1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
|
.. _gr:
**gr.h** -- generic structures and their elements
===============================================================================
Introduction
-------------------------------------------------------------------------------
Parents and elements
...............................................................................
To work with an element `x \in R` of a particular mathematical
structure *R*, we use a context object to represent *R*
(the "parent" of `x`). Elements are passed around as pointers.
Note:
* Parents are not stored as part of the elements; the user must
track the context objects for all variables.
* Operations are strictly type-stable:
elements only change parent when performing an explicit conversion.
The structure *R* will typically be a *ring*, but the framework supports
general
objects (including groups, monoids, and sets without any particular
structure whatsoever). We use these terms in a strict mathematical
sense: a "ring" must exactly satisfy the ring axioms.
It can have inexact *representations*, but this inexactness
must be handled rigorously.
To give an idea of how the interface works, this example program
computes `3^{100}` in the ring of integers and prints the value::
#include "gr.h"
int main()
{
int status;
gr_ctx_t ZZ; /* a parent (context object) */
gr_ptr x; /* an element */
gr_ctx_init_fmpz(ZZ); /* ZZ = ring of integers with fmpz_t elements */
GR_TMP_INIT(x, ZZ) /* allocate element on the stack */
status = gr_set_ui(x, 3, ZZ); /* x = 3 */
status |= gr_pow_ui(x, x, 100, ZZ); /* x = x ^ 100 */
status |= gr_println(x, ZZ);
GR_TMP_CLEAR(x, ZZ)
gr_ctx_clear(ZZ);
return status;
}
Parent and element types
...............................................................................
.. type:: gr_ptr
Pointer to a ring element or array of contiguous ring elements.
This is an alias for ``void *`` so that it can be used with any
C type.
.. type:: gr_srcptr
Pointer to a read-only ring element or read-only array of
contiguous ring elements. This is an alias for
``const void *`` so that it can be used with any C type.
.. type:: gr_ctx_struct
.. type:: gr_ctx_t
A context object representing a mathematical structure *R*.
It contains the following data:
* The size (number of bytes) of each element.
* A pointer to a method table.
* Optionally a pointer to data defining parameters of the ring
(e.g. modulus of a residue ring; element ring and dimensions
of a matrix ring; precision of an inexact ring).
A :type:`gr_ctx_t` is defined as an array of length one of type
:type:`gr_ctx_struct`, permitting a :type:`gr_ctx_t` to be
passed by reference.
Context objects are not normally passed as ``const`` in order
to allow storing mutable caches, additional
debugging information, etc.
.. type:: gr_ctx_ptr
Pointer to a context object.
There is no type to represent a single generic element
as a struct since we do not know the size of a generic element at
compile time.
Memory for single elements can either be allocated on the stack
with the special macros provided below, or as usual with ``malloc``.
Methods can also be used with particular C types like ``fmpz_t``
when the user knows the type.
Users may wish to define their own union types when only some
particular types will appear in an application.
Error handling
...............................................................................
To compute over a structure `R`, it is useful to conceptually extend
to a larger set `R' = R \cup \{ \text{undefined}, \text{unknown} \}`.
* Adding an *undefined* (error) value allows us to extend partial functions
to total functions.
* An *unknown* value is useful in cases where a result
may exist in principle but cannot be computed.
An alternative to having an *undefined* value
is to choose some arbitrary default value in `R`,
say `\text{undefined} = 0` in a ring. This is often done in
proof assistants, but in a regular programming environment,
we typically want some way to detect domain errors.
Representing `R'` as a type-level extension of `R` is tricky in C
since we would either have to
wrap elements in a larger structure
or reserve bit patterns in each type for special values.
In any case, it is useful to assume in low-level code
that elements *really represent elements of the intended structure*
so that there are fewer special cases to handle.
We also need some form of error handling for conversions
to standard C types.
For these reasons, we handle special values (undefined, unknown)
using return codes.
Functions can return a combination of the following status flags:
.. macro:: GR_SUCCESS
The operation finished as expected, i.e. the result
is a correct element of the target type.
.. macro:: GR_DOMAIN
The result does not have a value in the domain of the target
ring or type, i.e. the result is mathematically undefined.
This occurs, for example, on division by zero
or when attempting to compute the square root of a non-square.
It also occurs when attempting to convert a too large value
to a bounded type (example: ``get_ui()``
with input `n \ge 2^{64}`).
.. macro:: GR_UNABLE
The operation could not be performed because
of limitations of the implementation or the data representation,
i.e. the result is unknown. Typical reasons:
* The result would be too large to fit in memory
* The inputs are inexact and an exact comparison is needed
* The computation would take too long
* An algorithm is not yet implemented for this case
If this flag is set, there is also potentially a domain error
(but this is unknown).
.. macro:: GR_TEST_FAIL
Test failure. This is only used in test code.
When the status code is any other value than ``GR_SUCCESS``, any
output variables may be set to meaningless values.
C functions that return a status code are marked with the
``WARN_UNUSED_RESULT`` attribute. This allows compilers to
emit warnings when the status code is ignored.
Flags can be OR'ed and checked only at the top level of a computation
to avoid complex control flow::
status = GR_SUCCESS;
status |= gr_add(res, a, b, ctx);
status |= gr_pow_ui(res, res, 2, ctx);
...
