File: fq_zech_poly.rst

package info (click to toggle)
flint 3.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 68,996 kB
  • sloc: ansic: 915,350; asm: 14,605; python: 5,340; sh: 4,512; lisp: 2,621; makefile: 787; cpp: 341
file content (1424 lines) | stat: -rw-r--r-- 68,756 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
.. _fq-zech-poly:

**fq_zech_poly.h** -- univariate polynomials over finite fields (Zech logarithm representation)
===============================================================================================

We represent a polynomial in `\mathbf{F}_q[X]` as a ``struct`` which
includes an array ``coeffs`` with the coefficients, as well as the
length ``length`` and the number ``alloc`` of coefficients for which
memory has been allocated.

As a data structure, we call this polynomial *normalised* if the top
coefficient is non-zero.

Unless otherwise stated here, all functions that deal with polynomials
assume that the `\mathbf{F}_q` context of said polynomials are
compatible, i.e., it assumes that the fields are generated by the same
polynomial.


Types, macros and constants
-------------------------------------------------------------------------------

.. type:: fq_zech_poly_struct

.. type:: fq_zech_poly_t

Memory management
--------------------------------------------------------------------------------


.. function:: void fq_zech_poly_init(fq_zech_poly_t poly, const fq_zech_ctx_t ctx)

    Initialises ``poly`` for use, with context ctx, and setting its
    length to zero. A corresponding call to :func:`fq_zech_poly_clear`
    must be made after finishing with the ``fq_zech_poly_t`` to free the
    memory used by the polynomial.

.. function:: void fq_zech_poly_init2(fq_zech_poly_t poly, slong alloc, const fq_zech_ctx_t ctx)

    Initialises ``poly`` with space for at least ``alloc``
    coefficients and sets the length to zero.  The allocated
    coefficients are all set to zero.  A corresponding call to
    :func:`fq_zech_poly_clear` must be made after finishing with the
    ``fq_zech_poly_t`` to free the memory used by the polynomial.

.. function:: void fq_zech_poly_realloc(fq_zech_poly_t poly, slong alloc, const fq_zech_ctx_t ctx)

    Reallocates the given polynomial to have space for ``alloc``
    coefficients.  If ``alloc`` is zero the polynomial is cleared
    and then reinitialised.  If the current length is greater than
    ``alloc`` the polynomial is first truncated to length
    ``alloc``.

.. function:: void fq_zech_poly_fit_length(fq_zech_poly_t poly, slong len, const fq_zech_ctx_t ctx)

    If ``len`` is greater than the number of coefficients currently
    allocated, then the polynomial is reallocated to have space for at
    least ``len`` coefficients.  No data is lost when calling this
    function.

    The function efficiently deals with the case where
    ``fit_length`` is called many times in small increments by at
    least doubling the number of allocated coefficients when length is
    larger than the number of coefficients currently allocated.

.. function:: void _fq_zech_poly_set_length(fq_zech_poly_t poly, slong newlen, const fq_zech_ctx_t ctx)

    Sets the coefficients of ``poly`` beyond ``len`` to zero and
    sets the length of ``poly`` to ``len``.

.. function:: void fq_zech_poly_clear(fq_zech_poly_t poly, const fq_zech_ctx_t ctx)

    Clears the given polynomial, releasing any memory used.  It must
    be reinitialised in order to be used again.

.. function:: void _fq_zech_poly_normalise(fq_zech_poly_t poly, const fq_zech_ctx_t ctx)

    Sets the length of ``poly`` so that the top coefficient is
    non-zero.  If all coefficients are zero, the length is set to
    zero.  This function is mainly used internally, as all functions
    guarantee normalisation.

.. function:: void _fq_zech_poly_normalise2(const fq_zech_struct * poly, slong * length, const fq_zech_ctx_t ctx)

    Sets the length ``length`` of ``(poly,length)`` so that the
    top coefficient is non-zero. If all coefficients are zero, the
    length is set to zero. This function is mainly used internally, as
    all functions guarantee normalisation.

.. function:: void fq_zech_poly_truncate(fq_zech_poly_t poly, slong newlen, const fq_zech_ctx_t ctx)

    Truncates the polynomial to length at most `n`.

.. function:: void fq_zech_poly_set_trunc(fq_zech_poly_t poly1, fq_zech_poly_t poly2, slong newlen, const fq_zech_ctx_t ctx)

    Sets ``poly1`` to ``poly2`` truncated to length `n`.

.. function:: void _fq_zech_poly_reverse(fq_zech_struct * output, const fq_zech_struct * input, slong len, slong m, const fq_zech_ctx_t ctx)

    Sets ``output`` to the reverse of ``input``, which is of
    length ``len``, but thinking of it as a polynomial of
    length ``m``, notionally zero-padded if necessary. The
    length ``m`` must be non-negative, but there are no other
    restrictions. The polynomial ``output`` must have space for
    ``m`` coefficients.

.. function:: void fq_zech_poly_reverse(fq_zech_poly_t output, const fq_zech_poly_t input, slong m, const fq_zech_ctx_t ctx)

    Sets ``output`` to the reverse of ``input``, thinking of it
    as a polynomial of length ``m``, notionally zero-padded if
    necessary).  The length ``m`` must be non-negative, but there
    are no other restrictions. The output polynomial will be set to
    length ``m`` and then normalised.


Polynomial parameters
--------------------------------------------------------------------------------


.. function:: slong fq_zech_poly_degree(const fq_zech_poly_t poly, const fq_zech_ctx_t ctx)

    Returns the degree of the polynomial ``poly``.

.. function:: slong fq_zech_poly_length(const fq_zech_poly_t poly, const fq_zech_ctx_t ctx)

    Returns the length of the polynomial ``poly``.

.. function:: fq_zech_struct * fq_zech_poly_lead(const fq_zech_poly_t poly, const fq_zech_ctx_t ctx)

    Returns a pointer to the leading coefficient of ``poly``, or
    ``NULL`` if ``poly`` is the zero polynomial.


Randomisation
--------------------------------------------------------------------------------


.. function:: void fq_zech_poly_randtest(fq_zech_poly_t f, flint_rand_t state, slong len, const fq_zech_ctx_t ctx)

    Sets `f` to a random polynomial of length at most ``len``
    with entries in the field described by ``ctx``.

.. function:: void fq_zech_poly_randtest_not_zero(fq_zech_poly_t f, flint_rand_t state, slong len, const fq_zech_ctx_t ctx)

    Same as ``fq_zech_poly_randtest`` but guarantees that the polynomial
    is not zero.

.. function:: void fq_zech_poly_randtest_monic(fq_zech_poly_t f, flint_rand_t state, slong len, const fq_zech_ctx_t ctx)

    Sets `f` to a random monic polynomial of length ``len`` with
    entries in the field described by ``ctx``.

.. function:: void fq_zech_poly_randtest_irreducible(fq_zech_poly_t f, flint_rand_t state, slong len, const fq_zech_ctx_t ctx)

    Sets `f` to a random monic, irreducible polynomial of length
    ``len`` with entries in the field described by ``ctx``.


Assignment and basic manipulation
--------------------------------------------------------------------------------


.. function:: void _fq_zech_poly_set(fq_zech_struct * rop, const fq_zech_struct * op, slong len, const fq_zech_ctx_t ctx)

    Sets ``(rop, len``) to ``(op, len)``.

.. function:: void fq_zech_poly_set(fq_zech_poly_t poly1, const fq_zech_poly_t poly2, const fq_zech_ctx_t ctx)

    Sets the polynomial ``poly1`` to the polynomial ``poly2``.

.. function:: void fq_zech_poly_set_fq_zech(fq_zech_poly_t poly, const fq_zech_t c, const fq_zech_ctx_t ctx)

    Sets the polynomial ``poly`` to ``c``.

.. function:: void fq_zech_poly_set_fmpz_mod_poly(fq_zech_poly_t rop, const fmpz_mod_poly_t op, const fq_zech_ctx_t ctx)

    Sets the polynomial ``rop`` to the polynomial ``op``

.. function:: void fq_zech_poly_set_nmod_poly(fq_zech_poly_t rop, const nmod_poly_t op, const fq_zech_ctx_t ctx)

    Sets the polynomial ``rop`` to the polynomial ``op``

.. function:: void fq_zech_poly_swap(fq_zech_poly_t op1, fq_zech_poly_t op2, const fq_zech_ctx_t ctx)

    Swaps the two polynomials ``op1`` and ``op2``.

.. function:: void _fq_zech_poly_zero(fq_zech_struct * rop, slong len, const fq_zech_ctx_t ctx)

    Sets ``(rop, len)`` to the zero polynomial.

.. function:: void fq_zech_poly_zero(fq_zech_poly_t poly, const fq_zech_ctx_t ctx)

    Sets ``poly`` to the zero polynomial.

.. function:: void fq_zech_poly_one(fq_zech_poly_t poly, const fq_zech_ctx_t ctx)

    Sets ``poly`` to the constant polynomial `1`.

.. function:: void fq_zech_poly_gen(fq_zech_poly_t poly, const fq_zech_ctx_t ctx)

    Sets ``poly`` to the polynomial `x`.

.. function:: void fq_zech_poly_make_monic(fq_zech_poly_t rop, const fq_zech_poly_t op, const fq_zech_ctx_t ctx)

     Sets ``rop`` to ``op``, normed to have leading coefficient 1.

.. function:: void _fq_zech_poly_make_monic(fq_zech_struct * rop, const fq_zech_struct * op, slong length, const fq_zech_ctx_t ctx)

     Sets ``rop`` to ``(op,length)``, normed to have leading coefficient 1.
     Assumes that ``rop`` has enough space for the polynomial, assumes that
     ``op`` is not zero (and thus has an invertible leading coefficient).


