File: fq_nmod_poly_factor.rst

package info (click to toggle)
flint 3.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 68,996 kB
  • sloc: ansic: 915,350; asm: 14,605; python: 5,340; sh: 4,512; lisp: 2,621; makefile: 787; cpp: 341
file content (227 lines) | stat: -rw-r--r-- 10,521 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
.. _fq-nmod-poly-factor:

**fq_nmod_poly_factor.h** -- factorisation of univariate polynomials over finite fields (word-size characteristic)
==================================================================================================================

Types, macros and constants
-------------------------------------------------------------------------------

.. type:: fq_nmod_poly_factor_struct

.. type:: fq_nmod_poly_factor_t

Memory Management
--------------------------------------------------------------------------------


.. function:: void fq_nmod_poly_factor_init(fq_nmod_poly_factor_t fac, const fq_nmod_ctx_t ctx)

    Initialises ``fac`` for use. An :type:`fq_nmod_poly_factor_t`
    represents a polynomial in factorised form as a product of
    polynomials with associated exponents.

.. function:: void fq_nmod_poly_factor_clear(fq_nmod_poly_factor_t fac, const fq_nmod_ctx_t ctx)

    Frees all memory associated with ``fac``.

.. function:: void fq_nmod_poly_factor_realloc(fq_nmod_poly_factor_t fac, slong alloc, const fq_nmod_ctx_t ctx)

    Reallocates the factor structure to provide space for
    precisely ``alloc`` factors.

.. function:: void fq_nmod_poly_factor_fit_length(fq_nmod_poly_factor_t fac, slong len, const fq_nmod_ctx_t ctx)

    Ensures that the factor structure has space for at least
    ``len`` factors.  This function takes care of the case of
    repeated calls by always at least doubling the number of factors
    the structure can hold.


Basic Operations
--------------------------------------------------------------------------------


.. function:: void fq_nmod_poly_factor_set(fq_nmod_poly_factor_t res, const fq_nmod_poly_factor_t fac, const fq_nmod_ctx_t ctx)

    Sets ``res`` to the same factorisation as ``fac``.

.. function:: void fq_nmod_poly_factor_print_pretty(const fq_nmod_poly_factor_t fac, const char * var, const fq_nmod_ctx_t ctx)

    Pretty-prints the entries of ``fac`` to standard output.

.. function:: void fq_nmod_poly_factor_print(const fq_nmod_poly_factor_t fac, const fq_nmod_ctx_t ctx)

    Prints the entries of ``fac`` to standard output.

.. function:: void fq_nmod_poly_factor_insert(fq_nmod_poly_factor_t fac, const fq_nmod_poly_t poly, slong exp, const fq_nmod_ctx_t ctx)

    Inserts the factor ``poly`` with multiplicity ``exp`` into
    the factorisation ``fac``.

    If ``fac`` already contains ``poly``, then ``exp`` simply
    gets added to the exponent of the existing entry.

.. function:: void fq_nmod_poly_factor_concat(fq_nmod_poly_factor_t res, const fq_nmod_poly_factor_t fac, const fq_nmod_ctx_t ctx)

    Concatenates two factorisations.

    This is equivalent to calling :func:`fq_nmod_poly_factor_insert`
    repeatedly with the individual factors of ``fac``.

    Does not support aliasing between ``res`` and ``fac``.

.. function:: void fq_nmod_poly_factor_pow(fq_nmod_poly_factor_t fac, slong exp, const fq_nmod_ctx_t ctx)

    Raises ``fac`` to the power ``exp``.

.. function:: ulong fq_nmod_poly_remove(fq_nmod_poly_t f, const fq_nmod_poly_t p, const fq_nmod_ctx_t ctx)

    Removes the highest possible power of ``p`` from ``f`` and
    returns the exponent.


Irreducibility Testing
--------------------------------------------------------------------------------


.. function:: int fq_nmod_poly_is_irreducible(const fq_nmod_poly_t f, const fq_nmod_ctx_t ctx)

    Returns 1 if the polynomial ``f`` is irreducible, otherwise returns 0.