If we do not care about recovering from *undefined*/*unknown* results,
the following macro is useful:
.. macro:: GR_MUST_SUCCEED(expr)
Evaluates *expr* and asserts that the return value is
``GR_SUCCESS``. On failure, calls ``flint_abort()``.
For uniformity, most operations return a status code, even operations
that are not typically expected to fail. Exceptions include the
following:
* Pure "container" operations like ``init``, ``clear`` and ``swap``
do not return a status code.
* Pure predicate functions (see below)
return ``T_TRUE`` / ``T_FALSE`` / ``T_UNKNOWN``
instead of computing a separate boolean value and error code.
Predicates
...............................................................................
We use the following type (borrowed from Calcium) instead of a C int
to represent boolean results, allowing the possibility
that the value is not computable:
.. enum:: truth_t
Represents one of the following truth values:
.. macro:: T_TRUE
.. macro:: T_FALSE
.. macro:: T_UNKNOWN
Warning: the constants ``T_TRUE`` and ``T_FALSE`` do not correspond to 1 and 0.
It is erroneous to write, for example ``!t`` if ``t`` is a
:type:`truth_t`. One should instead write ``t != T_TRUE``, ``t == T_FALSE``,
etc. depending on whether the unknown case should be included
or excluded.
.. function:: truth_t truth_and(truth_t x, truth_t y)
truth_t truth_or(truth_t x, truth_t y)
truth_t truth_not(truth_t x)
Performs the corresponding operation in ternary logic.
.. function:: void truth_println(truth_t x)
.. function:: truth_t gr_in_domain(int status)
Returns ``T_TRUE`` when ``status`` is ``GR_SUCCESS``, ``T_FALSE`` when ``GR_DOMAIN`` is set but ``GR_UNABLE`` is not, and ``T_UNKNOWN`` otherwise.
.. function:: int gr_check(truth_t t)
Maps ``T_TRUE`` to ``GR_SUCCESS``, ``T_FALSE`` to ``GR_DOMAIN``, and ``T_UNKNOWN`` to ``GR_UNABLE``.
Context operations
-------------------------------------------------------------------------------
.. function:: slong gr_ctx_sizeof_elem(gr_ctx_t ctx)
Return ``sizeof(type)`` where ``type`` is the underlying C
type for elements of *ctx*.
.. function:: void gr_ctx_clear(gr_ctx_t ctx)
Clears the context object *ctx*, freeing any memory
allocated by this object.
Some context objects may require that no elements are cleared after calling
this method, and may leak memory if not all elements have
been cleared when calling this method.
If *ctx* is derived from a base ring, the base ring context
may also be required to stay alive until after this
method is called.
.. function:: int gr_ctx_write(gr_stream_t out, gr_ctx_t ctx)
int gr_ctx_print(gr_ctx_t ctx)
int gr_ctx_println(gr_ctx_t ctx)
int gr_ctx_get_str(char ** s, gr_ctx_t ctx)
Writes a description of the structure *ctx* to the stream *out*,
prints it to *stdout*, or sets *s* to a pointer to
a heap-allocated string of the description (the user must free
the string with ``flint_free``).
The *println* version prints a trailing newline.
.. function:: int gr_ctx_set_gen_name(gr_ctx_t ctx, const char * s)
int gr_ctx_set_gen_names(gr_ctx_t ctx, const char ** s)
Set the name of the generator (univariate polynomial ring,
finite field, etc.) or generators (multivariate).
The name is used when printing and may be used to choose
coercions.
.. function:: int gr_ctx_ngens(slong * ngens, gr_ctx_t ctx)
Get the number of generators.
.. function:: int gr_ctx_gen_name(char ** name, slong i, gr_ctx_t ctx)
Get the name of the generator of index *i*.
The returned buffer must be freed with :func:`flint_free`.
Element operations
--------------------------------------------------------------------------------
Memory management
................................................................................
.. function:: void gr_init(gr_ptr res, gr_ctx_t ctx)
Initializes *res* to a valid variable and sets it to the
zero element of the ring *ctx*.
.. function:: void gr_clear(gr_ptr res, gr_ctx_t ctx)
Clears *res*, freeing any memory allocated by this object.
.. function:: void gr_swap(gr_ptr x, gr_ptr y, gr_ctx_t ctx)
Swaps *x* and *y* efficiently.
.. function:: void gr_set_shallow(gr_ptr res, gr_srcptr x, gr_ctx_t ctx)
Sets *res* to a shallow copy of *x*, copying the struct data.
.. function:: gr_ptr gr_heap_init(gr_ctx_t ctx)
Return a pointer to a single new heap-allocated element of *ctx*
set to 0.
.. function:: void gr_heap_clear(gr_ptr x, gr_ctx_t ctx)
Free the single heap-allocated element *x* of *ctx* which should
have been created with :func:`gr_heap_init`.
.. function:: gr_ptr gr_heap_init_vec(slong len, gr_ctx_t ctx)
Return a pointer to a new heap-allocated vector of *len*
initialized elements.
.. function:: void gr_heap_clear_vec(gr_ptr x, slong len, gr_ctx_t ctx)
Clear the *len* elements in the heap-allocated vector *len* and
free the vector itself.
The following macros support allocating temporary variables efficiently.
