_fmpz(fmpz ** exp, const fq_nmod_mpoly_t A, slong i, const fq_nmod_mpoly_ctx_t ctx)
              void fq_nmod_mpoly_get_term_exp_ui(ulong * exp, const fq_nmod_mpoly_t A, slong i, const fq_nmod_mpoly_ctx_t ctx)
              void fq_nmod_mpoly_get_term_exp_si(slong * exp, const fq_nmod_mpoly_t A, slong i, const fq_nmod_mpoly_ctx_t ctx)

    Set *exp* to the exponent vector of the term of index *i*.
    The ``_ui`` (resp. ``_si``) version throws if any entry does not fit into a ``ulong`` (resp. ``slong``).

.. function:: ulong fq_nmod_mpoly_get_term_var_exp_ui(const fq_nmod_mpoly_t A, slong i, slong var, const fq_nmod_mpoly_ctx_t ctx)
              slong fq_nmod_mpoly_get_term_var_exp_si(const fq_nmod_mpoly_t A, slong i, slong var, const fq_nmod_mpoly_ctx_t ctx)

    Return the exponent of the variable *var* of the term of index *i*.
    This function throws if the exponent does not fit into a ``ulong`` (resp. ``slong``).

.. function:: void fq_nmod_mpoly_set_term_exp_fmpz(fq_nmod_mpoly_t A, slong i, fmpz * const * exp, const fq_nmod_mpoly_ctx_t ctx)
              void fq_nmod_mpoly_set_term_exp_ui(fq_nmod_mpoly_t A, slong i, const ulong * exp, const fq_nmod_mpoly_ctx_t ctx)

    Set the exponent of the term of index *i* to *exp*.

.. function:: void fq_nmod_mpoly_get_term(fq_nmod_mpoly_t M, const fq_nmod_mpoly_t A, slong i, const fq_nmod_mpoly_ctx_t ctx)

    Set *M* to the term of index *i* in *A*.

.. function:: void fq_nmod_mpoly_get_term_monomial(fq_nmod_mpoly_t M, const fq_nmod_mpoly_t A, slong i, const fq_nmod_mpoly_ctx_t ctx)

    Set *M* to the monomial of the term of index *i* in *A*. The coefficient of *M* will be one.

.. function:: void fq_nmod_mpoly_push_term_fq_nmod_fmpz(fq_nmod_mpoly_t A, const fq_nmod_t c, fmpz * const * exp, const fq_nmod_mpoly_ctx_t ctx)
              void fq_nmod_mpoly_push_term_fq_nmod_ffmpz(fq_nmod_mpoly_t A, const fq_nmod_t c, const fmpz * exp, const fq_nmod_mpoly_ctx_t ctx)
              void fq_nmod_mpoly_push_term_fq_nmod_ui(fq_nmod_mpoly_t A, const fq_nmod_t c, const ulong * exp, const fq_nmod_mpoly_ctx_t ctx)

    Append a term to *A* with coefficient *c* and exponent vector *exp*.
    This function runs in constant average time.

.. function:: void fq_nmod_mpoly_sort_terms(fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

    Sort the terms of *A* into the canonical ordering dictated by the ordering in *ctx*.
    This function simply reorders the terms: It does not combine like terms, nor does it delete terms with coefficient zero.
    This function runs in linear time in the bit size of *A*.

.. function:: void fq_nmod_mpoly_combine_like_terms(fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

    Combine adjacent like terms in *A* and delete terms with coefficient zero.
    If the terms of *A* were sorted to begin with, the result will be in canonical form.
    This function runs in linear time in the bit size of *A*.

.. function:: void fq_nmod_mpoly_reverse(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)

    Set *A* to the reversal of *B*.


Random generation
--------------------------------------------------------------------------------


.. function:: void fq_nmod_mpoly_randtest_bound(fq_nmod_mpoly_t A, flint_rand_t state, slong length, ulong exp_bound, const fq_nmod_mpoly_ctx_t ctx)

    Generate a random polynomial with length up to *length* and exponents in the range ``[0, exp_bound - 1]``.
    The exponents of each variable are generated by calls to  ``n_randint(state, exp_bound)``.

