File: gr_mat.rst

package info (click to toggle)
flint 3.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 68,996 kB
  • sloc: ansic: 915,350; asm: 14,605; python: 5,340; sh: 4,512; lisp: 2,621; makefile: 787; cpp: 341
file content (1250 lines) | stat: -rw-r--r-- 62,538 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
.. _gr-mat:

**gr_mat.h** -- dense matrices over generic rings
===============================================================================

A :type:`gr_mat_t` represents a matrix implemented as a dense
array of entries in a generic ring *R*.

* In this module, the context object ``ctx`` always represents the
  coefficient ring *R* unless otherwise stated.
  Creating a context object representing a matrix
  space only becomes necessary when one
  wants to manipulate matrices using generic ring methods
  like ``gr_add`` instead of the designated matrix
  methods like ``gr_mat_add``.
* Matrix functions generally assume that input as well
  as output operands have compatible shapes.
  Some functions return ``GR_DOMAIN`` for matrices with the
  wrong shape, but this is not always consistent.
* Some operations (like rank, LU factorization) generally only make
  sense when the base ring is an integral domain.
  Typically the algorithms designed for integral domains also work
  over non-integral domains as long as all inversions of nonzero
  elements succeed. If an inversion fails, the algorithm will return
  the ``GR_DOMAIN`` or ``GR_UNABLE`` flag.
  This might not yet be entirely consistent.

Type compatibility
-------------------------------------------------------------------------------

The ``gr_mat`` type has the same data layout as most
FLINT, Arb and Calcium matrix types.
Methods in this module can therefore be mixed freely with
methods in the corresponding FLINT, Arb and Calcium modules
when the underlying coefficient type is the same.

It is not directly compatible with the ``nmod_mat`` type,
which stores modulus data as part of the matrix object.

Types, macros and constants
-------------------------------------------------------------------------------

.. type:: gr_mat_struct

.. type:: gr_mat_t

    Contains a pointer to an array of coefficients (``entries``), the
    number of rows (``r``), the number of columns (``c``),
    and an array to pointers marking the start of each row (``rows``).

    A ``gr_mat_t`` is defined as an array of length one of type
    ``gr_mat_struct``, permitting a ``gr_mat_t`` to
    be passed by reference.

.. macro:: GR_MAT_ENTRY(mat, i, j, sz)

    Macro to access the entry at row *i* and column *j* of the
    matrix *mat* whose entries have size *sz* bytes.

.. function:: gr_ptr gr_mat_entry_ptr(gr_mat_t mat, slong i, slong j, gr_ctx_t ctx)

    Function returning a pointer to the entry at row *i* and column
    *j* of the matrix *mat*. The indices must be in bounds.

.. macro:: gr_mat_nrows(mat, ctx)

    Macro accessing the number of rows of *mat*.

.. macro:: gr_mat_ncols(mat, ctx)

    Macro accessing the number of columns of *mat*.

Memory management
-------------------------------------------------------------------------------

.. function:: void gr_mat_init(gr_mat_t mat, slong rows, slong cols, gr_ctx_t ctx)

    Initializes *mat* to a matrix with the given number of rows and
    columns.

.. function:: int gr_mat_init_set(gr_mat_t res, const gr_mat_t mat, gr_ctx_t ctx)

    Initializes *res* to a copy of the matrix *mat*.

.. function:: void gr_mat_clear(gr_mat_t mat, gr_ctx_t ctx)

    Clears the matrix.

.. function:: void gr_mat_swap(gr_mat_t mat1, gr_mat_t mat2, gr_ctx_t ctx)

    Swaps *mat1* and *mat12* efficiently.

.. function:: int gr_mat_swap_entrywise(gr_mat_t mat1, const gr_mat_t mat2, gr_ctx_t ctx)

    Performs a deep swap of *mat1* and *mat2*, swapping the individual
    entries rather than the top-level structures.

Window matrices
-------------------------------------------------------------------------------

.. function:: void gr_mat_window_init(gr_mat_t window, const gr_mat_t mat, slong r1, slong c1, slong r2, slong c2, gr_ctx_t ctx)

    Initializes *window* to a window matrix into the submatrix of *mat*
    starting at the corner at row *r1* and column *c1* (inclusive) and ending
    at row *r2* and column *c2* (exclusive).
    The indices must be within bounds.

.. function:: void gr_mat_window_clear(gr_mat_t window, gr_ctx_t ctx)

    Frees the window matrix.

.. macro:: GR_MAT_TMP_INIT_SHALLOW_TRANSPOSE(AT, A, ctx)

    Initialize *AT* to a shallow transpose of *A* for temporary use.
    This macro uses stack allocation if *A* is sufficiently small.
    The matrix *AT* can be used similarly to a window matrix for reading.
    It can also be used for writing, provided that one finishes the
    operation by performing ``GR_MAT_SHALLOW_TRANSPOSE(A, AT, ctx)``
    to write back any changes to the shallow data.

.. macro:: GR_MAT_SHALLOW_TRANSPOSE(AT, A, ctx)

    Sets *AT* to the transpose of *A*, copying entries shallowly.
    Assumes that *AT* and *A* are not aliased (if aliased, the normal
    :func:`gr_mat_transpose` already uses shallow operations).