Data will be allocated on the stack using ``alloca`` unless
the size is excessive (risking stack overflow), in which case
the implementation transparently switches to ``malloc``/``free``
instead. The usage pattern is as follows::
{
gr_ptr x, y;
GR_TMP_INIT2(x1, x2, ctx);
/* do computations with x1, x2 */
GR_TMP_CLEAR2(x1, x2, ctx);
}
Init and clear macros must match exactly, as variables may be
allocated contiguously in a block.
*Warning:* never use these macros directly inside a loop.
This is likely to overflow the stack, as memory will not
be reclaimed until the function exits.
Instead, allocate the needed space before entering
any loops, move the loop body to a separate function,
or allocate the memory on the heap if needed.
.. macro:: GR_TMP_INIT_VEC(vec, len, ctx)
GR_TMP_CLEAR_VEC(vec, len, ctx)
Allocates and frees a vector of *len* contiguous elements, all
initialized to the value 0, assigning the first element
to the pointer *vec*.
.. macro:: GR_TMP_INIT(x1, ctx)
GR_TMP_INIT2(x1, x2, ctx)
GR_TMP_INIT3(x1, x2, x3, ctx)
GR_TMP_INIT4(x1, x2, x3, x4, ctx)
GR_TMP_INIT5(x1, x2, x3, x4, x5, ctx)
Allocates one or several temporary elements, all
initialized to the value 0, assigning the elements
to the pointers *x1*, *x2*, etc.
.. macro:: GR_TMP_CLEAR(x1, ctx)
GR_TMP_CLEAR2(x1, x2, ctx)
GR_TMP_CLEAR3(x1, x2, x3, ctx)
GR_TMP_CLEAR4(x1, x2, x3, x4, ctx)
GR_TMP_CLEAR5(x1, x2, x3, x4, x5, ctx)
Corresponding macros to clear temporary variables.
Random elements
................................................................................
.. function:: int gr_randtest(gr_ptr res, flint_rand_t state, gr_ctx_t ctx)
Sets *res* to a random element of the domain *ctx*.
The distribution is determined by the implementation.
Typically the distribution is non-uniform in order to
find corner cases more easily in test code.
.. function:: int gr_randtest_invertible(gr_ptr res, flint_rand_t state, gr_ctx_t ctx)
Sets *res* to a random invertible element of the domain *ctx*.
.. function:: int gr_randtest_not_zero(gr_ptr res, flint_rand_t state, gr_ctx_t ctx)
Sets *res* to a random nonzero element of the domain *ctx*.
This operation will fail and return ``GR_DOMAIN`` in the zero ring.
.. function:: int gr_randtest_small(gr_ptr res, flint_rand_t state, gr_ctx_t ctx)
Sets *res* to a "small" element of the domain *ctx*.
This is suitable for randomized testing where a "large" argument
could result in excessive computation time.
Input, output and string conversion
................................................................................
.. function:: int gr_write(gr_stream_t out, gr_srcptr x, gr_ctx_t ctx)
int gr_print(gr_srcptr x, gr_ctx_t ctx)
int gr_println(gr_srcptr x, gr_ctx_t ctx)
int gr_get_str(char ** s, gr_srcptr x, gr_ctx_t ctx)
Writes a description of the element *x* to the stream *out*,
or prints it to *stdout*, or sets *s* to a pointer to
a heap-allocated string of the description (the user must free
the string with ``flint_free``). The *println* version prints a
trailing newline.
.. function:: int gr_set_str(gr_ptr res, const char * x, gr_ctx_t ctx)
Sets *res* to the string description in *x*.
.. function:: int gr_write_n(gr_stream_t out, gr_srcptr x, slong n, gr_ctx_t ctx)
int gr_get_str_n(char ** s, gr_srcptr x, slong n, gr_ctx_t ctx)
String conversion where real and complex numbers may be rounded
to *n* digits.
Assignment and conversions
................................................................................
.. function:: int gr_set(gr_ptr res, gr_srcptr x, gr_ctx_t ctx)
Sets *res* to a copy of the element *x*.
.. function:: int gr_set_other(gr_ptr res, gr_srcptr x, gr_ctx_t x_ctx, gr_ctx_t ctx)
Sets *res* to the element *x* of the structure *x_ctx* which
may be different from *ctx*. This returns the ``GR_DOMAIN`` flag
if *x* is not an element of *ctx* or cannot be converted
unambiguously to *ctx*. The ``GR_UNABLE`` flag is returned
if the conversion is not implemented.
.. function:: int gr_set_ui(gr_ptr res, ulong x, gr_ctx_t ctx)
int gr_set_si(gr_ptr res, slong x, gr_ctx_t ctx)
int gr_set_fmpz(gr_ptr res, const fmpz_t x, gr_ctx_t ctx)
int gr_set_fmpq(gr_ptr res, const fmpq_t x, gr_ctx_t ctx)
int gr_set_d(gr_ptr res, double x, gr_ctx_t ctx)
Sets *res* to the value *x*. If no reasonable conversion to the
domain *ctx* is possible, returns ``GR_DOMAIN``.