Getting and setting coefficients
--------------------------------------------------------------------------------


.. function:: void fq_zech_poly_get_coeff(fq_zech_t x, const fq_zech_poly_t poly, slong n, const fq_zech_ctx_t ctx)

    Sets `x` to the coefficient of `X^n` in ``poly``.

.. function:: void fq_zech_poly_set_coeff(fq_zech_poly_t poly, slong n, const fq_zech_t x, const fq_zech_ctx_t ctx)

    Sets the coefficient of `X^n` in ``poly`` to `x`.

.. function:: void fq_zech_poly_set_coeff_fmpz(fq_zech_poly_t poly, slong n, const fmpz_t x, const fq_zech_ctx_t ctx)

    Sets the coefficient of `X^n` in the polynomial to `x`,
    assuming `n \geq 0`.


Comparison
--------------------------------------------------------------------------------


.. function:: int fq_zech_poly_equal(const fq_zech_poly_t poly1, const fq_zech_poly_t poly2, const fq_zech_ctx_t ctx)

    Returns nonzero if the two polynomials ``poly1`` and ``poly2``
    are equal, otherwise return zero.

.. function:: int fq_zech_poly_equal_trunc(const fq_zech_poly_t poly1, const fq_zech_poly_t poly2, slong n, const fq_zech_ctx_t ctx)

    Notionally truncate ``poly1`` and ``poly2`` to length `n` and
    return nonzero if they are equal, otherwise return zero.

.. function:: int fq_zech_poly_is_zero(const fq_zech_poly_t poly, const fq_zech_ctx_t ctx)

    Returns whether the polynomial ``poly`` is the zero polynomial.

.. function:: int fq_zech_poly_is_one(const fq_zech_poly_t op, const fq_zech_ctx_t ctx)

    Returns whether the polynomial ``poly`` is equal
    to the constant polynomial `1`.

.. function:: int fq_zech_poly_is_gen(const fq_zech_poly_t op, const fq_zech_ctx_t ctx)

    Returns whether the polynomial ``poly`` is equal
    to the polynomial `x`.

.. function:: int fq_zech_poly_is_unit(const fq_zech_poly_t op, const fq_zech_ctx_t ctx)

    Returns whether the polynomial ``poly`` is a unit in the polynomial
    ring `\mathbf{F}_q[X]`, i.e. if it has degree `0` and is non-zero.

.. function:: int fq_zech_poly_equal_fq_zech(const fq_zech_poly_t poly, const fq_zech_t c, const fq_zech_ctx_t ctx)

    Returns whether the polynomial ``poly`` is equal the (constant)
    `\mathbf{F}_q` element ``c``


Addition and subtraction
--------------------------------------------------------------------------------


.. function:: void _fq_zech_poly_add(fq_zech_struct * res, const fq_zech_struct * poly1, slong len1, const fq_zech_struct * poly2, slong len2, const fq_zech_ctx_t ctx)

    Sets ``res`` to the sum of ``(poly1,len1)`` and ``(poly2,len2)``.

.. function:: void fq_zech_poly_add(fq_zech_poly_t res, const fq_zech_poly_t poly1, const fq_zech_poly_t poly2, const fq_zech_ctx_t ctx)

    Sets ``res`` to the sum of ``poly1`` and ``poly2``.

.. function:: void fq_zech_poly_add_si(fq_zech_poly_t res, const fq_zech_poly_t poly1, slong c, const fq_zech_ctx_t ctx)

    Sets ``res`` to the sum of ``poly1`` and ``c``.

.. function:: void fq_zech_poly_add_series(fq_zech_poly_t res, const fq_zech_poly_t poly1, const fq_zech_poly_t poly2, slong n, const fq_zech_ctx_t ctx)

    Notionally truncate ``poly1`` and ``poly2`` to length ``n`` and set
    ``res`` to the sum.

.. function:: void _fq_zech_poly_sub(fq_zech_struct * res, const fq_zech_struct * poly1, slong len1, const fq_zech_struct * poly2, slong len2, const fq_zech_ctx_t ctx)

    Sets ``res`` to the difference of ``(poly1,len1)`` and
    ``(poly2,len2)``.

.. function:: void fq_zech_poly_sub(fq_zech_poly_t res, const fq_zech_poly_t poly1, const fq_zech_poly_t poly2, const fq_zech_ctx_t ctx)

    Sets ``res`` to the difference of ``poly1`` and ``poly2``.

.. function:: void fq_zech_poly_sub_series(fq_zech_poly_t res, const fq_zech_poly_t poly1, const fq_zech_poly_t poly2, slong n, const fq_zech_ctx_t ctx)

    Notionally truncate ``poly1`` and ``poly2`` to length ``n`` and set
    ``res`` to the difference.

.. function:: void _fq_zech_poly_neg(fq_zech_struct * rop, const fq_zech_struct * op, slong len, const fq_zech_ctx_t ctx)

    Sets ``rop`` to the additive inverse of ``(op,len)``.

.. function:: void fq_zech_poly_neg(fq_zech_poly_t res, const fq_zech_poly_t poly, const fq_zech_ctx_t ctx)

    Sets ``res`` to the additive inverse of ``poly``.


Scalar multiplication and division
--------------------------------------------------------------------------------


.. function:: void _fq_zech_poly_scalar_mul_fq_zech(fq_zech_struct * rop, const fq_zech_struct * op, slong len, const fq_zech_t x, const fq_zech_ctx_t ctx)

    Sets ``(rop,len)`` to the product of ``(op,len)`` by the
    scalar ``x``, in the context defined by ``ctx``.

.. function:: void fq_zech_poly_scalar_mul_fq_zech(fq_zech_poly_t rop, const fq_zech_poly_t op, const fq_zech_t x, const fq_zech_ctx_t ctx)

    Sets ``rop`` to the product of ``op`` by the scalar ``x``, in the context
    defined by ``ctx``.

.. function:: void _fq_zech_poly_scalar_addmul_fq_zech(fq_zech_struct * rop, const fq_zech_struct * op, slong len, const fq_zech_t x, const fq_zech_ctx_t ctx)

    Adds to ``(rop,len)`` the product of ``(op,len)`` by the
    scalar ``x``, in the context defined by ``ctx``.
    In particular, assumes the same length for ``op`` and
    ``rop``.

.. function:: void fq_zech_poly_scalar_addmul_fq_zech(fq_zech_poly_t rop, const fq_zech_poly_t op, const fq_zech_t x, const fq_zech_ctx_t ctx)

    Adds to ``rop`` the product of ``op`` by the
    scalar ``x``, in the context defined by ``ctx``.

.. function:: void _fq_zech_poly_scalar_submul_fq_zech(fq_zech_struct * rop, const fq_zech_struct * op, slong len, const fq_zech_t x, const fq_zech_ctx_t ctx)

    Subtracts from ``(rop,len)`` the product of ``(op,len)`` by the
    scalar ``x``, in the context defined by ``ctx``.
    In particular, assumes the same length for ``op`` and
    ``rop``.

.. function:: void fq_zech_poly_scalar_submul_fq_zech(fq_zech_poly_t rop, const fq_zech_poly_t op, const fq_zech_t x, const fq_zech_ctx_t ctx)

    Subtracts from ``rop`` the product of ``op`` by the
    scalar ``x``, in the context defined by ``ctx``.

.. function:: void _fq_zech_poly_scalar_div_fq_zech(fq_zech_struct * rop, const fq_zech_struct * op, slong len, const fq_zech_t x, const fq_zech_ctx_t ctx)

    Sets ``(rop,len)`` to the quotient of ``(op,len)`` by the
    scalar ``x``, in the context defined by ``ctx``. An exception is raised
    if ``x`` is zero.

.. function:: void fq_zech_poly_scalar_div_fq_zech(fq_zech_poly_t rop, const fq_zech_poly_t op, const fq_zech_t x, const fq_zech_ctx_t ctx)

    Sets ``rop`` to the quotient of ``op`` by the scalar ``x``, in the context
    defined by ``ctx``. An exception is raised if ``x`` is zero.

Multiplication
--------------------------------------------------------------------------------


.. function:: void _fq_zech_poly_mul_classical(fq_zech_struct * rop, const fq_zech_struct * op1, slong len1, const fq_zech_struct * op2, slong len2, const fq_zech_ctx_t ctx)

    Sets ``(rop, len1 + len2 - 1)`` to the product of ``(op1, len1)``
    and ``(op2, len2)``, assuming that ``len1`` is at least ``len2``
    and neither is zero.

    Permits zero padding.  Does not support aliasing of ``rop``
    with either ``op1`` or ``op2``.

.. function:: void fq_zech_poly_mul_classical(fq_zech_poly_t rop, const fq_zech_poly_t op1, const fq_zech_poly_t op2, const fq_zech_ctx_t ctx)

    Sets ``rop`` to the product of ``op1`` and ``op2``
    using classical polynomial multiplication.

.. function:: void _fq_zech_poly_mul_reorder(fq_zech_struct * rop, const fq_zech_struct * op1, slong len1, const fq_zech_struct * op2, slong len2, const fq_zech_ctx_t ctx)

    Sets ``(rop, len1 + len2 - 1)`` to the product of ``(op1, len1)``
    and ``(op2, len2)``, assuming that ``len1`` and ``len2`` are
    non-zero.

    Permits zero padding.  Supports aliasing.

.. function:: void fq_zech_poly_mul_reorder(fq_zech_poly_t rop, const fq_zech_poly_t op1, const fq_zech_poly_t op2, const fq_zech_ctx_t ctx)

    Sets ``rop`` to the product of ``op1`` and ``op2``,
    reordering the two indeterminates `X` and `Y` when viewing
    the polynomials as elements of `\mathbf{F}_p[X,Y]`.