.. macro:: GR_MAT_TMP_CLEAR_SHALLOW_TRANSPOSE(AT, ctx)

    Free the shallow transpose allocated by :macro:`GR_MAT_TMP_INIT_SHALLOW_TRANSPOSE`.

Input and output
-------------------------------------------------------------------------------

.. function:: int gr_mat_write(gr_stream_t out, const gr_mat_t mat, gr_ctx_t ctx)

    Write *mat* to the stream *out*.

.. function:: int gr_mat_print(const gr_mat_t mat, gr_ctx_t ctx)

    Prints *mat* to standard output.

Comparisons
-------------------------------------------------------------------------------

.. function:: truth_t gr_mat_equal(const gr_mat_t mat1, const gr_mat_t mat2, gr_ctx_t ctx)

    Returns whether *mat1* and *mat2* are equal.

Assignment and special values
-------------------------------------------------------------------------------

.. function:: truth_t gr_mat_is_zero(const gr_mat_t mat, gr_ctx_t ctx)
              truth_t gr_mat_is_one(const gr_mat_t mat, gr_ctx_t ctx)
              truth_t gr_mat_is_neg_one(const gr_mat_t mat, gr_ctx_t ctx)

    Returns whether *mat* respectively is the zero matrix or
    the scalar matrix with 1 or -1 on the main diagonal.

.. function:: truth_t gr_mat_is_scalar(const gr_mat_t mat, gr_ctx_t ctx)

    Returns whether *mat* is a scalar matrix, being a diagonal matrix
    with identical elements on the main diagonal.

.. function:: int gr_mat_zero(gr_mat_t res, gr_ctx_t ctx)

    Sets *res* to the zero matrix.

.. function:: int gr_mat_one(gr_mat_t res, gr_ctx_t ctx)

    Sets *res* to the scalar matrix with 1 on the main diagonal
    and zero elsewhere.

.. function:: int gr_mat_set(gr_mat_t res, const gr_mat_t mat, gr_ctx_t ctx)
              int gr_mat_set_fmpz_mat(gr_mat_t res, const fmpz_mat_t mat, gr_ctx_t ctx)
              int gr_mat_set_fmpq_mat(gr_mat_t res, const fmpq_mat_t mat, gr_ctx_t ctx)
              int gr_mat_set_gr_mat_other(gr_mat_t res, const gr_mat_t mat, gr_ctx_t mat_ctx, gr_ctx_t ctx)

    Sets *res* to the value of *mat*.

.. function:: int gr_mat_set_scalar(gr_mat_t res, gr_srcptr c, gr_ctx_t ctx)
              int gr_mat_set_ui(gr_mat_t res, ulong c, gr_ctx_t ctx)
              int gr_mat_set_si(gr_mat_t res, slong c, gr_ctx_t ctx)
              int gr_mat_set_fmpz(gr_mat_t res, const fmpz_t c, gr_ctx_t ctx)
              int gr_mat_set_fmpq(gr_mat_t res, const fmpq_t c, gr_ctx_t ctx)

    Set *res* to the scalar matrix with *c* on the main diagonal
    and zero elsewhere.

Basic row, column and entry operations
-------------------------------------------------------------------------------

.. function:: int gr_mat_concat_horizontal(gr_mat_t res, const gr_mat_t mat1, const gr_mat_t mat2, gr_ctx_t ctx)

.. function:: int gr_mat_concat_vertical(gr_mat_t res, const gr_mat_t mat1, const gr_mat_t mat2, gr_ctx_t ctx)

.. function:: int gr_mat_transpose(gr_mat_t res, const gr_mat_t mat, gr_ctx_t ctx)

    Sets ``res`` to the transpose of ``mat``. Dimensions must be compatible.
    Aliasing is allowed for square matrices.

.. function:: int gr_mat_swap_rows(gr_mat_t mat, slong * perm, slong r, slong s, gr_ctx_t ctx)

    Swaps rows ``r`` and ``s`` of ``mat``.  If ``perm`` is non-``NULL``, the
    permutation of the rows will also be applied to ``perm``.

.. function:: int gr_mat_swap_cols(gr_mat_t mat, slong * perm, slong r, slong s, gr_ctx_t ctx)

    Swaps columns ``r`` and ``s`` of ``mat``.  If ``perm`` is non-``NULL``, the
    permutation of the columns will also be applied to ``perm``.

.. function:: int gr_mat_invert_rows(gr_mat_t mat, slong * perm, gr_ctx_t ctx)

    Swaps rows ``i`` and ``r - i`` of ``mat`` for ``0 <= i < r/2``, where
    ``r`` is the number of rows of ``mat``. If ``perm`` is non-``NULL``, the
    permutation of the rows will also be applied to ``perm``.

.. function:: int gr_mat_invert_cols(gr_mat_t mat, slong * perm, gr_ctx_t ctx)

    Swaps columns ``i`` and ``c - i`` of ``mat`` for ``0 <= i < c/2``, where
    ``c`` is the number of columns of ``mat``. If ``perm`` is non-``NULL``, the
    permutation of the columns will also be applied to ``perm``.