.. function:: int fq_nmod_poly_is_irreducible_ddf(const fq_nmod_poly_t f, const fq_nmod_ctx_t ctx)

    Returns 1 if the polynomial ``f`` is irreducible, otherwise returns 0.
    Uses fast distinct-degree factorisation.

.. function:: int fq_nmod_poly_is_irreducible_ben_or(const fq_nmod_poly_t f, const fq_nmod_ctx_t ctx)

    Returns 1 if the polynomial ``f`` is irreducible, otherwise returns 0.
    Uses Ben-Or's irreducibility test.

.. function:: int _fq_nmod_poly_is_squarefree(const fq_nmod_struct * f, slong len, const fq_nmod_ctx_t ctx)

    Returns 1 if ``(f, len)`` is squarefree, and 0 otherwise. As a
    special case, the zero polynomial is not considered squarefree.
    There are no restrictions on the length.

.. function:: int fq_nmod_poly_is_squarefree(const fq_nmod_poly_t f, const fq_nmod_ctx_t ctx)

    Returns 1 if ``f`` is squarefree, and 0 otherwise. As a special
    case, the zero polynomial is not considered squarefree.


Factorisation
--------------------------------------------------------------------------------


.. function:: int fq_nmod_poly_factor_equal_deg_prob(fq_nmod_poly_t factor, flint_rand_t state, const fq_nmod_poly_t pol, slong d, const fq_nmod_ctx_t ctx)

    Probabilistic equal degree factorisation of ``pol`` into
    irreducible factors of degree ``d``. If it passes, a factor is
    placed in factor and 1 is returned, otherwise 0 is returned and
    the value of factor is undetermined.

    Requires that ``pol`` be monic, non-constant and squarefree.

.. function:: void fq_nmod_poly_factor_equal_deg(fq_nmod_poly_factor_t factors, const fq_nmod_poly_t pol, slong d, const fq_nmod_ctx_t ctx)

    Assuming ``pol`` is a product of irreducible factors all of
    degree ``d``, finds all those factors and places them in
    factors.  Requires that ``pol`` be monic, non-constant and
    squarefree.

.. function:: void fq_nmod_poly_factor_split_single(fq_nmod_poly_t linfactor, const fq_nmod_poly_t input, const fq_nmod_ctx_t ctx)

    Assuming ``input`` is a product of factors all of degree 1, finds a single
    linear factor of ``input`` and places it in ``linfactor``.
    Requires that ``input`` be monic and non-constant.

.. function:: void fq_nmod_poly_factor_distinct_deg(fq_nmod_poly_factor_t res, const fq_nmod_poly_t poly, slong * const * degs, const fq_nmod_ctx_t ctx)

    Factorises a monic non-constant squarefree polynomial ``poly``
    of degree `n` into factors `f[d]` such that for `1 \leq d \leq n`
    `f[d]` is the product of the monic irreducible factors of
    ``poly`` of degree `d`. Factors are stored in ``res``,
    associated powers of irreducible polynomials are stored in
    ``degs`` in the same order as factors.

    Requires that ``degs`` have enough space for irreducible polynomials'
    powers (maximum space required is `n * sizeof(slong)`).

.. function:: void fq_nmod_poly_factor_squarefree(fq_nmod_poly_factor_t res, const fq_nmod_poly_t f, const fq_nmod_ctx_t ctx)

    Sets ``res`` to a squarefree factorization of ``f``.

.. function:: void fq_nmod_poly_factor(fq_nmod_poly_factor_t res, fq_nmod_t lead, const fq_nmod_poly_t f, const fq_nmod_ctx_t ctx)

    Factorises a non-constant polynomial ``f`` into monic
    irreducible factors choosing the best algorithm for given modulo
    and degree. The output ``lead`` is set to the leading coefficient of `f`
    upon return. Choice of algorithm is based on heuristic measurements.