    Suppose `\mathbf{F}_q = \mathbf{F}_p[X]/ (f(X))` and recall
    that elements of `\mathbf{F}_q` are internally represented
    by elements of type ``fmpz_poly``.  For small degree extensions
    but polynomials in `\mathbf{F}_q[Y]` of large degree `n`, we
    change the representation to


    .. math::


        \begin{split}
        g(Y) & = \sum_{i=0}^{n} a_i(X) Y^i \\
             & = \sum_{j=0}^{d} \sum_{i=0}^{n} \text{Coeff}(a_i(X), j) Y^i.
        \end{split}



    This allows us to use a poor algorithm (such as classical multiplication)
    in the `X`-direction and leverage the existing fast integer
    multiplication routines in the `Y`-direction where the polynomial
    degree `n` is large.

.. function:: void _fq_zech_poly_mul_KS(fq_zech_struct * rop, const fq_zech_struct * op1, slong len1, const fq_zech_struct * op2, slong len2, const fq_zech_ctx_t ctx)

    Sets ``(rop, len1 + len2 - 1)`` to the product of ``(op1, len1)``
    and ``(op2, len2)``.

    Permits zero padding and places no assumptions on the
    lengths ``len1`` and ``len2``.  Supports aliasing.

.. function:: void fq_zech_poly_mul_KS(fq_zech_poly_t rop, const fq_zech_poly_t op1, const fq_zech_poly_t op2, const fq_zech_ctx_t ctx)

    Sets ``rop`` to the product of ``op1`` and ``op2``
    using Kronecker substitution, that is, by encoding each
    coefficient in `\mathbf{F}_{q}` as an integer and reducing
    this problem to multiplying two polynomials over the integers.

.. function:: void _fq_zech_poly_mul(fq_zech_struct * rop, const fq_zech_struct * op1, slong len1, const fq_zech_struct * op2, slong len2, const fq_zech_ctx_t ctx)

    Sets ``(rop, len1 + len2 - 1)`` to the product of ``(op1, len1)``
    and ``(op2, len2)``, choosing an appropriate algorithm.

    Permits zero padding.  Does not support aliasing.

.. function:: void fq_zech_poly_mul(fq_zech_poly_t rop, const fq_zech_poly_t op1, const fq_zech_poly_t op2, const fq_zech_ctx_t ctx)

    Sets ``rop`` to the product of ``op1`` and ``op2``,
    choosing an appropriate algorithm.

.. function:: void _fq_zech_poly_mullow_classical(fq_zech_struct * rop, const fq_zech_struct * op1, slong len1, const fq_zech_struct * op2, slong len2, slong n, const fq_zech_ctx_t ctx)

    Sets ``(rop, n)`` to the first `n` coefficients of
    ``(op1, len1)`` multiplied by ``(op2, len2)``.

    Assumes ``0 < n <= len1 + len2 - 1``.  Assumes neither
    ``len1`` nor ``len2`` is zero.

.. function:: void fq_zech_poly_mullow_classical(fq_zech_poly_t rop, const fq_zech_poly_t op1, const fq_zech_poly_t op2, slong n, const fq_zech_ctx_t ctx)

    Sets ``rop`` to the product of ``op1`` and ``op2``,
    computed using the classical or schoolbook method.

.. function:: void _fq_zech_poly_mullow_KS(fq_zech_struct * rop, const fq_zech_struct * op1, slong len1, const fq_zech_struct * op2, slong len2, slong n, const fq_zech_ctx_t ctx)

    Sets ``(rop, n)`` to the lowest `n` coefficients of the product of
    ``(op1, len1)`` and ``(op2, len2)``.

    Assumes that ``len1`` and ``len2`` are positive, but does allow
    for the polynomials to be zero-padded.  The polynomials may be zero,
    too.  Assumes `n` is positive.  Supports aliasing between ``rop``,
    ``op1`` and ``op2``.

.. function:: void fq_zech_poly_mullow_KS(fq_zech_poly_t rop, const fq_zech_poly_t op1, const fq_zech_poly_t op2, slong n, const fq_zech_ctx_t ctx)

    Sets ``rop`` to the product of ``op1`` and ``op2``.

.. function:: void _fq_zech_poly_mullow(fq_zech_struct * rop, const fq_zech_struct * op1, slong len1, const fq_zech_struct * op2, slong len2, slong n, const fq_zech_ctx_t ctx)

    Sets ``(rop, n)`` to the lowest `n` coefficients of the product of
    ``(op1, len1)`` and ``(op2, len2)``.

    Assumes ``0 < n <= len1 + len2 - 1``.  Allows for zero-padding in
    the inputs.  Does not support aliasing between the inputs and the output.

.. function:: void fq_zech_poly_mullow(fq_zech_poly_t rop, const fq_zech_poly_t op1, const fq_zech_poly_t op2, slong n, const fq_zech_ctx_t ctx)

    Sets ``rop`` to the lowest `n` coefficients of the product of
    ``op1`` and ``op2``.

.. function:: void _fq_zech_poly_mulhigh_classical(fq_zech_struct * res, const fq_zech_struct * poly1, slong len1, const fq_zech_struct * poly2, slong len2, slong start, const fq_zech_ctx_t ctx)

    Computes the product of ``(poly1, len1)`` and ``(poly2, len2)``
    and writes the coefficients from ``start`` onwards into the high
    coefficients of ``res``, the remaining coefficients being arbitrary
    but reduced.  Assumes that ``len1 >= len2 > 0``. Aliasing of inputs
    and output is not permitted.  Algorithm is classical multiplication.

.. function:: void fq_zech_poly_mulhigh_classical(fq_zech_poly_t res, const fq_zech_poly_t poly1, const fq_zech_poly_t poly2, slong start, const fq_zech_ctx_t ctx)

    Computes the product of ``poly1`` and ``poly2`` and writes the
    coefficients from ``start`` onwards into the high coefficients of
    ``res``, the remaining coefficients being arbitrary but reduced.
    Algorithm is classical multiplication.

.. function:: void _fq_zech_poly_mulhigh(fq_zech_struct * res, const fq_zech_struct * poly1, slong len1, const fq_zech_struct * poly2, slong len2, slong start, fq_zech_ctx_t ctx)

    Computes the product of ``(poly1, len1)`` and ``(poly2, len2)``
    and writes the coefficients from ``start`` onwards into the high
    coefficients of ``res``, the remaining coefficients being arbitrary
    but reduced.  Assumes that ``len1 >= len2 > 0``. Aliasing of inputs
    and output is not permitted.

.. function:: void fq_zech_poly_mulhigh(fq_zech_poly_t res, const fq_zech_poly_t poly1, const fq_zech_poly_t poly2, slong start, const fq_zech_ctx_t ctx)

    Computes the product of ``poly1`` and ``poly2`` and writes the
    coefficients from ``start`` onwards into the high coefficients of
    ``res``, the remaining coefficients being arbitrary but reduced.

.. function:: void _fq_zech_poly_mulmod(fq_zech_struct * res, const fq_zech_struct * poly1, slong len1, const fq_zech_struct * poly2, slong len2, const fq_zech_struct * f, slong lenf, const fq_zech_ctx_t ctx)

    Sets ``res`` to the remainder of the product of ``poly1``
    and ``poly2`` upon polynomial division by ``f``.

    It is required that ``len1 + len2 - lenf > 0``, which is
    equivalent to requiring that the result will actually be
    reduced. Otherwise, simply use ``_fq_zech_poly_mul`` instead.

    Aliasing of ``f`` and ``res`` is not permitted.

.. function:: void fq_zech_poly_mulmod(fq_zech_poly_t res, const fq_zech_poly_t poly1, const fq_zech_poly_t poly2, const fq_zech_poly_t f, const fq_zech_ctx_t ctx)

    Sets ``res`` to the remainder of the product of ``poly1``
    and ``poly2`` upon polynomial division by ``f``.

.. function:: void _fq_zech_poly_mulmod_preinv(fq_zech_struct * res, const fq_zech_struct * poly1, slong len1, const fq_zech_struct * poly2, slong len2, const fq_zech_struct * f, slong lenf, const fq_zech_struct * finv, slong lenfinv, const fq_zech_ctx_t ctx)

    Sets ``res`` to the remainder of the product of ``poly1``
    and ``poly2`` upon polynomial division by ``f``.

    It is required that ``finv`` is the inverse of the reverse of
    ``f`` mod ``x^lenf``.

    Aliasing of ``res`` with any of the inputs is not permitted.

.. function:: void fq_zech_poly_mulmod_preinv(fq_zech_poly_t res, const fq_zech_poly_t poly1, const fq_zech_poly_t poly2, const fq_zech_poly_t f, const fq_zech_poly_t finv, const fq_zech_ctx_t ctx)

    Sets ``res`` to the remainder of the product of ``poly1``
    and ``poly2`` upon polynomial division by ``f``. ``finv``
    is the inverse of the reverse of ``f``.


Squaring
--------------------------------------------------------------------------------


.. function:: void _fq_zech_poly_sqr_classical(fq_zech_struct * rop, const fq_zech_struct * op, slong len, const fq_zech_ctx_t ctx)

    Sets ``(rop, 2*len - 1)`` to the square of ``(op, len)``,
    assuming that ``(op,len)`` is not zero and using classical
    polynomial multiplication.

    Permits zero padding.  Does not support aliasing of ``rop``
    with either ``op1`` or ``op2``.

.. function:: void fq_zech_poly_sqr_classical(fq_zech_poly_t rop, const fq_zech_poly_t op, const fq_zech_ctx_t ctx)

    Sets ``rop`` to the square of ``op`` using classical
    polynomial multiplication.