.. function:: int gr_mat_move_row(gr_mat_t A, slong i, slong new_i, gr_ctx_t ctx)

    Moves row ``i`` to the new position ``new_i``, displacing all intervening
    rows. For example, with ``i = 4`` and ``new_i = 7`` this replaces the
    block of rows ``A4, A5, A6, A7`` by ``A5, A6, A7, A4``.
    With ``i = 7`` and ``new_i = 4`` replaces ``A4, A5, A6, A7``
    by ``A7, A4, A5, A6``.
    Returns ``GR_DOMAIN`` if either index is not in bounds, otherwise is
    guaranteed to succeed.

.. function:: truth_t gr_mat_is_empty(const gr_mat_t mat, gr_ctx_t ctx)

    Returns whether *mat* is an empty matrix, having either zero
    rows or zero column. This predicate is always decidable (even if
    the underlying ring is not computable), returning
    ``T_TRUE`` or ``T_FALSE``.

.. function:: truth_t gr_mat_is_square(const gr_mat_t mat, gr_ctx_t ctx)

    Returns whether *mat* is a square matrix, having the same number
    of rows as columns (not the same thing as being a perfect square!).
    This predicate is always decidable (even if the underlying ring
    is not computable), returning ``T_TRUE`` or ``T_FALSE``.

Entrywise operations
-------------------------------------------------------------------------------

.. function:: int gr_mat_entrywise_unary_op(gr_mat_t res, gr_method_unary_op f, const gr_mat_t mat, gr_ctx_t ctx)

    Sets *res* to the application of the function *f* to the
    entries of matrix *mat*. Returns ``GR_DOMAIN`` if the matrix dimensions do not match.

.. function:: int gr_mat_entrywise_binary_op(gr_mat_t res, gr_method_binary_op f, const gr_mat_t mat1, const gr_mat_t mat2, gr_ctx_t ctx)

    Sets *res* to the application of the function *f*
    to the entries of *mat1* as first argument and the entries of *mat2*
    as second argument.
    Returns ``GR_DOMAIN`` if the matrix dimensions do not match.

.. function:: int gr_mat_entrywise_binary_op_scalar(gr_mat_t res, gr_method_binary_op f, const gr_mat_t mat, gr_srcptr c, gr_ctx_t ctx)

    Sets *res* to the application of the function *f*
    to the entries of *mat* as first argument and the scalar *c*
    as second argument.
    Returns ``GR_DOMAIN`` if the matrix dimensions do not match.

.. function:: truth_t gr_mat_entrywise_unary_predicate_all(gr_method_unary_predicate f, const gr_mat_t mat, gr_ctx_t ctx)
              truth_t gr_mat_entrywise_unary_predicate_any(gr_method_unary_predicate f, const gr_mat_t mat, gr_ctx_t ctx)

    Returns whether the predicate *f* is true for all entries,
    respectively for any entry, in the matrix *mat*.

.. function:: truth_t gr_mat_entrywise_binary_predicate_all(gr_method_binary_predicate f, const gr_mat_t mat1, const gr_mat_t mat2, gr_ctx_t ctx)

    Returns whether the binary predicate *f* is true for all entries
    in *mat1* paired with the corresponding entries in *mat2*.
    Returns ``T_FALSE`` if the matrix dimensions are not compatible.

Norms
-------------------------------------------------------------------------------

.. function:: int gr_mat_norm_max(gr_ptr res, const gr_mat_t mat, gr_ctx_t ctx)

    Max norm: `\max_{i,j} |a_{i,j}|`.

.. function:: int gr_mat_norm_1(gr_ptr res, const gr_mat_t mat, gr_ctx_t ctx)

    1-norm (largest absolute column sum): `\max_{1\le j \le n} \sum_{i=1}^m |a_{i,j}|`.

.. function:: int gr_mat_norm_inf(gr_ptr res, const gr_mat_t mat, gr_ctx_t ctx)

    Infinity-norm (largest absolute row sum): `\max_{1\le i \le m} \sum_{j=1}^n |a_{i,j}|`.

.. function:: int gr_mat_norm_frobenius(gr_ptr res, const gr_mat_t mat, gr_ctx_t ctx)

    Frobenius norm: `\sqrt{\sum_{i,j} |a_{i,j}|^2}`.

Addition and scalar arithmetic
-------------------------------------------------------------------------------

.. function:: int gr_mat_neg(gr_mat_t res, const gr_mat_t mat, gr_ctx_t ctx)

.. function:: int gr_mat_add(gr_mat_t res, const gr_mat_t mat1, const gr_mat_t mat2, gr_ctx_t ctx)

.. function:: int gr_mat_sub(gr_mat_t res, const gr_mat_t mat1, const gr_mat_t mat2, gr_ctx_t ctx)