.. function:: int gr_get_si(slong * res, gr_srcptr x, gr_ctx_t ctx)
int gr_get_ui(ulong * res, gr_srcptr x, gr_ctx_t ctx)
int gr_get_fmpz(fmpz_t res, gr_srcptr x, gr_ctx_t ctx)
int gr_get_fmpq(fmpq_t res, gr_srcptr x, gr_ctx_t ctx)
int gr_get_d(double * res, gr_srcptr x, gr_ctx_t ctx)
Sets *res* to the value *x*. This returns the ``GR_DOMAIN`` flag
if *x* cannot be converted to the target type.
For floating-point output types, the output may be rounded.
.. function:: int gr_set_fmpz_2exp_fmpz(gr_ptr res, const fmpz_t a, const fmpz_t b, gr_ctx_t ctx)
int gr_get_fmpz_2exp_fmpz(fmpz_t res1, fmpz_t res2, gr_srcptr x, gr_ctx_t ctx)
Set or retrieve a dyadic number `a \cdot 2^b`.
.. function:: int gr_get_d_2exp_si(double * res, slong * exp, gr_srcptr x, gr_ctx_t ctx)
Returns `m 2^e \approx x` with `0.5 \le |m| < 1` if *x* is nonzero.
.. function:: int gr_set_fmpz_10exp_fmpz(gr_ptr res, const fmpz_t a, const fmpz_t b, gr_ctx_t ctx)
Set to a decimal number `a \cdot 10^b`.
.. function:: int gr_get_fexpr(fexpr_t res, gr_srcptr x, gr_ctx_t ctx)
int gr_get_fexpr_serialize(fexpr_t res, gr_srcptr x, gr_ctx_t ctx)
Sets *res* to a symbolic expression representing *x*.
The *serialize* version may generate a representation of the
internal representation which is not intended to be human-readable.
.. function:: int gr_set_fexpr(gr_ptr res, fexpr_vec_t inputs, gr_vec_t outputs, const fexpr_t x, gr_ctx_t ctx)
Sets *res* to the evaluation of the expression *x* in the
given ring or structure.
The user must provide vectors *inputs* and *outputs* which
may be empty initially and which may be used as scratch space
during evaluation. Non-empty vectors may be given to map symbols
to predefined values.
Special values
................................................................................
.. function:: int gr_zero(gr_ptr res, gr_ctx_t ctx)
int gr_one(gr_ptr res, gr_ctx_t ctx)
int gr_neg_one(gr_ptr res, gr_ctx_t ctx)
Sets *res* to the ring element 0, 1 or -1.
.. function:: int gr_gen(gr_ptr res, gr_ctx_t ctx)
Sets *res* to a generator of this domain. The meaning of
"generator" depends on the domain.
.. function:: int gr_gens(gr_vec_t res, gr_ctx_t ctx)
int gr_gens_recursive(gr_vec_t res, gr_ctx_t ctx)
Sets *res* to a vector containing the generators of this domain
where this makes sense, for example in a multivariate polynomial
ring. The *recursive* version also includes any generators
of the base ring, and of any recursive base rings.
Basic properties
........................................................................
.. function:: truth_t gr_is_zero(gr_srcptr x, gr_ctx_t ctx)
truth_t gr_is_one(gr_srcptr x, gr_ctx_t ctx)
truth_t gr_is_neg_one(gr_srcptr x, gr_ctx_t ctx)
Returns whether *x* is equal to the ring element 0, 1 or -1,
respectively.
.. function:: truth_t gr_equal(gr_srcptr x, gr_srcptr y, gr_ctx_t ctx)
Returns whether the elements *x* and *y* are equal.
.. function:: truth_t gr_is_integer(gr_srcptr x, gr_ctx_t ctx)
Returns whether *x* represents an integer.
.. function:: truth_t gr_is_rational(gr_srcptr x, gr_ctx_t ctx)
Returns whether *x* represents a rational number.
Arithmetic
........................................................................
User-defined rings should supply ``neg``, ``add``, ``sub``
and ``mul`` methods; the variants with other operand types
have generic fallbacks that may be overridden for performance.
The ``fmpq`` versions may return ``GR_DOMAIN`` if the denominator
is not invertible.
The *other* versions accept operands belonging to a different domain,
attempting to perform a coercion into the target domain.
.. function:: int gr_neg(gr_ptr res, gr_srcptr x, gr_ctx_t ctx)
Sets *res* to `-x`.
.. function:: int gr_add(gr_ptr res, gr_srcptr x, gr_srcptr y, gr_ctx_t ctx)
int gr_add_ui(gr_ptr res, gr_srcptr x, ulong y, gr_ctx_t ctx)
int gr_add_si(gr_ptr res, gr_srcptr x, slong y, gr_ctx_t ctx)
int gr_add_fmpz(gr_ptr res, gr_srcptr x, const fmpz_t y, gr_ctx_t ctx)
int gr_add_fmpq(gr_ptr res, gr_srcptr x, const fmpq_t y, gr_ctx_t ctx)
int gr_add_other(gr_ptr res, gr_srcptr x, gr_srcptr y, gr_ctx_t y_ctx, gr_ctx_t ctx)
int gr_other_add(gr_ptr res, gr_srcptr x, gr_ctx_t x_ctx, gr_srcptr y, gr_ctx_t ctx)
Sets *res* to `x + y`.