.. function:: void _fq_zech_poly_sqr_KS(fq_zech_struct * rop, const fq_zech_struct * op, slong len, const fq_zech_ctx_t ctx)

    Sets ``(rop, 2*len - 1)`` to the square of ``(op, len)``.

    Permits zero padding and places no assumptions on the
    lengths ``len1`` and ``len2``.  Supports aliasing.

.. function:: void fq_zech_poly_sqr_KS(fq_zech_poly_t rop, const fq_zech_poly_t op, const fq_zech_ctx_t ctx)

    Sets ``rop`` to the square ``op`` using Kronecker substitution,
    that is, by encoding each coefficient in `\mathbf{F}_{q}` as an integer
    and reducing this problem to multiplying two polynomials over the integers.

.. function:: void _fq_zech_poly_sqr(fq_zech_struct * rop, const fq_zech_struct * op, slong len, const fq_zech_ctx_t ctx)

    Sets ``(rop, 2 * len - 1)`` to the square of ``(op, len)``,
    choosing an appropriate algorithm.

    Permits zero padding.  Does not support aliasing.

.. function:: void fq_zech_poly_sqr(fq_zech_poly_t rop, const fq_zech_poly_t op, const fq_zech_ctx_t ctx)

    Sets ``rop`` to the square of ``op``,
    choosing an appropriate algorithm.



Powering
--------------------------------------------------------------------------------


.. function:: void _fq_zech_poly_pow(fq_zech_struct * rop, const fq_zech_struct * op, slong len, ulong e, const fq_zech_ctx_t ctx)

    Sets ``rop = op^e``, assuming that ``e, len > 0`` and that
    ``res`` has space for ``e*(len - 1) + 1`` coefficients.  Does
    not support aliasing.

.. function:: void fq_zech_poly_pow(fq_zech_poly_t rop, const fq_zech_poly_t op, ulong e, const fq_zech_ctx_t ctx)

    Computes ``rop = op^e``.  If `e` is zero, returns one,
    so that in particular ``0^0 = 1``.

.. function:: void _fq_zech_poly_powmod_ui_binexp(fq_zech_struct * res, const fq_zech_struct * poly, ulong e, const fq_zech_struct * f, slong lenf, const fq_zech_ctx_t ctx)

    Sets ``res`` to ``poly`` raised to the power ``e`` modulo
    ``f``, using binary exponentiation. We require ``e > 0``.

    We require ``lenf > 1``. It is assumed that ``poly`` is
    already reduced modulo ``f`` and zero-padded as necessary to
    have length exactly ``lenf - 1``. The output ``res`` must
    have room for ``lenf - 1`` coefficients.

.. function:: void fq_zech_poly_powmod_ui_binexp(fq_zech_poly_t res, const fq_zech_poly_t poly, ulong e, const fq_zech_poly_t f, const fq_zech_ctx_t ctx)

    Sets ``res`` to ``poly`` raised to the power ``e`` modulo
    ``f``, using binary exponentiation. We require ``e >= 0``.

.. function:: void _fq_zech_poly_powmod_ui_binexp_preinv(fq_zech_struct * res, const fq_zech_struct * poly, ulong e, const fq_zech_struct * f, slong lenf, const fq_zech_struct * finv, slong lenfinv, const fq_zech_ctx_t ctx)

    Sets ``res`` to ``poly`` raised to the power ``e`` modulo
    ``f``, using binary exponentiation. We require ``e > 0``.
    We require ``finv`` to be the inverse of the reverse of
    ``f``.

    We require ``lenf > 1``. It is assumed that ``poly`` is
    already reduced modulo ``f`` and zero-padded as necessary to
    have length exactly ``lenf - 1``. The output ``res`` must
    have room for ``lenf - 1`` coefficients.

.. function:: void fq_zech_poly_powmod_ui_binexp_preinv(fq_zech_poly_t res, const fq_zech_poly_t poly, ulong e, const fq_zech_poly_t f, const fq_zech_poly_t finv, const fq_zech_ctx_t ctx)

    Sets ``res`` to ``poly`` raised to the power ``e`` modulo
    ``f``, using binary exponentiation. We require ``e >= 0``.
    We require ``finv`` to be the inverse of the reverse of
    ``f``.

.. function:: void _fq_zech_poly_powmod_fmpz_binexp(fq_zech_struct * res, const fq_zech_struct * poly, const fmpz_t e, const fq_zech_struct * f, slong lenf, const fq_zech_ctx_t ctx)

    Sets ``res`` to ``poly`` raised to the power ``e`` modulo
    ``f``, using binary exponentiation. We require ``e > 0``.

    We require ``lenf > 1``. It is assumed that ``poly`` is
    already reduced modulo ``f`` and zero-padded as necessary to
    have length exactly ``lenf - 1``. The output ``res`` must
    have room for ``lenf - 1`` coefficients.

.. function:: void fq_zech_poly_powmod_fmpz_binexp(fq_zech_poly_t res, const fq_zech_poly_t poly, const fmpz_t e, const fq_zech_poly_t f, const fq_zech_ctx_t ctx)

    Sets ``res`` to ``poly`` raised to the power ``e`` modulo
    ``f``, using binary exponentiation. We require ``e >= 0``.

.. function:: void _fq_zech_poly_powmod_fmpz_binexp_preinv(fq_zech_struct * res, const fq_zech_struct * poly, const fmpz_t e, const fq_zech_struct * f, slong lenf, const fq_zech_struct * finv, slong lenfinv, const fq_zech_ctx_t ctx)

    Sets ``res`` to ``poly`` raised to the power ``e`` modulo
    ``f``, using binary exponentiation. We require ``e > 0``.
    We require ``finv`` to be the inverse of the reverse of
    ``f``.

    We require ``lenf > 1``. It is assumed that ``poly`` is
    already reduced modulo ``f`` and zero-padded as necessary to
    have length exactly ``lenf - 1``. The output ``res`` must
    have room for ``lenf - 1`` coefficients.

.. function:: void fq_zech_poly_powmod_fmpz_binexp_preinv(fq_zech_poly_t res, const fq_zech_poly_t poly, const fmpz_t e, const fq_zech_poly_t f, const fq_zech_poly_t finv, const fq_zech_ctx_t ctx)

    Sets ``res`` to ``poly`` raised to the power ``e`` modulo
    ``f``, using binary exponentiation. We require ``e >= 0``.
    We require ``finv`` to be the inverse of the reverse of
    ``f``.

.. function:: void _fq_zech_poly_powmod_fmpz_sliding_preinv(fq_zech_struct * res, const fq_zech_struct * poly, const fmpz_t e, ulong k, const fq_zech_struct * f, slong lenf, const fq_zech_struct * finv, slong lenfinv, const fq_zech_ctx_t ctx)

    Sets ``res`` to ``poly`` raised to the power ``e`` modulo
    ``f``, using sliding-window exponentiation with window size
    ``k``. We require ``e > 0``.  We require ``finv`` to be
    the inverse of the reverse of ``f``. If ``k`` is set to
    zero, then an "optimum" size will be selected automatically base
    on ``e``.

    We require ``lenf > 1``. It is assumed that ``poly`` is
    already reduced modulo ``f`` and zero-padded as necessary to
    have length exactly ``lenf - 1``. The output ``res`` must
    have room for ``lenf - 1`` coefficients.

.. function:: void fq_zech_poly_powmod_fmpz_sliding_preinv(fq_zech_poly_t res, const fq_zech_poly_t poly, const fmpz_t e, ulong k, const fq_zech_poly_t f, const fq_zech_poly_t finv, const fq_zech_ctx_t ctx)

    Sets ``res`` to ``poly`` raised to the power ``e`` modulo
    ``f``, using sliding-window exponentiation with window size
    ``k``. We require ``e >= 0``.  We require ``finv`` to be
    the inverse of the reverse of ``f``.  If ``k`` is set to
    zero, then an "optimum" size will be selected automatically base
    on ``e``.

.. function:: void _fq_zech_poly_powmod_x_fmpz_preinv(fq_zech_struct * res, const fmpz_t e, const fq_zech_struct * f, slong lenf, const fq_zech_struct * finv, slong lenfinv, const fq_zech_ctx_t ctx)

    Sets ``res`` to ``x`` raised to the power ``e`` modulo ``f``,
    using sliding window exponentiation. We require ``e > 0``.
    We require ``finv`` to be the inverse of the reverse of ``f``.

    We require ``lenf > 2``. The output ``res`` must have room for
    ``lenf - 1`` coefficients.

.. function:: void fq_zech_poly_powmod_x_fmpz_preinv(fq_zech_poly_t res, const fmpz_t e, const fq_zech_poly_t f, const fq_zech_poly_t finv, const fq_zech_ctx_t ctx)

    Sets ``res`` to ``x`` raised to the power ``e``
    modulo ``f``, using sliding window exponentiation. We require
    ``e >= 0``. We require ``finv`` to be the inverse of the reverse of
    ``f``.

.. function:: void _fq_zech_poly_pow_trunc_binexp(fq_zech_struct * res, const fq_zech_struct * poly, ulong e, slong trunc, const fq_zech_ctx_t ctx)

    Sets ``res`` to the low ``trunc`` coefficients of ``poly``
    (assumed to be zero padded if necessary to length ``trunc``) to                           the power ``e``. This is equivalent to doing a powering followed
    by a truncation. We require that ``res`` has enough space for
    ``trunc`` coefficients, that ``trunc > 0`` and that                                       ``e > 1``. Aliasing is not permitted. Uses the binary                                     exponentiation method.

.. function:: void fq_zech_poly_pow_trunc_binexp(fq_zech_poly_t res, const fq_zech_poly_t poly, ulong e, slong trunc, const fq_zech_ctx_t ctx)

    Sets ``res`` to the low ``trunc`` coefficients of ``poly``
    to the power ``e``. This is equivalent to doing a powering
    followed by a truncation. Uses the binary exponentiation method.