.. function:: int gr_mat_add_scalar(gr_mat_t res, const gr_mat_t mat, gr_srcptr x, gr_ctx_t ctx)
              int gr_mat_scalar_add(gr_mat_t res, gr_srcptr x, const gr_mat_t mat, gr_ctx_t ctx)
              int gr_mat_add_ui(gr_mat_t res, const gr_mat_t mat, ulong x, gr_ctx_t ctx)
              int gr_mat_add_si(gr_mat_t res, const gr_mat_t mat, slong x, gr_ctx_t ctx)
              int gr_mat_add_fmpz(gr_mat_t res, const gr_mat_t mat, const fmpz_t x, gr_ctx_t ctx)
              int gr_mat_add_fmpq(gr_mat_t res, const gr_mat_t mat, const fmpq_t x, gr_ctx_t ctx)
              int gr_mat_add_scalar_other(gr_mat_t res, const gr_mat_t mat, gr_srcptr x, gr_ctx_t x_ctx, gr_ctx_t ctx)
              int gr_mat_scalar_other_add(gr_mat_t res, gr_srcptr x, gr_ctx_t x_ctx, const gr_mat_t mat, gr_ctx_t ctx)

    Perform the matrix-scalar or scalar-matrix operation `A + Ix` or `Ix + A`.

.. function:: int gr_mat_sub_scalar(gr_mat_t res, const gr_mat_t mat, gr_srcptr x, gr_ctx_t ctx)
              int gr_mat_scalar_sub(gr_mat_t res, gr_srcptr x, const gr_mat_t mat, gr_ctx_t ctx)
              int gr_mat_sub_ui(gr_mat_t res, const gr_mat_t mat, ulong x, gr_ctx_t ctx)
              int gr_mat_sub_si(gr_mat_t res, const gr_mat_t mat, slong x, gr_ctx_t ctx)
              int gr_mat_sub_fmpz(gr_mat_t res, const gr_mat_t mat, const fmpz_t x, gr_ctx_t ctx)
              int gr_mat_sub_fmpq(gr_mat_t res, const gr_mat_t mat, const fmpq_t x, gr_ctx_t ctx)
              int gr_mat_sub_scalar_other(gr_mat_t res, const gr_mat_t mat, gr_srcptr x, gr_ctx_t x_ctx, gr_ctx_t ctx)
              int gr_mat_scalar_other_sub(gr_mat_t res, gr_srcptr x, gr_ctx_t x_ctx, const gr_mat_t mat, gr_ctx_t ctx)

    Perform the matrix-scalar or scalar-matrix operation `A - Ix` or `Ix - A`.

.. function:: int gr_mat_mul_scalar(gr_mat_t res, const gr_mat_t mat, gr_srcptr x, gr_ctx_t ctx)
              int gr_mat_scalar_mul(gr_mat_t res, gr_srcptr x, const gr_mat_t mat, gr_ctx_t ctx)
              int gr_mat_mul_ui(gr_mat_t res, const gr_mat_t mat, ulong x, gr_ctx_t ctx)
              int gr_mat_mul_si(gr_mat_t res, const gr_mat_t mat, slong x, gr_ctx_t ctx)
              int gr_mat_mul_fmpz(gr_mat_t res, const gr_mat_t mat, const fmpz_t x, gr_ctx_t ctx)
              int gr_mat_mul_fmpq(gr_mat_t res, const gr_mat_t mat, const fmpq_t x, gr_ctx_t ctx)
              int gr_mat_mul_scalar_other(gr_mat_t res, const gr_mat_t mat, gr_srcptr x, gr_ctx_t x_ctx, gr_ctx_t ctx)
              int gr_mat_scalar_other_mul(gr_mat_t res, gr_srcptr x, gr_ctx_t x_ctx, const gr_mat_t mat, gr_ctx_t ctx)

    Perform the matrix-scalar or scalar-matrix operation `A x` or `x A`.

.. function:: int gr_mat_div_scalar(gr_mat_t res, const gr_mat_t mat, gr_srcptr x, gr_ctx_t ctx)
              int gr_mat_div_scalar_other(gr_mat_t res, const gr_mat_t mat, gr_srcptr x, gr_ctx_t x_ctx, gr_ctx_t ctx)
              int gr_mat_div_ui(gr_mat_t res, const gr_mat_t mat, ulong x, gr_ctx_t ctx)
              int gr_mat_div_si(gr_mat_t res, const gr_mat_t mat, slong x, gr_ctx_t ctx)
              int gr_mat_div_fmpz(gr_mat_t res, const gr_mat_t mat, const fmpz_t x, gr_ctx_t ctx)
              int gr_mat_div_fmpq(gr_mat_t res, const gr_mat_t mat, const fmpq_t x, gr_ctx_t ctx)

    Perform the matrix-scalar operation `A / x`.

.. function:: int gr_mat_addmul_scalar(gr_mat_t res, const gr_mat_t mat, gr_srcptr c, gr_ctx_t ctx)
              int gr_mat_submul_scalar(gr_mat_t res, const gr_mat_t mat, gr_srcptr c, gr_ctx_t ctx)

Matrix multiplication
-------------------------------------------------------------------------------

.. function:: int gr_mat_mul(gr_mat_t res, const gr_mat_t mat1, const gr_mat_t mat2, gr_ctx_t ctx)

    Compute `AB` using the default algorithm chosen by the element ring.
    If the element ring does not overload matrix multiplication, this will
    fall back to :func:`gr_mat_mul_generic` by default.