.. function:: int gr_sub(gr_ptr res, gr_srcptr x, gr_srcptr y, gr_ctx_t ctx)
int gr_sub_ui(gr_ptr res, gr_srcptr x, ulong y, gr_ctx_t ctx)
int gr_sub_si(gr_ptr res, gr_srcptr x, slong y, gr_ctx_t ctx)
int gr_sub_fmpz(gr_ptr res, gr_srcptr x, const fmpz_t y, gr_ctx_t ctx)
int gr_sub_fmpq(gr_ptr res, gr_srcptr x, const fmpq_t y, gr_ctx_t ctx)
int gr_sub_other(gr_ptr res, gr_srcptr x, gr_srcptr y, gr_ctx_t y_ctx, gr_ctx_t ctx)
int gr_other_sub(gr_ptr res, gr_srcptr x, gr_ctx_t x_ctx, gr_srcptr y, gr_ctx_t ctx)
Sets *res* to `x - y`.
.. function:: int gr_mul(gr_ptr res, gr_srcptr x, gr_srcptr y, gr_ctx_t ctx)
int gr_mul_ui(gr_ptr res, gr_srcptr x, ulong y, gr_ctx_t ctx)
int gr_mul_si(gr_ptr res, gr_srcptr x, slong y, gr_ctx_t ctx)
int gr_mul_fmpz(gr_ptr res, gr_srcptr x, const fmpz_t y, gr_ctx_t ctx)
int gr_mul_fmpq(gr_ptr res, gr_srcptr x, const fmpq_t y, gr_ctx_t ctx)
int gr_mul_other(gr_ptr res, gr_srcptr x, gr_srcptr y, gr_ctx_t y_ctx, gr_ctx_t ctx)
int gr_other_mul(gr_ptr res, gr_srcptr x, gr_ctx_t x_ctx, gr_srcptr y, gr_ctx_t ctx)
Sets *res* to `x \cdot y`.
.. function:: int gr_addmul(gr_ptr res, gr_srcptr x, gr_srcptr y, gr_ctx_t ctx)
int gr_addmul_ui(gr_ptr res, gr_srcptr x, ulong y, gr_ctx_t ctx)
int gr_addmul_si(gr_ptr res, gr_srcptr x, slong y, gr_ctx_t ctx)
int gr_addmul_fmpz(gr_ptr res, gr_srcptr x, const fmpz_t y, gr_ctx_t ctx)
int gr_addmul_fmpq(gr_ptr res, gr_srcptr x, const fmpq_t y, gr_ctx_t ctx)
int gr_addmul_other(gr_ptr res, gr_srcptr x, gr_srcptr y, gr_ctx_t y_ctx, gr_ctx_t ctx)
Sets *res* to `\mathrm{res } + x \cdot y`.
Rings may override the default
implementation to perform this operation in one step without
allocating a temporary variable, without intermediate rounding, etc.
.. function:: int gr_submul(gr_ptr res, gr_srcptr x, gr_srcptr y, gr_ctx_t ctx)
int gr_submul_ui(gr_ptr res, gr_srcptr x, ulong y, gr_ctx_t ctx)
int gr_submul_si(gr_ptr res, gr_srcptr x, slong y, gr_ctx_t ctx)
int gr_submul_fmpz(gr_ptr res, gr_srcptr x, const fmpz_t y, gr_ctx_t ctx)
int gr_submul_fmpq(gr_ptr res, gr_srcptr x, const fmpq_t y, gr_ctx_t ctx)
int gr_submul_other(gr_ptr res, gr_srcptr x, gr_srcptr y, gr_ctx_t y_ctx, gr_ctx_t ctx)
Sets *res* to `\mathrm{res } - x \cdot y`.
Rings may override the default
implementation to perform this operation in one step without
allocating a temporary variable, without intermediate rounding, etc.
.. function:: int gr_mul_two(gr_ptr res, gr_srcptr x, gr_ctx_t ctx)
Sets *res* to `2x`. The default implementation adds *x*
to itself.
.. function:: int gr_sqr(gr_ptr res, gr_srcptr x, gr_ctx_t ctx)
Sets *res* to `x ^ 2`. The default implementation multiplies *x*
with itself.
.. function:: int gr_mul_2exp_si(gr_ptr res, gr_srcptr x, slong y, gr_ctx_t ctx)
int gr_mul_2exp_fmpz(gr_ptr res, gr_srcptr x, const fmpz_t y, gr_ctx_t ctx)
Sets *res* to `x \cdot 2^y`. This may perform `x \cdot 2^{-y}`
when *y* is negative, allowing exact division by powers of two
even if `2^{y}` is not representable.
Iterated arithmetic operations are best performed using vector
functions.
See in particular :func:`_gr_vec_dot` and :func:`_gr_vec_dot_rev`.
Division
........................................................................
The default implementations of the following methods check for divisors
0, 1, -1 and otherwise return ``GR_UNABLE``.
Particular rings should override the methods when an inversion
or division algorithm is available.
.. function:: truth_t gr_is_invertible(gr_srcptr x, gr_ctx_t ctx)
Returns whether *x* has a multiplicative inverse in the present ring,
i.e. whether *x* is a unit.
.. function:: int gr_inv(gr_ptr res, gr_srcptr x, gr_ctx_t ctx)
Sets *res* to the multiplicative inverse of *x* in the present ring,
if such an element exists.
Returns the flag ``GR_DOMAIN`` if *x* is not invertible, or
``GR_UNABLE`` if the implementation is unable to perform
the computation.