.. function:: void fq_nmod_mpoly_randtest_bounds(fq_nmod_mpoly_t A, flint_rand_t state, slong length, ulong * exp_bounds, const fq_nmod_mpoly_ctx_t ctx)

    Generate a random polynomial with length up to *length* and exponents in the range ``[0, exp_bounds[i] - 1]``.
    The exponents of the variable of index *i* are generated by calls to ``n_randint(state, exp_bounds[i])``.

.. function:: void fq_nmod_mpoly_randtest_bits(fq_nmod_mpoly_t A, flint_rand_t state, slong length, ulong exp_bits, const fq_nmod_mpoly_ctx_t ctx)

    Generate a random polynomial with length up to *length* and exponents whose packed form does not exceed the given bit count.


Addition/Subtraction
--------------------------------------------------------------------------------


.. function:: void fq_nmod_mpoly_add_fq_nmod(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_t C, const fq_nmod_mpoly_ctx_t ctx)

    Set *A* to `B + c`.

.. function:: void fq_nmod_mpoly_sub_fq_nmod(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_t C, const fq_nmod_mpoly_ctx_t ctx)

    Set *A* to `B - c`.

.. function:: void fq_nmod_mpoly_add(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_t C, const fq_nmod_mpoly_ctx_t ctx)

    Set *A* to `B + C`.

.. function:: void fq_nmod_mpoly_sub(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_t C, const fq_nmod_mpoly_ctx_t ctx)

    Set *A* to `B - C`.


Scalar operations
--------------------------------------------------------------------------------

.. function:: void fq_nmod_mpoly_neg(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)
    
    Set *A* to `-B`.

.. function:: void fq_nmod_mpoly_scalar_mul_fq_nmod(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_t c, const fq_nmod_mpoly_ctx_t ctx)

    Set *A* to `B \times c`.

.. function:: void fq_nmod_mpoly_make_monic(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)

    Set *A* to *B* divided by the leading coefficient of *B*.
    This throws if *B* is zero.


Differentiation
--------------------------------------------------------------------------------


.. function:: void fq_nmod_mpoly_derivative(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, slong var, const fq_nmod_mpoly_ctx_t ctx)

    Set *A* to the derivative of *B* with respect to the variable of index *var*.


Evaluation
--------------------------------------------------------------------------------

    These functions return `0` when the operation would imply unreasonable arithmetic.

.. function:: void fq_nmod_mpoly_evaluate_all_fq_nmod(fq_nmod_t ev, const fq_nmod_mpoly_t A, fq_nmod_struct * const * vals, const fq_nmod_mpoly_ctx_t ctx)

    Set *ev* the evaluation of *A* where the variables are replaced by the corresponding elements of the array *vals*.

.. function:: void fq_nmod_mpoly_evaluate_one_fq_nmod(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, slong var, const fq_nmod_t val, const fq_nmod_mpoly_ctx_t ctx)

    Set *A* to the evaluation of *B* where the variable of index *var* is replaced by *val*.

.. function:: int fq_nmod_mpoly_compose_fq_nmod_poly(fq_nmod_poly_t A, const fq_nmod_mpoly_t B, fq_nmod_poly_struct * const * C, const fq_nmod_mpoly_ctx_t ctx)

    Set *A* to the evaluation of *B* where the variables are replaced by the corresponding elements of the array *C*.
    The context object of *B* is *ctxB*.
    Return `1` for success and `0` for failure.

.. function:: int fq_nmod_mpoly_compose_fq_nmod_mpoly(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, fq_nmod_mpoly_struct * const * C, const fq_nmod_mpoly_ctx_t ctxB, const fq_nmod_mpoly_ctx_t ctxAC)

    Set *A* to the evaluation of *B* where the variables are replaced by the corresponding elements of the array *C*.
    Both *A* and the elements of *C* have context object *ctxAC*, while *B* has context object *ctxB*.
    Neither *A* nor *B* is allowed to alias any other polynomial.
    Return `1` for success and `0` for failure.