.. function:: int gr_mat_mul_generic(gr_mat_t C, const gr_mat_t A, const gr_mat_t B, gr_ctx_t ctx)

    Multiply matrices using a generic algorithm choice.
    Currently this always chooses classical multiplication, but may implement
    other strategies in the future.

.. function:: int gr_mat_mul_classical(gr_mat_t res, const gr_mat_t mat1, const gr_mat_t mat2, gr_ctx_t ctx)

    Computes the `m \times n \times p` matrix product using the classical algorithm,
    performing `mp` dot products of length `n`.

.. function:: int gr_mat_mul_strassen(gr_mat_t C, const gr_mat_t A, const gr_mat_t B, gr_ctx_t ctx)

    Uses Strassen's algorithm to evaluate `AB` using 7 recursive matrix multiplications
    of roughly half the size. This function calls :func:`gr_mat_mul` for the recursive
    multiplications; to use Strassen recursively, the base ring must overload
    :func:`gr_mat_mul` to choose Strassen multiplication above some cutoff.
    This results in `O(n^{2.81})` asymptotic complexity in the case of an `n \times n \times n`
    product.

    This function does not implement Strassen's original evaluation sequence
    but that of Bodrato [Bodrato2010]_ which uses fewer additions and offers
    some further time savings when squaring.

.. function:: int gr_mat_mul_waksman(gr_mat_t C, const gr_mat_t A, const gr_mat_t B, gr_ctx_t ctx)

    Compute the product `AB` using roughly half the number of multiplications
    of the classical algorithm, using Waksman's algorithm [Waksman1970]_.
    The base ring must be commutative and must support exact division by two.

.. function:: int gr_mat_mul_rosowski(gr_mat_t C, const gr_mat_t A, const gr_mat_t B, gr_ctx_t ctx)

    Compute the product `AB` using roughly half the number of multiplications
    of the classical algorithm, using Rosowski's algorithm [Rosowski2023]_.
    The base ring must be commutative. This uses the same number of multiplications
    as Waksman's algorithm when the inner dimension *n* is even,
    but uses fewer multiplications when *n* is odd, and does not
    require division by two.


Powering
-------------------------------------------------------------------------------

See the section on matrix functions for non-integer exponents.

.. function:: int gr_mat_sqr(gr_mat_t res, const gr_mat_t mat, gr_ctx_t ctx)

.. function:: int gr_mat_pow_ui(gr_mat_t res, const gr_mat_t mat, ulong e, gr_ctx_t ctx)
              int gr_mat_pow_si(gr_mat_t res, const gr_mat_t mat, slong e, gr_ctx_t ctx)
              int gr_mat_pow_fmpz(gr_mat_t res, const gr_mat_t mat, const fmpz_t e, gr_ctx_t ctx)

Polynomial evaluation
-------------------------------------------------------------------------------

.. function:: int _gr_mat_gr_poly_evaluate(gr_mat_t res, gr_srcptr poly, slong len, const gr_mat_t mat, gr_ctx_t ctx)
              int gr_mat_gr_poly_evaluate(gr_mat_t res, const gr_poly_t poly, const gr_mat_t mat, gr_ctx_t ctx)

    Sets *res* to the matrix obtained by evaluating the
    scalar polynomial *poly* with matrix argument *mat*.

Diagonal and triangular matrices
-------------------------------------------------------------------------------

.. function:: truth_t gr_mat_is_upper_triangular(const gr_mat_t mat, gr_ctx_t ctx)
              truth_t gr_mat_is_lower_triangular(const gr_mat_t mat, gr_ctx_t ctx)

    Returns whether *mat* is upper (respectively lower) triangular, having
    zeros everywhere below (respectively above) the main diagonal.
    The matrix need not be square.

.. function:: truth_t gr_mat_is_diagonal(const gr_mat_t mat, gr_ctx_t ctx)

    Returns whether *mat* is a diagonal matrix, having zeros everywhere
    except on the main diagonal.
    The matrix need not be square.

.. function:: int gr_mat_mul_diag(gr_mat_t res, const gr_mat_t A, const gr_vec_t D, gr_ctx_t ctx)
              int gr_mat_diag_mul(gr_mat_t res, const gr_vec_t D, const gr_mat_t A, gr_ctx_t ctx)

    Set *res* to the product `AD` or `DA` respectively, where `D` is
    a diagonal matrix represented as a vector of entries.

Gaussian elimination
-------------------------------------------------------------------------------

.. function:: int gr_mat_find_nonzero_pivot_large_abs(slong * pivot_row, gr_mat_t mat, slong start_row, slong end_row, slong column, gr_ctx_t ctx)
              int gr_mat_find_nonzero_pivot_generic(slong * pivot_row, gr_mat_t mat, slong start_row, slong end_row, slong column, gr_ctx_t ctx)
              int gr_mat_find_nonzero_pivot(slong * pivot_row, gr_mat_t mat, slong start_row, slong end_row, slong column, gr_ctx_t ctx)

    Attempts to find a nonzero element in column number *column*
    of the matrix *mat* in a row between *start_row* (inclusive)
    and *end_row* (exclusive).
    On success, sets ``pivot_row`` to the row index and returns
    ``GR_SUCCESS``. If no nonzero pivot element exists, returns ``GR_DOMAIN``.
    If no nonzero pivot element exists and zero-testing fails for some
    element, returns the flag ``GR_UNABLE``.