.. function:: void fq_nmod_poly_factor_cantor_zassenhaus(fq_nmod_poly_factor_t res, const fq_nmod_poly_t f, const fq_nmod_ctx_t ctx)

    Factorises a non-constant polynomial ``f`` into monic
    irreducible factors using the Cantor-Zassenhaus algorithm.

.. function:: void fq_nmod_poly_factor_kaltofen_shoup(fq_nmod_poly_factor_t res, const fq_nmod_poly_t poly, const fq_nmod_ctx_t ctx)

    Factorises a non-constant polynomial ``f`` into monic
    irreducible factors using the fast version of Cantor-Zassenhaus
    algorithm proposed by Kaltofen and Shoup (1998). More precisely
    this algorithm uses a “baby step/giant step” strategy for the
    distinct-degree factorization step.

.. function:: void fq_nmod_poly_factor_berlekamp(fq_nmod_poly_factor_t factors, const fq_nmod_poly_t f, const fq_nmod_ctx_t ctx)

    Factorises a non-constant polynomial ``f`` into monic
    irreducible factors using the Berlekamp algorithm.

.. function:: void fq_nmod_poly_factor_with_berlekamp(fq_nmod_poly_factor_t res, fq_nmod_t leading_coeff, const fq_nmod_poly_t f, const fq_nmod_ctx_t ctx)

    Factorises a general polynomial ``f`` into monic irreducible
    factors and sets ``leading_coeff`` to the leading coefficient
    of ``f``, or 0 if ``f`` is the zero polynomial.

    This function first checks for small special cases, deflates
    ``f`` if it is of the form `p(x^m)` for some `m > 1`, then
    performs a square-free factorisation, and finally runs Berlekamp
    on all the individual square-free factors.

.. function:: void fq_nmod_poly_factor_with_cantor_zassenhaus(fq_nmod_poly_factor_t res, fq_nmod_t leading_coeff, const fq_nmod_poly_t f, const fq_nmod_ctx_t ctx)

    Factorises a general polynomial ``f`` into monic irreducible
    factors and sets ``leading_coeff`` to the leading coefficient
    of ``f``, or 0 if ``f`` is the zero polynomial.

    This function first checks for small special cases, deflates
    ``f`` if it is of the form `p(x^m)` for some `m > 1`, then
    performs a square-free factorisation, and finally runs
    Cantor-Zassenhaus on all the individual square-free factors.

.. function:: void fq_nmod_poly_factor_with_kaltofen_shoup(fq_nmod_poly_factor_t res, fq_nmod_t leading_coeff, const fq_nmod_poly_t f, const fq_nmod_ctx_t ctx)

    Factorises a general polynomial ``f`` into monic irreducible
    factors and sets ``leading_coeff`` to the leading coefficient
    of ``f``, or 0 if ``f`` is the zero polynomial.

    This function first checks for small special cases, deflates
    ``f`` if it is of the form `p(x^m)` for some `m > 1`, then
    performs a square-free factorisation, and finally runs
    Kaltofen-Shoup on all the individual square-free factors.

.. function:: void fq_nmod_poly_iterated_frobenius_preinv(fq_nmod_poly_t * rop, slong n, const fq_nmod_poly_t v, const fq_nmod_poly_t vinv, const fq_nmod_ctx_t ctx)

    Sets ``rop[i]`` to be `x^{q^i} \bmod v` for `0 \le i < n`.

    It is required that ``vinv`` is the inverse of the reverse of
    ``v`` mod ``x^lenv``.

Root Finding
--------------------------------------------------------------------------------

.. function:: void fq_nmod_poly_roots(fq_nmod_poly_factor_t r, const fq_nmod_poly_t f, int with_multiplicity, const fq_nmod_ctx_t ctx)

    Fill `r` with factors of the form `x - r_i` where the `r_i` are the distinct roots of a nonzero `f` in `F_q`.
    If `with\_multiplicity` is zero, the exponent `e_i` of the factor `x - r_i` is `1`. Otherwise, it is the largest `e_i` such that `(x-r_i)^e_i` divides `f`.
    This function throws if `f` is zero, but is otherwise always successful.