.. function:: void fq_nmod_mpoly_compose_fq_nmod_mpoly_gen(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const slong * c, const fq_nmod_mpoly_ctx_t ctxB, const fq_nmod_mpoly_ctx_t ctxAC)

    Set *A* to the evaluation of *B* where the variable of index *i* in *ctxB* is replaced by the variable of index ``c[i]`` in *ctxAC*.
    The length of the array *C* is the number of variables in *ctxB*.
    If any ``c[i]`` is negative, the corresponding variable of *B* is replaced by zero. Otherwise, it is expected that ``c[i]`` is less than the number of variables in *ctxAC*.


Multiplication
--------------------------------------------------------------------------------


.. function:: void fq_nmod_mpoly_mul(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_t C, const fq_nmod_mpoly_ctx_t ctx)

    Set *A* to *B* times *C*.


Powering
--------------------------------------------------------------------------------

    These functions return `0` when the operation would imply unreasonable arithmetic.

.. function:: int fq_nmod_mpoly_pow_fmpz(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fmpz_t k, const fq_nmod_mpoly_ctx_t ctx)

    Set *A* to `B` raised to the *k*-th power.
    Return `1` for success and `0` for failure.

.. function:: int fq_nmod_mpoly_pow_ui(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, ulong k, const fq_nmod_mpoly_ctx_t ctx)

    Set *A* to `B` raised to the *k*-th power.
    Return `1` for success and `0` for failure.


Division
--------------------------------------------------------------------------------


.. function:: int fq_nmod_mpoly_divides(fq_nmod_mpoly_t Q, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)

    If *A* is divisible by *B*, set *Q* to the exact quotient and return `1`. Otherwise, set *Q* to zero and return `0`.

.. function:: void fq_nmod_mpoly_div(fq_nmod_mpoly_t Q, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)

    Set *Q* to the quotient of *A* by *B*, discarding the remainder.

.. function:: void fq_nmod_mpoly_divrem(fq_nmod_mpoly_t Q, fq_nmod_mpoly_t R, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)

    Set *Q* and *R* to the quotient and remainder of *A* divided by *B*.

.. function:: void fq_nmod_mpoly_divrem_ideal(fq_nmod_mpoly_struct ** Q, fq_nmod_mpoly_t R, const fq_nmod_mpoly_t A, fq_nmod_mpoly_struct * const * B, slong len, const fq_nmod_mpoly_ctx_t ctx)

    This function is as per :func:`fq_nmod_mpoly_divrem` except that it takes an array of divisor polynomials *B* and it returns an array of quotient polynomials *Q*.
    The number of divisor (and hence quotient) polynomials, is given by *len*.


Greatest Common Divisor
--------------------------------------------------------------------------------

.. function:: void fq_nmod_mpoly_term_content(fq_nmod_mpoly_t M, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

    Set *M* to the GCD of the terms of *A*.
    If *A* is zero, *M* will be zero. Otherwise, *M* will be a monomial with coefficient one.

.. function:: int fq_nmod_mpoly_content_vars(fq_nmod_mpoly_t g, const fq_nmod_mpoly_t A, slong * vars, slong vars_length, const fq_nmod_mpoly_ctx_t ctx)

    Set *g* to the GCD of the coefficients of *A* when viewed as a polynomial in the variables *vars*.
    Return `1` for success and `0` for failure. Upon success, *g* will be independent of the variables *vars*.

.. function:: int fq_nmod_mpoly_gcd(fq_nmod_mpoly_t G, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)

    Try to set *G* to the monic GCD of *A* and *B*. The GCD of zero and zero is defined to be zero.
    If the return is `1` the function was successful. Otherwise the return is  `0` and *G* is left untouched.

.. function:: int fq_nmod_mpoly_gcd_cofactors(fq_nmod_mpoly_t G, fq_nmod_mpoly_t Abar, fq_nmod_mpoly_t Bbar, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)

    Do the operation of :func:`fq_nmod_mpoly_gcd` and also compute `Abar = A/G` and `Bbar = B/G` if successful.

.. function:: int fq_nmod_mpoly_gcd_brown(fq_nmod_mpoly_t G, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)
              int fq_nmod_mpoly_gcd_hensel(fq_nmod_mpoly_t G, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)
              int fq_nmod_mpoly_gcd_zippel(fq_nmod_mpoly_t G, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)

    Try to set *G* to the GCD of *A* and *B* using various algorithms.