.. function:: void _fq_zech_poly_pow_trunc(fq_zech_struct * res, const fq_zech_struct * poly, ulong e, slong trunc, const fq_zech_ctx_t mod)

    Sets ``res`` to the low ``trunc`` coefficients of ``poly``
    (assumed to be zero padded if necessary to length ``trunc``) to
    the power ``e``. This is equivalent to doing a powering followed
    by a truncation. We require that ``res`` has enough space for
    ``trunc`` coefficients, that ``trunc > 0`` and that
    ``e > 1``. Aliasing is not permitted.

.. function:: void fq_zech_poly_pow_trunc(fq_zech_poly_t res, const fq_zech_poly_t poly, ulong e, slong trunc, const fq_zech_ctx_t ctx)

    Sets ``res`` to the low ``trunc`` coefficients of ``poly``
    to the power ``e``. This is equivalent to doing a powering
    followed by a truncation.


Shifting
--------------------------------------------------------------------------------


.. function:: void _fq_zech_poly_shift_left(fq_zech_struct * rop, const fq_zech_struct * op, slong len, slong n, const fq_zech_ctx_t ctx)

    Sets ``(rop, len + n)`` to ``(op, len)`` shifted left by
    `n` coefficients.

    Inserts zero coefficients at the lower end.  Assumes that
    ``len`` and `n` are positive, and that ``rop`` fits
    ``len + n`` elements.  Supports aliasing between ``rop`` and
    ``op``.

.. function:: void fq_zech_poly_shift_left(fq_zech_poly_t rop, const fq_zech_poly_t op, slong n, const fq_zech_ctx_t ctx)

    Sets ``rop`` to ``op`` shifted left by `n` coeffs.  Zero
    coefficients are inserted.

.. function:: void _fq_zech_poly_shift_right(fq_zech_struct * rop, const fq_zech_struct * op, slong len, slong n, const fq_zech_ctx_t ctx)

    Sets ``(rop, len - n)`` to ``(op, len)`` shifted right by
    `n` coefficients.

    Assumes that ``len`` and `n` are positive, that ``len > n``,
    and that ``rop`` fits ``len - n`` elements.  Supports
    aliasing between ``rop`` and ``op``, although in this case
    the top coefficients of ``op`` are not set to zero.

.. function:: void fq_zech_poly_shift_right(fq_zech_poly_t rop, const fq_zech_poly_t op, slong n, const fq_zech_ctx_t ctx)

    Sets ``rop`` to ``op`` shifted right by `n` coefficients.
    If `n` is equal to or greater than the current length of
    ``op``, ``rop`` is set to the zero polynomial.


Norms
--------------------------------------------------------------------------------


.. function:: slong _fq_zech_poly_hamming_weight(const fq_zech_struct * op, slong len, const fq_zech_ctx_t ctx)

    Returns the number of non-zero entries in ``(op, len)``.

.. function:: slong fq_zech_poly_hamming_weight(const fq_zech_poly_t op, const fq_zech_ctx_t ctx)

    Returns the number of non-zero entries in the polynomial ``op``.


Euclidean division
--------------------------------------------------------------------------------


.. function:: void _fq_zech_poly_divrem(fq_zech_struct * Q, fq_zech_struct * R, const fq_zech_struct * A, slong lenA, const fq_zech_struct * B, slong lenB, const fq_zech_t invB, const fq_zech_ctx_t ctx)

    Computes ``(Q, lenA - lenB + 1)``, ``(R, lenA)`` such that
    `A = B Q + R` with `0 \leq \operatorname{len}(R) < \operatorname{len}(B)`.

    Assumes that the leading coefficient of `B` is invertible
    and that ``invB`` is its inverse.

    Assumes that `\operatorname{len}(A), \operatorname{len}(B) > 0`.  Allows zero-padding in
    ``(A, lenA)``.  `R` and `A` may be aliased, but apart from
    this no aliasing of input and output operands is allowed.

.. function:: void fq_zech_poly_divrem(fq_zech_poly_t Q, fq_zech_poly_t R, const fq_zech_poly_t A, const fq_zech_poly_t B, const fq_zech_ctx_t ctx)

    Computes `Q`, `R` such that `A = B Q + R` with
    `0 \leq \operatorname{len}(R) < \operatorname{len}(B)`.

    Assumes that the leading coefficient of `B` is invertible.  This can
    be taken for granted the context is for a finite field, that is, when
    `p` is prime and `f(X)` is irreducible.

.. function:: void fq_zech_poly_divrem_f(fq_zech_t f, fq_zech_poly_t Q, fq_zech_poly_t R, const fq_zech_poly_t A, const fq_zech_poly_t B, const fq_zech_ctx_t ctx)

    Either finds a non-trivial factor `f` of the modulus of
    ``ctx``, or computes `Q`, `R` such that `A = B Q + R` and
    `0 \leq \operatorname{len}(R) < \operatorname{len}(B)`.

    If the leading coefficient of `B` is invertible, the division with
    remainder operation is carried out, `Q` and `R` are computed
    correctly, and `f` is set to `1`.  Otherwise, `f` is set to a
    non-trivial factor of the modulus and `Q` and `R` are not touched.

    Assumes that `B` is non-zero.

.. function:: void _fq_zech_poly_rem(fq_zech_struct * R, const fq_zech_struct * A, slong lenA, const fq_zech_struct * B, slong lenB, const fq_zech_t invB, const fq_zech_ctx_t ctx)

    Sets ``R`` to the remainder of the division of ``(A,lenA)`` by
    ``(B,lenB)``. Assumes that the leading coefficient of ``(B,lenB)``
    is invertible and that ``invB`` is its inverse.

.. function:: void fq_zech_poly_rem(fq_zech_poly_t R, const fq_zech_poly_t A, const fq_zech_poly_t B, const fq_zech_ctx_t ctx)

    Sets ``R`` to the remainder of the division of ``A`` by
    ``B`` in the context described by ``ctx``.

.. function:: void _fq_zech_poly_div(fq_zech_struct * Q, const fq_zech_struct * A, slong lenA, const fq_zech_struct * B, slong lenB, const fq_zech_t invB, const fq_zech_ctx_t ctx)

    Notationally, computes `Q`, `R` such that `A = B Q + R` with `0
    \leq \operatorname{len}(R) < \operatorname{len}(B)` but only sets ``(Q, lenA - lenB + 1)``.

    Allows zero-padding in `A` but not in `B`.  Assumes that the leading coefficient of `B` is a
    unit.

.. function:: void fq_zech_poly_div(fq_zech_poly_t Q, const fq_zech_poly_t A, const fq_zech_poly_t B, const fq_zech_ctx_t ctx)

    Notionally finds polynomials `Q` and `R` such that `A = B Q + R` with
    `\operatorname{len}(R) < \operatorname{len}(B)`, but returns only ``Q``. If `\operatorname{len}(B) = 0` an
    exception is raised.

.. function:: void _fq_zech_poly_div_newton_n_preinv(fq_zech_struct * Q, const fq_zech_struct * A, slong lenA, const fq_zech_struct * B, slong lenB, const fq_zech_struct * Binv, slong lenBinv, const fq_zech_ctx_t ctx)

    Notionally computes polynomials `Q` and `R` such that `A = BQ + R` with
    `\operatorname{len}(R)` less than ``lenB``, where ``A`` is of length ``lenA``
    and ``B`` is of length ``lenB``, but return only `Q`.

    We require that `Q` have space for ``lenA - lenB + 1`` coefficients
    and assume that the leading coefficient of `B` is a unit. Furthermore, we
    assume that `Binv` is the inverse of the reverse of `B` mod `x^{\operatorname{len}(B)}`.

    The algorithm used is to reverse the polynomials and divide the
    resulting power series, then reverse the result.

.. function:: void fq_zech_poly_div_newton_n_preinv(fq_zech_poly_t Q, const fq_zech_poly_t A, const fq_zech_poly_t B, const fq_zech_poly_t Binv, const fq_zech_ctx_t ctx)

    Notionally computes `Q` and `R` such that `A = BQ + R` with
    `\operatorname{len}(R) < \operatorname{len}(B)`, but returns only `Q`.

    We assume that the leading coefficient of `B` is a unit and that `Binv` is
    the inverse of the reverse of `B` mod `x^{\operatorname{len}(B)}`.

    It is required that the length of `A` is less than or equal to
    2*the length of `B` - 2.

    The algorithm used is to reverse the polynomials and divide the
    resulting power series, then reverse the result.

.. function:: void _fq_zech_poly_divrem_newton_n_preinv(fq_zech_struct * Q, fq_zech_struct * R, const fq_zech_struct * A, slong lenA, const fq_zech_struct * B, slong lenB, const fq_zech_struct * Binv, slong lenBinv, const fq_zech_ctx_t ctx)

    Computes `Q` and `R` such that `A = BQ + R` with `\operatorname{len}(R)` less
    than ``lenB``, where `A` is of length ``lenA`` and `B` is of
    length ``lenB``. We require that `Q` have space for
    ``lenA - lenB + 1`` coefficients. Furthermore, we assume that `Binv` is
    the inverse of the reverse of `B` mod `x^{\operatorname{len}(B)}`. The algorithm
    used is to call :func:`div_newton_preinv` and then multiply out
    and compute the remainder.

.. function:: void fq_zech_poly_divrem_newton_n_preinv(fq_zech_poly_t Q, fq_zech_poly_t R, const fq_zech_poly_t A, const fq_zech_poly_t B, const fq_zech_poly_t Binv, const fq_zech_ctx_t ctx)

    Computes `Q` and `R` such that `A = BQ + R` with `\operatorname{len}(R) <
    \operatorname{len}(B)`.  We assume `Binv` is the inverse of the reverse of `B`
    mod `x^{\operatorname{len}(B)}`.