.. function:: int gr_div(gr_ptr res, gr_srcptr x, gr_srcptr y, gr_ctx_t ctx)
int gr_div_ui(gr_ptr res, gr_srcptr x, ulong y, gr_ctx_t ctx)
int gr_div_si(gr_ptr res, gr_srcptr x, slong y, gr_ctx_t ctx)
int gr_div_fmpz(gr_ptr res, gr_srcptr x, const fmpz_t y, gr_ctx_t ctx)
int gr_div_fmpq(gr_ptr res, gr_srcptr x, const fmpq_t y, gr_ctx_t ctx)
int gr_div_other(gr_ptr res, gr_srcptr x, gr_srcptr y, gr_ctx_t y_ctx, gr_ctx_t ctx)
int gr_other_div(gr_ptr res, gr_srcptr x, gr_ctx_t x_ctx, gr_srcptr y, gr_ctx_t ctx)
Sets *res* to the quotient `x / y`. In a field, this returns
``GR_DOMAIN`` if `y` is zero; in an integral domain,
it returns ``GR_DOMAIN`` if `y` is zero or if the quotient
does not exist. In a non-integral domain, we consider a quotient
to exist only if it is unique, and otherwise return ``GR_DOMAIN``;
see :func:`gr_div_nonunique` for a different behavior.
Returns the flag ``GR_UNABLE`` if the implementation is unable
to perform the computation.
.. function:: int gr_div_nonunique(gr_ptr res, gr_srcptr x, gr_srcptr y, gr_ctx_t ctx)
Sets *res* to an arbitrary solution `q` of the equation `x = q y`.
Returns the flag ``GR_DOMAIN`` if no such solution exists.
Returns the flag ``GR_UNABLE`` if the implementation is unable
to perform the computation.
This method allows dividing `x / y` in some cases where :func:`gr_div` fails:
* `0 / 0` has solutions (for example, 0) in any ring.
* It allows solving division problems in nonintegral domains.
For example, it allows assigning a value to `6 / 2` in
`R = \mathbb{Z}/10\mathbb{Z}` even though `2^{-1}` does not exist
in `R`. In this case, both 3 and 8 are possible solutions, and which
one is chosen is unpredictable.
.. function:: truth_t gr_divides(gr_srcptr d, gr_srcptr x, gr_ctx_t ctx)
Returns whether `d \mid x`; that is, whether there is an element `q`
such that `x = dq`. Note that this corresponds to divisibility
in the sense of :func:`gr_div_nonunique`, which is weaker than that
of :func:`gr_div`. For example, `0 \mid 0` is true even
in rings where `0 / 0` is undefined.
.. function:: int gr_divexact(gr_ptr res, gr_srcptr x, gr_srcptr y, gr_ctx_t ctx)
int gr_divexact_ui(gr_ptr res, gr_srcptr x, ulong y, gr_ctx_t ctx)
int gr_divexact_si(gr_ptr res, gr_srcptr x, slong y, gr_ctx_t ctx)
int gr_divexact_fmpz(gr_ptr res, gr_srcptr x, const fmpz_t y, gr_ctx_t ctx)
int gr_divexact_other(gr_ptr res, gr_srcptr x, gr_srcptr y, gr_ctx_t y_ctx, gr_ctx_t ctx)
int gr_other_divexact(gr_ptr res, gr_srcptr x, gr_ctx_t x_ctx, gr_srcptr y, gr_ctx_t ctx)
Sets *res* to the quotient `x / y`, assuming that this quotient
is exact in the present ring.
Rings may optimize this operation by not verifying that the
division is possible. If the division is not actually exact, the
implementation may set *res* to a nonsense value and still
return the ``GR_SUCCESS`` flag.
.. function:: int gr_euclidean_div(gr_ptr res, gr_srcptr x, gr_srcptr y, gr_ctx_t ctx)
int gr_euclidean_rem(gr_ptr res, gr_srcptr x, gr_srcptr y, gr_ctx_t ctx)
int gr_euclidean_divrem(gr_ptr res1, gr_ptr res2, gr_srcptr x, gr_srcptr y, gr_ctx_t ctx)
In a Euclidean ring, these functions perform some version of Euclidean
division with remainder, where the choice of quotient is
implementation-defined. For example, it is standard to use
the round-to-floor quotient in `\mathbb{Z}` and a round-to-nearest quotient in `\mathbb{Z}[i]`.
In non-Euclidean rings, these functions may implement some generalization of
Euclidean division with remainder.
Powering
........................................................................
.. function:: int gr_pow(gr_ptr res, gr_srcptr x, gr_srcptr y, gr_ctx_t ctx)
int gr_pow_ui(gr_ptr res, gr_srcptr x, ulong y, gr_ctx_t ctx)
int gr_pow_si(gr_ptr res, gr_srcptr x, slong y, gr_ctx_t ctx)
int gr_pow_fmpz(gr_ptr res, gr_srcptr x, const fmpz_t y, gr_ctx_t ctx)
int gr_pow_fmpq(gr_ptr res, gr_srcptr x, const fmpq_t y, gr_ctx_t ctx)
int gr_pow_other(gr_ptr res, gr_srcptr x, gr_srcptr y, gr_ctx_t y_ctx, gr_ctx_t ctx)
int gr_other_pow(gr_ptr res, gr_srcptr x, gr_ctx_t x_ctx, gr_srcptr y, gr_ctx_t ctx)
Sets *res* to the power `x ^ y`, the interpretation of which
depends on the ring when `y \not \in \mathbb{Z}`.