    This function may be destructive: any elements that are nontrivially
    zero but can be certified zero may be overwritten by exact zeros.

.. function:: int gr_mat_lu_classical(slong * rank, slong * P, gr_mat_t LU, const gr_mat_t A, int rank_check, gr_ctx_t ctx)
              int gr_mat_lu_recursive(slong * rank, slong * P, gr_mat_t LU, const gr_mat_t A, int rank_check, gr_ctx_t ctx)
              int gr_mat_lu_generic(slong * rank, slong * P, gr_mat_t LU, const gr_mat_t A, int rank_check, gr_ctx_t ctx)
              int gr_mat_lu(slong * rank, slong * P, gr_mat_t LU, const gr_mat_t A, int rank_check, gr_ctx_t ctx)

    Computes a generalized LU decomposition `A = PLU` of a given
    matrix *A*, writing the rank of *A* to *rank*.

    If *A* is a nonsingular square matrix, *LU* will be set to
    a unit diagonal lower triangular matrix *L* and an upper
    triangular matrix *U* (the diagonal of *L* will not be stored
    explicitly).

    If *A* is an arbitrary matrix of rank *r*, *U* will be in row
    echelon form having *r* nonzero rows, and *L* will be lower
    triangular but truncated to *r* columns, having implicit ones on
    the *r* first entries of the main diagonal. All other entries will
    be zero.

    If a nonzero value for ``rank_check`` is passed, the function
    will abandon the output matrix in an undefined state and set
    the rank to 0 if *A* is detected to be rank-deficient.
    This currently only works as expected for square matrices.

    The algorithm can fail if it fails to certify that a pivot
    element is zero or nonzero, in which case the correct rank
    cannot be determined. It can also fail if a pivot element
    is not invertible. In these cases the ``GR_UNABLE`` and/or
    ``GR_DOMAIN`` flags will be returned. On failure,
    the data in the output variables
    ``rank``, ``P`` and ``LU`` will be meaningless.

    The *classical* version uses iterative Gaussian elimination.
    The *recursive* version uses a block recursive algorithm
    to take advantage of fast matrix multiplication.
    The *generic* version calls the recursive algorithm with a
    default cutoff.

.. function:: int gr_mat_fflu(slong * rank, slong * P, gr_mat_t LU, gr_ptr den, const gr_mat_t A, int rank_check, gr_ctx_t ctx)

    Similar to :func:`gr_mat_lu`, but computes a fraction-free
    LU decomposition using the Bareiss algorithm.
    The denominator is written to *den*.

Solving
-------------------------------------------------------------------------------

.. function:: int gr_mat_nonsingular_solve_tril_classical(gr_mat_t X, const gr_mat_t L, const gr_mat_t B, int unit, gr_ctx_t ctx)
              int gr_mat_nonsingular_solve_tril_recursive(gr_mat_t X, const gr_mat_t L, const gr_mat_t B, int unit, gr_ctx_t ctx)
              int gr_mat_nonsingular_solve_tril_generic(gr_mat_t X, const gr_mat_t L, const gr_mat_t B, int unit, gr_ctx_t ctx)
              int gr_mat_nonsingular_solve_tril(gr_mat_t X, const gr_mat_t L, const gr_mat_t B, int unit, gr_ctx_t ctx)
              int gr_mat_nonsingular_solve_triu_classical(gr_mat_t X, const gr_mat_t U, const gr_mat_t B, int unit, gr_ctx_t ctx)
              int gr_mat_nonsingular_solve_triu_recursive(gr_mat_t X, const gr_mat_t U, const gr_mat_t B, int unit, gr_ctx_t ctx)
              int gr_mat_nonsingular_solve_triu_generic(gr_mat_t X, const gr_mat_t U, const gr_mat_t B, int unit, gr_ctx_t ctx)
              int gr_mat_nonsingular_solve_triu(gr_mat_t X, const gr_mat_t U, const gr_mat_t B, int unit, gr_ctx_t ctx)

    Solves the lower triangular system `LX = B` or the upper triangular system
    `UX = B`, respectively. Division by the the diagonal entries must
    be possible; if not a division fails, ``GR_DOMAIN`` is returned
    even if the system is solvable.
    If *unit* is set, the main diagonal of *L* or *U*
    is taken to consist of all ones, and in that case the actual entries on
    the diagonal are not read at all and can contain other data.

    The *classical* versions perform the computations iteratively while the
    *recursive* versions perform the computations in a block recursive
    way to benefit from fast matrix multiplication. The default versions
    choose an algorithm automatically.

.. function:: int gr_mat_nonsingular_solve_fflu(gr_mat_t X, const gr_mat_t A, const gr_mat_t B, gr_ctx_t ctx)
              int gr_mat_nonsingular_solve_lu(gr_mat_t X, const gr_mat_t A, const gr_mat_t B, gr_ctx_t ctx)
              int gr_mat_nonsingular_solve(gr_mat_t X, const gr_mat_t A, const gr_mat_t B, gr_ctx_t ctx)

    Solves `AX = B`. If *A* is not invertible,
    returns ``GR_DOMAIN`` even if the system has a solution.