    It is required that the length of `A` is less than or equal to
    2*the length of `B` - 2.

    The algorithm used is to call :func:`div_newton` and then
    multiply out and compute the remainder.

.. function:: void _fq_zech_poly_inv_series_newton(fq_zech_struct * Qinv, const fq_zech_struct * Q, slong n, const fq_zech_t cinv, const fq_zech_ctx_t ctx)

    Given ``Q`` of length ``n`` whose constant coefficient is
    invertible modulo the given modulus, find a polynomial ``Qinv``
    of length ``n`` such that ``Q * Qinv`` is ``1`` modulo
    `x^n`. Requires ``n > 0``.  This function can be viewed as
    inverting a power series via Newton iteration.

.. function:: void fq_zech_poly_inv_series_newton(fq_zech_poly_t Qinv, const fq_zech_poly_t Q, slong n, const fq_zech_ctx_t ctx)

    Given ``Q`` find ``Qinv`` such that ``Q * Qinv`` is
    ``1`` modulo `x^n`. The constant coefficient of ``Q`` must
    be invertible modulo the modulus of ``Q``. An exception is
    raised if this is not the case or if ``n = 0``. This function
    can be viewed as inverting a power series via Newton iteration.

.. function:: void _fq_zech_poly_inv_series(fq_zech_struct * Qinv, const fq_zech_struct * Q, slong n, const fq_zech_t cinv, const fq_zech_ctx_t ctx)

    Given ``Q`` of length ``n`` whose constant coefficient is
    invertible modulo the given modulus, find a polynomial ``Qinv``
    of length ``n`` such that ``Q * Qinv`` is ``1`` modulo
    `x^n`. Requires ``n > 0``.

.. function:: void fq_zech_poly_inv_series(fq_zech_poly_t Qinv, const fq_zech_poly_t Q, slong n, const fq_zech_ctx_t ctx)

    Given ``Q`` find ``Qinv`` such that ``Q * Qinv`` is
    ``1`` modulo `x^n`. The constant coefficient of ``Q`` must
    be invertible modulo the modulus of ``Q``. An exception is
    raised if this is not the case or if ``n = 0``.

.. function:: void _fq_zech_poly_div_series(fq_zech_struct * Q, const fq_zech_struct * A, slong Alen, const fq_zech_struct * B, slong Blen, slong n, const fq_zech_ctx_t ctx)

    Set ``(Q, n)`` to the quotient of the series ``(A, Alen``) and
    ``(B, Blen)`` assuming ``Alen, Blen <= n``. We assume the bottom
    coefficient of ``B`` is invertible.

.. function:: void fq_zech_poly_div_series(fq_zech_poly_t Q, const fq_zech_poly_t A, const fq_zech_poly_t B, slong n, const fq_zech_ctx_t ctx)

    Set `Q` to the quotient of the series `A` by `B`, thinking of the series as
    though they were of length `n`. We assume that the bottom coefficient of
    `B` is invertible.


Greatest common divisor
--------------------------------------------------------------------------------


.. function:: void fq_zech_poly_gcd(fq_zech_poly_t rop, const fq_zech_poly_t op1, const fq_zech_poly_t op2, const fq_zech_ctx_t ctx)

    Sets ``rop`` to the greatest common divisor of ``op1`` and
    ``op2``, using the either the Euclidean or HGCD algorithm. The
    GCD of zero polynomials is defined to be zero, whereas the GCD of
    the zero polynomial and some other polynomial `P` is defined to be
    `P`. Except in the case where the GCD is zero, the GCD `G` is made
    monic.

.. function:: slong _fq_zech_poly_gcd(fq_zech_struct * G, const fq_zech_struct * A, slong lenA, const fq_zech_struct * B, slong lenB, const fq_zech_ctx_t ctx)

    Computes the GCD of `A` of length ``lenA`` and `B` of length
    ``lenB``, where ``lenA >= lenB > 0`` and sets `G` to it. The
    length of the GCD `G` is returned by the function. No attempt is
    made to make the GCD monic. It is required that `G` have space for
    ``lenB`` coefficients.

.. function:: slong _fq_zech_poly_gcd_euclidean_f(fq_zech_t f, fq_zech_struct * G, const fq_zech_struct * A, slong lenA, const fq_zech_struct * B, slong lenB, const fq_zech_ctx_t ctx)

    Either sets `f = 1` and `G` to the greatest common divisor of
    `(A,\operatorname{len}(A))` and `(B, \operatorname{len}(B))` and returns its length, or sets
    `f` to a non-trivial factor of the modulus of ``ctx`` and leaves
    the contents of the vector `(G, lenB)` undefined.

    Assumes that `\operatorname{len}(A) \geq \operatorname{len}(B) > 0` and that the vector `G`
    has space for sufficiently many coefficients.

.. function:: void fq_zech_poly_gcd_euclidean_f(fq_zech_t f, fq_zech_poly_t G, const fq_zech_poly_t A, const fq_zech_poly_t B, const fq_zech_ctx_t ctx)

    Either sets `f = 1` and `G` to the greatest common divisor of `A`
    and `B` or sets `f` to a factor of the modulus of ``ctx``.

.. function:: slong _fq_zech_poly_xgcd(fq_zech_struct * G, fq_zech_struct * S, fq_zech_struct * T, const fq_zech_struct * A, slong lenA, const fq_zech_struct * B, slong lenB, const fq_zech_ctx_t ctx)

    Computes the GCD of `A` and `B` together with cofactors `S` and `T`
    such that `S A + T B = G`.  Returns the length of `G`.

    Assumes that `\operatorname{len}(A) \geq \operatorname{len}(B) \geq 1` and
    `(\operatorname{len}(A),\operatorname{len}(B)) \neq (1,1)`.

    No attempt is made to make the GCD monic.

    Requires that `G` have space for `\operatorname{len}(B)` coefficients.  Writes
    `\operatorname{len}(B)-1` and `\operatorname{len}(A)-1` coefficients to `S` and `T`, respectively.
    Note that, in fact, `\operatorname{len}(S) \leq \max(\operatorname{len}(B) - \operatorname{len}(G), 1)` and
    `\operatorname{len}(T) \leq \max(\operatorname{len}(A) - \operatorname{len}(G), 1)`.

    No aliasing of input and output operands is permitted.

.. function:: void fq_zech_poly_xgcd(fq_zech_poly_t G, fq_zech_poly_t S, fq_zech_poly_t T, const fq_zech_poly_t A, const fq_zech_poly_t B, const fq_zech_ctx_t ctx)

    Computes the GCD of `A` and `B`. The GCD of zero polynomials is
    defined to be zero, whereas the GCD of the zero polynomial and some other
    polynomial `P` is defined to be `P`. Except in the case where
    the GCD is zero, the GCD `G` is made monic.

    Polynomials ``S`` and ``T`` are computed such that
    ``S*A + T*B = G``. The length of ``S`` will be at most
    ``lenB`` and the length of ``T`` will be at most ``lenA``.

.. function:: slong _fq_zech_poly_xgcd_euclidean_f(fq_zech_t f, fq_zech_struct * G, fq_zech_struct * S, fq_zech_struct * T, const fq_zech_struct * A, slong lenA, const fq_zech_struct * B, slong lenB, const fq_zech_ctx_t ctx)

    Either sets `f = 1` and computes the GCD of `A` and `B` together
    with cofactors `S` and `T` such that `S A + T B = G`; otherwise,
    sets `f` to a non-trivial factor of the modulus of ``ctx`` and
    leaves `G`, `S`, and `T` undefined.  Returns the length of `G`.

    Assumes that `\operatorname{len}(A) \geq \operatorname{len}(B) \geq 1` and
    `(\operatorname{len}(A),\operatorname{len}(B)) \neq (1,1)`.

    No attempt is made to make the GCD monic.

    Requires that `G` have space for `\operatorname{len}(B)` coefficients.  Writes
    `\operatorname{len}(B)-1` and `\operatorname{len}(A)-1` coefficients to `S` and `T`, respectively.
    Note that, in fact, `\operatorname{len}(S) \leq \max(\operatorname{len}(B) - \operatorname{len}(G), 1)` and
    `\operatorname{len}(T) \leq \max(\operatorname{len}(A) - \operatorname{len}(G), 1)`.

    No aliasing of input and output operands is permitted.

.. function:: void fq_zech_poly_xgcd_euclidean_f(fq_zech_t f, fq_zech_poly_t G, fq_zech_poly_t S, fq_zech_poly_t T, const fq_zech_poly_t A, const fq_zech_poly_t B, const fq_zech_ctx_t ctx)

    Either sets `f = 1` and computes the GCD of `A` and `B` or sets
    `f` to a non-trivial factor of the modulus of ``ctx``.

    If the GCD is computed, polynomials ``S`` and ``T`` are
    computed such that ``S*A + T*B = G``; otherwise, they are
    undefined.  The length of ``S`` will be at most ``lenB`` and
    the length of ``T`` will be at most ``lenA``.

    The GCD of zero polynomials is defined to be zero, whereas the GCD
    of the zero polynomial and some other polynomial `P` is defined to
    be `P`. Except in the case where the GCD is zero, the GCD `G` is
    made monic.


Divisibility testing
--------------------------------------------------------------------------------


.. function:: int _fq_zech_poly_divides(fq_zech_struct * Q, const fq_zech_struct * A, slong lenA, const fq_zech_struct * B, slong lenB, const fq_zech_t invB, const fq_zech_ctx_t ctx)

    Returns `1` if ``(B, lenB)`` divides ``(A, lenA)`` exactly and
    sets `Q` to the quotient, otherwise returns `0`.