.. function:: int fq_nmod_mpoly_resultant(fq_nmod_mpoly_t R, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, slong var, const fq_nmod_mpoly_ctx_t ctx)

    Try to set *R* to the resultant of *A* and *B* with respect to the variable of index *var*.

.. function:: int fq_nmod_mpoly_discriminant(fq_nmod_mpoly_t D, const fq_nmod_mpoly_t A, slong var, const fq_nmod_mpoly_ctx_t ctx)

    Try to set *D* to the discriminant of *A* with respect to the variable of index *var*.


Square Root
--------------------------------------------------------------------------------

.. function:: int fq_nmod_mpoly_sqrt(fq_nmod_mpoly_t Q, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

    If `Q^2=A` has a solution, set `Q` to a solution and return `1`, otherwise return `0` and set `Q` to zero.

.. function:: int fq_nmod_mpoly_is_square(const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

    Return `1` if *A* is a perfect square, otherwise return `0`.

.. function:: int fq_nmod_mpoly_quadratic_root(fq_nmod_mpoly_t Q, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)

    If `Q^2+AQ=B` has a solution, set `Q` to a solution and return `1`, otherwise return `0`.

Univariate Functions
--------------------------------------------------------------------------------

    An ``fq_nmod_mpoly_univar_t`` holds a univariate polynomial in some main variable
    with ``fq_nmod_mpoly_t`` coefficients in the remaining variables. These functions
    are useful when one wants to rewrite an element of `\mathbb{F}_q[x_1, \dots, x_m]`
    as an element of `(\mathbb{F}_q[x_1, \dots, x_{v-1}, x_{v+1}, \dots, x_m])[x_v]`
    and vice versa.

.. function:: void fq_nmod_mpoly_univar_init(fq_nmod_mpoly_univar_t A, const fq_nmod_mpoly_ctx_t ctx)

    Initialize *A*.

.. function:: void fq_nmod_mpoly_univar_clear(fq_nmod_mpoly_univar_t A, const fq_nmod_mpoly_ctx_t ctx)

    Clear *A*.

.. function:: void fq_nmod_mpoly_univar_swap(fq_nmod_mpoly_univar_t A, fq_nmod_mpoly_univar_t B, const fq_nmod_mpoly_ctx_t ctx)

    Swap *A* and `B`.

.. function:: void fq_nmod_mpoly_to_univar(fq_nmod_mpoly_univar_t A, const fq_nmod_mpoly_t B, slong var, const fq_nmod_mpoly_ctx_t ctx)

    Set *A* to a univariate form of *B* by pulling out the variable of index *var*.
    The coefficients of *A* will still belong to the content *ctx* but will not depend on the variable of index *var*.

.. function:: void fq_nmod_mpoly_from_univar(fq_nmod_mpoly_t A, const fq_nmod_mpoly_univar_t B, slong var, const fq_nmod_mpoly_ctx_t ctx)

    Set *A* to the normal form of *B* by putting in the variable of index *var*.
    This function is undefined if the coefficients of *B* depend on the variable of index *var*.

.. function:: int fq_nmod_mpoly_univar_degree_fits_si(const fq_nmod_mpoly_univar_t A, const fq_nmod_mpoly_ctx_t ctx)

    Return `1` if the degree of *A* with respect to the main variable fits an ``slong``. Otherwise, return `0`.

.. function:: slong fq_nmod_mpoly_univar_length(const fq_nmod_mpoly_univar_t A, const fq_nmod_mpoly_ctx_t ctx)

    Return the number of terms in *A* with respect to the main variable.

.. function:: slong fq_nmod_mpoly_univar_get_term_exp_si(fq_nmod_mpoly_univar_t A, slong i, const fq_nmod_mpoly_ctx_t ctx)

    Return the exponent of the term of index *i* of *A*.

.. function:: void fq_nmod_mpoly_univar_get_term_coeff(fq_nmod_mpoly_t c, const fq_nmod_mpoly_univar_t A, slong i, const fq_nmod_mpoly_ctx_t ctx)
              void fq_nmod_mpoly_univar_swap_term_coeff(fq_nmod_mpoly_t c, fq_nmod_mpoly_univar_t A, slong i, const fq_nmod_mpoly_ctx_t ctx)

    Set (resp. swap) *c* to (resp. with) the coefficient of the term of index *i* of *A*.