Returns the flag ``GR_DOMAIN`` if this power cannot be assigned
a meaningful value in the present ring, or ``GR_UNABLE`` if
the implementation is unable to perform the computation.
For subrings of `\mathbb{C}`, it is implied that the principal
power `x^y = \exp(y \log(x))` is computed for `x \ne 0`.
Default implementations of the powering methods support raising
elements to integer powers using a generic implementation of
exponentiation by squaring. Particular rings
should override these methods with faster versions or
to support more general notions of exponentiation when possible.
Derivative
........................................................................
.. function:: int gr_derivative_gen(gr_ptr res, gr_srcptr x, slong var, gr_ctx_t ctx)
Sets *res* to the derivative of *x* with respect to the variable of index *var*.
The variables here are the generators of *ctx*.
Square roots
........................................................................
The default implementations of the following methods check for the
elements 0 and 1 and otherwise return ``GR_UNABLE``.
Particular rings should override the methods when a square
root algorithm is available.
In subrings of `\mathbb{C}`, it is implied that the principal
square root is computed; in other cases (e.g. in finite fields),
the choice of root is implementation-dependent.
.. function:: truth_t gr_is_square(gr_srcptr x, gr_ctx_t ctx)
Returns whether *x* is a perfect square in the present ring.
.. function:: int gr_sqrt(gr_ptr res, gr_srcptr x, gr_ctx_t ctx)
int gr_rsqrt(gr_ptr res, gr_srcptr x, gr_ctx_t ctx)
Sets *res* to a square root of *x* (respectively reciprocal
square root) in the present ring, if such an element exists.
Returns the flag ``GR_DOMAIN`` if *x* is not a perfect square
(also for zero, when computing the reciprocal square root), or
``GR_UNABLE`` if the implementation is unable to perform
the computation.
Greatest common divisors
........................................................................
.. function:: int gr_gcd(gr_ptr res, gr_srcptr x, gr_srcptr y, gr_ctx_t ctx)
Sets *res* to a greatest common divisor (GCD) of *x* and *y*.
Since the GCD is unique only up to multiplication by a unit,
an implementation-defined representative is chosen.
.. function:: int gr_lcm(gr_ptr res, gr_srcptr x, gr_srcptr y, gr_ctx_t ctx)
Sets *res* to a least common multiple (LCM) of *x* and *y*.
Since the LCM is unique only up to multiplication by a unit,
an implementation-defined representative is chosen.
Factorization
........................................................................
.. function:: int gr_canonical_associate(gr_ptr res, gr_ptr u, gr_srcptr x, gr_ctx_t ctx)
Given a commutative ring element *x*, sets *res* to a canonical form
`u x` with respect to multiplication by units, also writing the normalizing
unit *u* as a second output. If `x = 0`, sets *res* to 0 and *u* to 1.
.. function:: int gr_factor(gr_ptr c, gr_vec_t factors, gr_vec_t exponents, gr_srcptr x, int flags, gr_ctx_t ctx)
Given `x \in R`, computes a factorization
`x = c {f_1}^{e_1} \ldots {f_n}^{e_n}`
where `f_k` will be irreducible or prime (depending on `R`).
The prefactor `c` stores a unit, sign, or coefficient, e.g.\ the
sign `-1`, `0` or `+1` in `\mathbb{Z}`, or a sign multiplied
by the coefficient content in `\mathbb{Z}[x]`.
Note that this function outputs `c` as an element of the
same ring as the input: for example, in `\mathbb{Z}[x]`,
`c` will be a constant polynomial rather than an
element of the coefficient ring.
The exponents `e_k` are output as a vector of ``fmpz`` elements.
The factors `f_k` are guaranteed to be distinct,
but they are not guaranteed to be sorted in any particular
order.
Fractions
........................................................................
.. function:: int gr_numerator(gr_ptr res, gr_srcptr x, gr_ctx_t ctx)
int gr_denominator(gr_ptr res, gr_srcptr x, gr_ctx_t ctx)
Return a numerator `p` and denominator `q` such that `x = p/q`.
For typical fraction fields, the denominator will be minimal
and canonical.
However, some rings may return an arbitrary denominator as long
as the numerator matches.
The default implementations simply return `p = x` and `q = 1`.
Integer and complex parts
........................................................................
.. function:: int gr_floor(gr_ptr res, gr_srcptr x, gr_ctx_t ctx)
int gr_ceil(gr_ptr res, gr_srcptr x, gr_ctx_t ctx)
int gr_trunc(gr_ptr res, gr_srcptr x, gr_ctx_t ctx)
int gr_nint(gr_ptr res, gr_srcptr x, gr_ctx_t ctx)
In the real and complex numbers, sets *res* to the integer closest
to *x*, respectively rounding towards minus infinity, plus infinity,
zero, or the nearest integer (with tie-to-even).
.. function:: int gr_abs(gr_ptr res, gr_srcptr x, gr_ctx_t ctx)
Sets *res* to the absolute value of *x*, which maybe defined
both in complex rings and in any ordered ring.