    It is assumed that `\operatorname{len}(A) \geq \operatorname{len}(B) > 0` and that `Q` has space
    for `\operatorname{len}(A) - \operatorname{len}(B) + 1` coefficients.

    Aliasing of `Q` with either of the inputs is not permitted.

    This function is currently unoptimised and provided for convenience
    only.

.. function:: int fq_zech_poly_divides(fq_zech_poly_t Q, const fq_zech_poly_t A, const fq_zech_poly_t B, const fq_zech_ctx_t ctx)


    Returns `1` if `B` divides `A` exactly and sets `Q` to the quotient,
    otherwise returns `0`.

    This function is currently unoptimised and provided for convenience
    only.


Derivative
--------------------------------------------------------------------------------


.. function:: void _fq_zech_poly_derivative(fq_zech_struct * rop, const fq_zech_struct * op, slong len, const fq_zech_ctx_t ctx)

    Sets ``(rop, len - 1)`` to the derivative of ``(op, len)``.
    Also handles the cases where ``len`` is `0` or `1` correctly.
    Supports aliasing of ``rop`` and ``op``.

.. function:: void fq_zech_poly_derivative(fq_zech_poly_t rop, const fq_zech_poly_t op, const fq_zech_ctx_t ctx)

    Sets ``rop`` to the derivative of ``op``.


Square root
--------------------------------------------------------------------------------


.. function:: void _fq_zech_poly_invsqrt_series(fq_zech_struct * g, const fq_zech_struct * h, slong n, fq_zech_ctx_t mod)

    Set the first `n` terms of `g` to the series expansion of `1/\sqrt{h}`.
    It is assumed that `n > 0`, that `h` has constant term 1 and that `h`
    is zero-padded as necessary to length `n`. Aliasing is not permitted.

.. function:: void fq_zech_poly_invsqrt_series(fq_zech_poly_t g, const fq_zech_poly_t h, slong n, fq_zech_ctx_t ctx)

    Set `g` to the series expansion of `1/\sqrt{h}` to order `O(x^n)`.
    It is assumed that `h` has constant term 1.

.. function:: void _fq_zech_poly_sqrt_series(fq_zech_struct * g, const fq_zech_struct * h, slong n, fq_zech_ctx_t ctx)

    Set the first `n` terms of `g` to the series expansion of `\sqrt{h}`.
    It is assumed that `n > 0`, that `h` has constant term 1 and that `h`
    is zero-padded as necessary to length `n`. Aliasing is not permitted.

.. function:: void fq_zech_poly_sqrt_series(fq_zech_poly_t g, const fq_zech_poly_t h, slong n, fq_zech_ctx_t ctx)

    Set `g` to the series expansion of `\sqrt{h}` to order `O(x^n)`.
    It is assumed that `h` has constant term 1.

.. function:: int _fq_zech_poly_sqrt(fq_zech_struct * s, const fq_zech_struct * p, slong n, fq_zech_ctx_t mod)

    If ``(p, n)`` is a perfect square, sets ``(s, n / 2 + 1)``
    to a square root of `p` and returns 1. Otherwise returns 0.

.. function:: int fq_zech_poly_sqrt(fq_zech_poly_t s, const fq_zech_poly_t p, fq_zech_ctx_t mod)

    If `p` is a perfect square, sets `s` to a square root of `p`
    and returns 1. Otherwise returns 0.


Evaluation
--------------------------------------------------------------------------------


.. function:: void _fq_zech_poly_evaluate_fq_zech(fq_zech_t rop, const fq_zech_struct * op, slong len, const fq_zech_t a, const fq_zech_ctx_t ctx)

    Sets ``rop`` to ``(op, len)`` evaluated at `a`.

    Supports zero padding.  There are no restrictions on ``len``, that
    is, ``len`` is allowed to be zero, too.

.. function:: void fq_zech_poly_evaluate_fq_zech(fq_zech_t rop, const fq_zech_poly_t f, const fq_zech_t a, const fq_zech_ctx_t ctx)

    Sets ``rop`` to the value of `f(a)`.

    As the coefficient ring `\mathbf{F}_q` is finite, Horner's method
    is sufficient.


Composition
--------------------------------------------------------------------------------


.. function:: void _fq_zech_poly_compose(fq_zech_struct * rop, const fq_zech_struct * op1, slong len1, const fq_zech_struct * op2, slong len2, const fq_zech_ctx_t ctx)

    Sets ``rop`` to the composition of ``(op1, len1)`` and
    ``(op2, len2)``.

    Assumes that ``rop`` has space for ``(len1-1)*(len2-1) + 1``
    coefficients.  Assumes that ``op1`` and ``op2`` are non-zero
    polynomials.  Does not support aliasing between any of the inputs and
    the output.

.. function:: void fq_zech_poly_compose(fq_zech_poly_t rop, const fq_zech_poly_t op1, const fq_zech_poly_t op2, const fq_zech_ctx_t ctx)

    Sets ``rop`` to the composition of ``op1`` and ``op2``.
    To be precise about the order of composition, denoting ``rop``,
    ``op1``, and ``op2`` by `f`, `g`, and `h`, respectively,
    sets `f(t) = g(h(t))`.

.. function:: void _fq_zech_poly_compose_mod_horner(fq_zech_struct * res, const fq_zech_struct * f, slong lenf, const fq_zech_struct * g, const fq_zech_struct * h, slong lenh, const fq_zech_ctx_t ctx)


    Sets ``res`` to the composition `f(g)` modulo `h`. We require that
    `h` is nonzero and that the length of `g` is one less than the
    length of `h` (possibly with zero padding). The output is not allowed
    to be aliased with any of the inputs.

    The algorithm used is Horner's rule.

.. function:: void fq_zech_poly_compose_mod_horner(fq_zech_poly_t res, const fq_zech_poly_t f, const fq_zech_poly_t g, const fq_zech_poly_t h, const fq_zech_ctx_t ctx)

    Sets ``res`` to the composition `f(g)` modulo `h`. We require that
    `h` is nonzero. The algorithm used is Horner's rule.

.. function:: void _fq_zech_poly_compose_mod_horner_preinv(fq_zech_struct * res, const fq_zech_struct * f, slong lenf, const fq_zech_struct * g, const fq_zech_struct * h, slong lenh, const fq_zech_struct * hinv, slong lenhiv, const fq_zech_ctx_t ctx)

    Sets ``res`` to the composition `f(g)` modulo `h`. We require
    that `h` is nonzero and that the length of `g` is one less than
    the length of `h` (possibly with zero padding). We also require
    that the length of `f` is less than the length of
    `h`. Furthermore, we require ``hinv`` to be the inverse of the
    reverse of ``h``.  The output is not allowed to be aliased with
    any of the inputs.

    The algorithm used is Horner's rule.

.. function:: void fq_zech_poly_compose_mod_horner_preinv(fq_zech_poly_t res, const fq_zech_poly_t f, const fq_zech_poly_t g, const fq_zech_poly_t h, const fq_zech_poly_t hinv, const fq_zech_ctx_t ctx)

    Sets ``res`` to the composition `f(g)` modulo `h`. We require
    that `h` is nonzero and that `f` has smaller degree than
    `h`. Furthermore, we require ``hinv`` to be the inverse of the
    reverse of ``h``.  The algorithm used is Horner's rule.


.. function:: void _fq_zech_poly_compose_mod_brent_kung(fq_zech_struct * res, const fq_zech_struct * f, slong lenf, const fq_zech_struct * g, const fq_zech_struct * h, slong lenh, const fq_zech_ctx_t ctx)

    Sets ``res`` to the composition `f(g)` modulo `h`. We require
    that `h` is nonzero and that the length of `g` is one less than
    the length of `h` (possibly with zero padding). We also require
    that the length of `f` is less than the length of `h`. The output
    is not allowed to be aliased with any of the inputs.

    The algorithm used is the Brent-Kung matrix algorithm.

.. function:: void fq_zech_poly_compose_mod_brent_kung(fq_zech_poly_t res, const fq_zech_poly_t f, const fq_zech_poly_t g, const fq_zech_poly_t h, const fq_zech_ctx_t ctx)

    Sets ``res`` to the composition `f(g)` modulo `h`. We require
    that `h` is nonzero and that `f` has smaller degree than `h`.  The
    algorithm used is the Brent-Kung matrix algorithm.

.. function:: void _fq_zech_poly_compose_mod_brent_kung_preinv(fq_zech_struct * res, const fq_zech_struct * f, slong lenf, const fq_zech_struct * g, const fq_zech_struct * h, slong lenh, const fq_zech_struct * hinv, slong lenhiv, const fq_zech_ctx_t ctx)

    Sets ``res`` to the composition `f(g)` modulo `h`. We require
    that `h` is nonzero and that the length of `g` is one less than
    the length of `h` (possibly with zero padding). We also require
    that the length of `f` is less than the length of
    `h`. Furthermore, we require ``hinv`` to be the inverse of the
    reverse of ``h``.  The output is not allowed to be aliased with
    any of the inputs.

    The algorithm used is the Brent-Kung matrix algorithm.

.. function:: void fq_zech_poly_compose_mod_brent_kung_preinv(fq_zech_poly_t res, const fq_zech_poly_t f, const fq_zech_poly_t g, const fq_zech_poly_t h, const fq_zech_poly_t hinv, const fq_zech_ctx_t ctx)

    Sets ``res`` to the composition `f(g)` modulo `h`. We require
    that `h` is nonzero and that `f` has smaller degree than
    `h`. Furthermore, we require ``hinv`` to be the inverse of the
    reverse of ``h``.  The algorithm used is the Brent-Kung matrix
    algorithm.