.. function:: int gr_mat_nonsingular_solve_fflu_precomp(gr_mat_t X, const slong * perm, const gr_mat_t LU, const gr_mat_t B, gr_ctx_t ctx)
              int gr_mat_nonsingular_solve_lu_precomp(gr_mat_t X, const slong * perm, const gr_mat_t LU, const gr_mat_t B, gr_ctx_t ctx)

    Solves `AX = B` given a precomputed FFLU or LU factorization of *A*.

.. function:: int gr_mat_nonsingular_solve_den_fflu(gr_mat_t X, gr_ptr den, const gr_mat_t A, const gr_mat_t B, gr_ctx_t ctx)
              int gr_mat_nonsingular_solve_den(gr_mat_t X, gr_ptr den, const gr_mat_t A, const gr_mat_t B, gr_ctx_t ctx)

    Solves `AX = B` over the fraction field of the present ring
    (assumed to be an integral domain), returning `X` with
    an implied denominator *den*.
    If *A* is not invertible over the fraction field, returns
    ``GR_DOMAIN`` even if the system has a solution.

.. function:: int gr_mat_solve_field(gr_mat_t X, const gr_mat_t A, const gr_mat_t B, gr_ctx_t ctx)

    Solves `AX = B` where *A* is not necessarily square and not necessarily
    invertible. Assuming that the ring is a field, a return value of
    ``GR_DOMAIN`` indicates that the system has no solution.
    If there are multiple solutions, an arbitrary solution is returned.

Determinant and trace
-------------------------------------------------------------------------------

.. function:: int gr_mat_det_fflu(gr_ptr res, const gr_mat_t mat, gr_ctx_t ctx)
              int gr_mat_det_berkowitz(gr_ptr res, const gr_mat_t mat, gr_ctx_t ctx)
              int gr_mat_det_lu(gr_ptr res, const gr_mat_t mat, gr_ctx_t ctx)
              int gr_mat_det_cofactor(gr_ptr res, const gr_mat_t mat, gr_ctx_t ctx)
              int gr_mat_det_generic_field(gr_ptr res, const gr_mat_t A, gr_ctx_t ctx)
              int gr_mat_det_generic_integral_domain(gr_ptr res, const gr_mat_t A, gr_ctx_t ctx)
              int gr_mat_det_generic(gr_ptr res, const gr_mat_t A, gr_ctx_t ctx)
              int gr_mat_det(gr_ptr res, const gr_mat_t mat, gr_ctx_t ctx)

    Sets *res* to the determinant of the square matrix *mat*.
    Various algorithms are available:

    * The *berkowitz* version uses the division-free Berkowitz algorithm
      performing `O(n^4)` operations. Since no zero tests are required, it
      is guaranteed to succeed if the ring arithmetic succeeds.

    * The *cofactor* version performs cofactor expansion. This is currently
      only supported for matrices up to size 4, and for larger
      matrices returns the ``GR_UNABLE`` flag.

    * The *lu* and *fflu* versions use rational LU decomposition
      and fraction-free LU decomposition (Bareiss algorithm) respectively,
      requiring `O(n^3)` operations. These algorithms can fail if zero
      certification or inversion fails, in which case the ``GR_UNABLE``
      flag is returned.

    * The *generic*, *generic_field* and *generic_integral_domain*
      versions choose an appropriate algorithm for a generic ring
      depending on the availability of division.

    * The *default* method can be overloaded.

    If the matrix is not square, ``GR_DOMAIN`` is returned.

.. function:: int gr_mat_trace(gr_ptr res, const gr_mat_t mat, gr_ctx_t ctx)

    Sets *res* to the trace (sum of entries on the main diagonal) of
    the square matrix *mat*.
    If the matrix is not square, ``GR_DOMAIN`` is returned.

Permanent
-------------------------------------------------------------------------------

.. function:: int gr_mat_permanent_cofactor(gr_ptr res, const gr_mat_t A, gr_ctx_t ctx)
              int gr_mat_permanent_ryser(gr_ptr res, const gr_mat_t A, gr_ctx_t ctx)
              int gr_mat_permanent_glynn(gr_ptr res, const gr_mat_t A, gr_ctx_t ctx)
              int gr_mat_permanent_glynn_threaded(gr_ptr res, const gr_mat_t A, gr_ctx_t ctx)
              int gr_mat_generic(gr_ptr res, const gr_mat_t A, gr_ctx_t ctx)
              int gr_mat_permanent(gr_ptr res, const gr_mat_t A, gr_ctx_t ctx)

    Sets *res* to the permanent of the square matrix *A*,
    The permanent `\operatorname{perm}(A)` is a polynomial expression
    in the entries of `A` equivalent to that for the determinant
    but with all subtractions replaced by additions.
    Several algorithms are implemented:

    * The *cofactor* version uses recursive cofactor expansion, requiring
      `O(n!)` additions and multiplications.

    * The *ryser* version uses Ryser's formula [Rys1963]_ with Gray code traversal,
      requiring `O(2^n n)` additions, subtractions and multiplications.