.. function:: int gr_i(gr_ptr res, gr_ctx_t ctx)
Sets *res* to the imaginary unit.
.. function:: int gr_conj(gr_ptr res, gr_srcptr x, gr_ctx_t ctx)
int gr_re(gr_ptr res, gr_srcptr x, gr_ctx_t ctx)
int gr_im(gr_ptr res, gr_srcptr x, gr_ctx_t ctx)
int gr_sgn(gr_ptr res, gr_srcptr x, gr_ctx_t ctx)
int gr_csgn(gr_ptr res, gr_srcptr x, gr_ctx_t ctx)
int gr_arg(gr_ptr res, gr_srcptr x, gr_ctx_t ctx)
These methods may return the flag ``GR_DOMAIN`` (or ``GR_UNABLE``)
when the ring is not a subring of the real or complex numbers.
Infinities and extended values
........................................................................
.. function:: int gr_pos_inf(gr_ptr res, gr_ctx_t ctx)
int gr_neg_inf(gr_ptr res, gr_ctx_t ctx)
int gr_uinf(gr_ptr res, gr_ctx_t ctx)
int gr_undefined(gr_ptr res, gr_ctx_t ctx)
int gr_unknown(gr_ptr res, gr_ctx_t ctx)
Sets *res* to the signed positive infinity `+\infty`, signed negative infinity `-\infty`, unsigned infinity `{\tilde \infty}`, *Undefined*, or *Unknown*, respectively.
Ordering methods
........................................................................
.. function:: int gr_cmp(int * res, gr_srcptr x, gr_srcptr y, gr_ctx_t ctx)
int gr_cmp_other(int * res, gr_srcptr x, gr_srcptr y, gr_ctx_t y_ctx, gr_ctx_t ctx)
Sets *res* to -1, 0 or 1 according to whether *x* is less than,
equal or greater than *y*.
This may return ``GR_DOMAIN`` if the ring is not an ordered ring.
.. function:: int gr_cmpabs(int * res, gr_srcptr x, gr_srcptr y, gr_ctx_t ctx)
int gr_cmpabs_other(int * res, gr_srcptr x, gr_srcptr y, gr_ctx_t y_ctx, gr_ctx_t ctx)
Sets *res* to -1, 0 or 1 according to whether the absolute value
of *x* is less than, equal or greater than the absolute value of *y*.
This may return ``GR_DOMAIN`` if the ring is not an ordered ring.
.. function:: truth_t gr_le(gr_srcptr x, gr_srcptr y, gr_ctx_t ctx)
truth_t gr_lt(gr_srcptr x, gr_srcptr y, gr_ctx_t ctx)
truth_t gr_ge(gr_srcptr x, gr_srcptr y, gr_ctx_t ctx)
truth_t gr_gt(gr_srcptr x, gr_srcptr y, gr_ctx_t ctx)
truth_t gr_abs_le(gr_srcptr x, gr_srcptr y, gr_ctx_t ctx)
truth_t gr_abs_lt(gr_srcptr x, gr_srcptr y, gr_ctx_t ctx)
truth_t gr_abs_ge(gr_srcptr x, gr_srcptr y, gr_ctx_t ctx)
truth_t gr_abs_gt(gr_srcptr x, gr_srcptr y, gr_ctx_t ctx)
Wrappers of ``gr_cmp`` and ``gr_cmpabs`` returning truth values
for the comparison operations ``<=``, ``<``, ``>=``, ``>``.
.. function:: int gr_min(gr_ptr res, gr_srcptr x, gr_srcptr y, gr_ctx_t ctx)
int gr_max(gr_ptr res, gr_srcptr x, gr_srcptr y, gr_ctx_t ctx)
Minimum and maximum value.
Enclosure and interval methods
........................................................................
.. function:: int gr_set_interval_mid_rad(gr_ptr res, gr_srcptr m, gr_srcptr r, gr_ctx_t ctx)
In ball representations of the real numbers, sets *res* to
the interval `m \pm r`.
In vector spaces over the real numbers represented using balls,
intervals are handled independently for the generators;
for example, in the complex numbers, `a + b i \pm (0.1 + 0.2 i)`
is equivalent to `(a \pm 0.1) + (b \pm 0.2) i`.
Finite field methods
........................................................................
.. function:: int gr_ctx_fq_prime(fmpz_t p, gr_ctx_t ctx)
.. function:: int gr_ctx_fq_degree(slong * deg, gr_ctx_t ctx)
.. function:: int gr_ctx_fq_order(fmpz_t q, gr_ctx_t ctx)
.. function:: int gr_fq_frobenius(gr_ptr res, gr_srcptr x, slong e, gr_ctx_t ctx)
.. function:: int gr_fq_multiplicative_order(fmpz_t res, gr_srcptr x, gr_ctx_t ctx)
.. function:: int gr_fq_norm(fmpz_t res, gr_srcptr x, gr_ctx_t ctx)
.. function:: int gr_fq_trace(fmpz_t res, gr_srcptr x, gr_ctx_t ctx)
.. function:: truth_t gr_fq_is_primitive(gr_srcptr x, gr_ctx_t ctx)
.. function:: int gr_fq_pth_root(gr_ptr res, gr_srcptr x, gr_ctx_t ctx)
.. raw:: latex
\newpage
|