.. function:: void _fq_zech_poly_compose_mod(fq_zech_struct * res, const fq_zech_struct * f, slong lenf, const fq_zech_struct * g, const fq_zech_struct * h, slong lenh, const fq_zech_ctx_t ctx)

    Sets ``res`` to the composition `f(g)` modulo `h`. We require
    that `h` is nonzero and that the length of `g` is one less than
    the length of `h` (possibly with zero padding). The output is not
    allowed to be aliased with any of the inputs.

.. function:: void fq_zech_poly_compose_mod(fq_zech_poly_t res, const fq_zech_poly_t f, const fq_zech_poly_t g, const fq_zech_poly_t h, const fq_zech_ctx_t ctx)

    Sets ``res`` to the composition `f(g)` modulo `h`. We require
    that `h` is nonzero.

.. function:: void _fq_zech_poly_compose_mod_preinv(fq_zech_struct * res, const fq_zech_struct * f, slong lenf, const fq_zech_struct * g, const fq_zech_struct * h, slong lenh, const fq_zech_struct * hinv, slong lenhiv, const fq_zech_ctx_t ctx)

    Sets ``res`` to the composition `f(g)` modulo `h`. We require
    that `h` is nonzero and that the length of `g` is one less than
    the length of `h` (possibly with zero padding). We also require
    that the length of `f` is less than the length of
    `h`. Furthermore, we require ``hinv`` to be the inverse of the
    reverse of ``h``.  The output is not allowed to be aliased with
    any of the inputs.

.. function:: void fq_zech_poly_compose_mod_preinv(fq_zech_poly_t res, const fq_zech_poly_t f, const fq_zech_poly_t g, const fq_zech_poly_t h, const fq_zech_poly_t hinv, const fq_zech_ctx_t ctx)

    Sets ``res`` to the composition `f(g)` modulo `h`. We require
    that `h` is nonzero and that `f` has smaller degree than
    `h`. Furthermore, we require ``hinv`` to be the inverse of the
    reverse of ``h``.

.. function:: void _fq_zech_poly_reduce_matrix_mod_poly (fq_zech_mat_t A, const fq_zech_mat_t B, const fq_zech_poly_t f, const fq_zech_ctx_t ctx)

    Sets the ith row of ``A`` to the reduction of the ith row of `B` modulo
    `f` for `i=1,\ldots,\sqrt{\deg(f)}`. We require `B` to be at least
    a `\sqrt{\deg(f)}\times \deg(f)` matrix and `f` to be nonzero.

.. function:: void _fq_zech_poly_precompute_matrix (fq_zech_mat_t A, const fq_zech_struct * f, const fq_zech_struct * g, slong leng, const fq_zech_struct * ginv, slong lenginv, const fq_zech_ctx_t ctx)

    Sets the ith row of ``A`` to `f^i` modulo `g` for
    `i=1,\ldots,\sqrt{\deg(g)}`. We require `A` to be a
    `\sqrt{\deg(g)}\times \deg(g)` matrix. We require ``ginv`` to
    be the inverse of the reverse of ``g`` and `g` to be nonzero.

.. function:: void fq_zech_poly_precompute_matrix (fq_zech_mat_t A, const fq_zech_poly_t f, const fq_zech_poly_t g, const fq_zech_poly_t ginv, const fq_zech_ctx_t ctx)

    Sets the ith row of ``A`` to `f^i` modulo `g` for
    `i=1,\ldots,\sqrt{\deg(g)}`. We require `A` to be a
    `\sqrt{\deg(g)}\times \deg(g)` matrix. We require ``ginv`` to
    be the inverse of the reverse of ``g``.


.. function:: void _fq_zech_poly_compose_mod_brent_kung_precomp_preinv(fq_zech_struct * res, const fq_zech_struct * f, slong lenf, const fq_zech_mat_t A, const fq_zech_struct * h, slong lenh, const fq_zech_struct * hinv, slong lenhinv, const fq_zech_ctx_t ctx)

    Sets ``res`` to the composition `f(g)` modulo `h`. We require
    that `h` is nonzero. We require that the ith row of `A` contains
    `g^i` for `i=1,\ldots,\sqrt{\deg(h)}`, i.e. `A` is a
    `\sqrt{\deg(h)}\times \deg(h)` matrix. We also require that the
    length of `f` is less than the length of `h`. Furthermore, we
    require ``hinv`` to be the inverse of the reverse of ``h``.
    The output is not allowed to be aliased with any of the inputs.

    The algorithm used is the Brent-Kung matrix algorithm.

.. function:: void fq_zech_poly_compose_mod_brent_kung_precomp_preinv(fq_zech_poly_t res, const fq_zech_poly_t f, const fq_zech_mat_t A, const fq_zech_poly_t h, const fq_zech_poly_t hinv, const fq_zech_ctx_t ctx)

    Sets ``res`` to the composition `f(g)` modulo `h`. We require
    that the ith row of `A` contains `g^i` for
    `i=1,\ldots,\sqrt{\deg(h)}`, i.e. `A` is a `\sqrt{\deg(h)}\times
    \deg(h)` matrix. We require that `h` is nonzero and that `f` has
    smaller degree than `h`. Furthermore, we require ``hinv`` to be
    the inverse of the reverse of ``h``. This version of Brent-Kung
    modular composition is particularly useful if one has to perform
    several modular composition of the form `f(g)` modulo `h` for
    fixed `g` and `h`.



Output
--------------------------------------------------------------------------------


.. function:: int _fq_zech_poly_fprint_pretty(FILE * file, const fq_zech_struct * poly, slong len, const char * x, const fq_zech_ctx_t ctx)

    Prints the pretty representation of ``(poly, len)`` to the stream
    ``file``, using the string ``x`` to represent the indeterminate.

    In case of success, returns a positive value.  In case of failure,
    returns a non-positive value.

.. function:: int fq_zech_poly_fprint_pretty(FILE * file, const fq_zech_poly_t poly, const char * x, const fq_zech_ctx_t ctx)

    Prints the pretty representation of ``poly`` to the stream
    ``file``, using the string ``x`` to represent the indeterminate.

    In case of success, returns a positive value.  In case of failure,
    returns a non-positive value.


.. function:: int _fq_zech_poly_print_pretty(const fq_zech_struct * poly, slong len, const char * x, const fq_zech_ctx_t ctx)

    Prints the pretty representation of ``(poly, len)`` to ``stdout``,
    using the string ``x`` to represent the indeterminate.

    In case of success, returns a positive value.  In case of failure,
    returns a non-positive value.


.. function:: int fq_zech_poly_print_pretty(const fq_zech_poly_t poly, const char * x, const fq_zech_ctx_t ctx)

    Prints the pretty representation of ``poly`` to ``stdout``,
    using the string ``x`` to represent the indeterminate.

    In case of success, returns a positive value.  In case of failure,
    returns a non-positive value.

.. function:: int _fq_zech_poly_fprint(FILE * file, const fq_zech_struct * poly, slong len, const fq_zech_ctx_t ctx)

    Prints the pretty representation of ``(poly, len)`` to the stream
    ``file``.

    In case of success, returns a positive value.  In case of failure,
    returns a non-positive value.

.. function:: int fq_zech_poly_fprint(FILE * file, const fq_zech_poly_t poly, const fq_zech_ctx_t ctx)

    Prints the pretty representation of ``poly`` to the stream
    ``file``.

    In case of success, returns a positive value.  In case of failure,
    returns a non-positive value.


.. function:: int _fq_zech_poly_print(const fq_zech_struct * poly, slong len, const fq_zech_ctx_t ctx)

    Prints the pretty representation of ``(poly, len)`` to ``stdout``.

    In case of success, returns a positive value.  In case of failure,
    returns a non-positive value.


.. function:: int fq_zech_poly_print(const fq_zech_poly_t poly, const fq_zech_ctx_t ctx)

    Prints the representation of ``poly`` to ``stdout``.

    In case of success, returns a positive value.  In case of failure,
    returns a non-positive value.

.. function:: char * _fq_zech_poly_get_str(const fq_zech_struct * poly, slong len, const fq_zech_ctx_t ctx)

    Returns the plain FLINT string representation of the polynomial
    ``(poly, len)``.

.. function:: char * fq_zech_poly_get_str(const fq_zech_poly_t poly, const fq_zech_ctx_t ctx)

    Returns the plain FLINT string representation of the polynomial
    ``poly``.

.. function:: char * _fq_zech_poly_get_str_pretty(const fq_zech_struct * poly, slong len, const char * x, const fq_zech_ctx_t ctx)

    Returns a pretty representation of the polynomial
    ``(poly, len)`` using the null-terminated string ``x`` as the
    variable name.

.. function:: char * fq_zech_poly_get_str_pretty(const fq_zech_poly_t poly, const char * x, const fq_zech_ctx_t ctx)

    Returns a pretty representation of the polynomial ``poly`` using the
    null-terminated string ``x`` as the variable name


Inflation and deflation
--------------------------------------------------------------------------------


.. function:: void fq_zech_poly_inflate(fq_zech_poly_t result, const fq_zech_poly_t input, ulong inflation, const fq_zech_ctx_t ctx)

    Sets ``result`` to the inflated polynomial `p(x^n)` where
    `p` is given by ``input`` and `n` is given by ``inflation``.

.. function:: void fq_zech_poly_deflate(fq_zech_poly_t result, const fq_zech_poly_t input, ulong deflation, const fq_zech_ctx_t ctx)

    Sets ``result`` to the deflated polynomial `p(x^{1/n})` where
    `p` is given by ``input`` and `n` is given by ``deflation``.
    Requires `n > 0`.

.. function:: ulong fq_zech_poly_deflation(const fq_zech_poly_t input, const fq_zech_ctx_t ctx)

    Returns the largest integer by which ``input`` can be deflated.
    As special cases, returns 0 if ``input`` is the zero polynomial
    and 1 of ``input`` is a constant polynomial.