    * The *glynn* version uses Glynn's formula [Gly2010]_ (actually equivalent
      to a method described earlier by Nijenhuis and Wilf [NW1978]_). This
      requires about half as many operations as *ryser* but requires (exact)
      division by 2.

    * The *glynn_threaded* version is a multithreaded implementation
      of Glynn's formula.

    The *generic* method chooses cofactor expansion for `n \le 4` and otherwise
    chooses *ryser*, *glynn* or *glynn_threaded* depending on whether the ring
    supports division by 2. The default method can be overloaded.

Rank
-------------------------------------------------------------------------------

.. function:: int gr_mat_rank_fflu(slong * rank, const gr_mat_t mat, gr_ctx_t ctx)
              int gr_mat_rank_lu(slong * rank, const gr_mat_t mat, gr_ctx_t ctx)
              int gr_mat_rank(slong * rank, const gr_mat_t mat, gr_ctx_t ctx)

    Sets *res* to the rank of *mat*.
    The default method returns ``GR_DOMAIN`` if the element ring
    is not an integral domain, in which case the usual rank is
    not well-defined. The *fflu* and *lu* variants currently do
    not check the element domain, and simply return this flag if they
    encounter an impossible inverse in the execution of the
    respective algorithms.

Row echelon form
-------------------------------------------------------------------------------

.. function:: int gr_mat_rref_lu(slong * rank, gr_mat_t R, const gr_mat_t A, gr_ctx_t ctx)
              int gr_mat_rref_fflu(slong * rank, gr_mat_t R, const gr_mat_t A, gr_ctx_t ctx)
              int gr_mat_rref(slong * rank, gr_mat_t R, const gr_mat_t A, gr_ctx_t ctx)

    Sets *R* to the reduced row echelon form of *A*, also setting
    *rank* to its rank.

.. function:: int gr_mat_rref_den_fflu(slong * rank, gr_mat_t R, gr_ptr den, const gr_mat_t A, gr_ctx_t ctx)
              int gr_mat_rref_den(slong * rank, gr_mat_t R, gr_ptr den, const gr_mat_t A, gr_ctx_t ctx)

    Like *rref*, but computes the reduced row echelon multiplied
    by a common (not necessarily minimal) denominator which is written
    to *den*. This can be used to compute the rref over an integral
    domain which is not a field.

Nullspace
-------------------------------------------------------------------------------

.. function:: int gr_mat_nullspace(gr_mat_t X, const gr_mat_t A, gr_ctx_t ctx)

    Sets *X* to a basis for the (right) nullspace of *A*.
    On success, the output matrix will be resized to the correct
    number of columns.

    The basis is not guaranteed to be presented in a
    canonical or minimal form.

    If the ring is not a field, this is implied to compute a nullspace
    basis over the fraction field. The result may be meaningless
    if the ring is not an integral domain.

.. function:: int gr_mat_nullspace_from_rref(gr_mat_t X, const gr_mat_t A, gr_srcptr Aden, slong rank, gr_ctx_t ctx)

    Computes nullspace given the precomputed reduced row
    echelon form matrix *A* with rank *rank*.
    If *Aden* is not *NULL*, assume tha *A* has been multiplied
    by this common denominator as in the output of
    :func:`gr_mat_rref_den`.

.. function:: int gr_mat_nullspace_no_resize(slong * nullity, gr_mat_t X, const gr_mat_t A, gr_ctx_t ctx)

    Similar to :func:`gr_mat_nullspace`, but does not resize the
    matrix *X*, instead zero-padding if needed and returning
    the nullity (number of basis columns) in a separate variable.
    The user must supply a output matrix *X* with at least as many
    columns as the nullity.


Inverse and adjugate
-------------------------------------------------------------------------------

.. function:: int gr_mat_inv(gr_mat_t res, const gr_mat_t mat, gr_ctx_t ctx)

    Sets *res* to the inverse of *mat*, computed by solving
    `A A^{-1} = I`.

    Returns ``GR_DOMAIN`` if it can be determined that *mat* is not
    invertible over the present ring (warning: this may not work
    over non-integral domains). If invertibility cannot be proved,
    returns ``GR_UNABLE``.

    To compute the inverse over the fraction field, one may use
    :func:`gr_mat_nonsingular_solve_den` or :func:`gr_mat_adjugate`.

.. function:: int gr_mat_adjugate_charpoly(gr_mat_t adj, gr_ptr det, const gr_mat_t mat, gr_ctx_t ctx)
              int gr_mat_adjugate_cofactor(gr_mat_t adj, gr_ptr det, const gr_mat_t mat, gr_ctx_t ctx)
              int gr_mat_adjugate(gr_mat_t adj, gr_ptr det, const gr_mat_t mat, gr_ctx_t ctx)

    Sets *adj* to the adjugate matrix of *mat*, simultaneously
    setting *det* to the determinant of *mat*. We have
    `\operatorname{adj}(A) A = A \operatorname{adj}(A) = \det(A) I`,
    and `A^{-1} = \operatorname{adj}(A) / \det(A)` when *A*
    is invertible.

    The *cofactor* version uses cofactor expansion, requiring the
    evaluation of `n^2` determinants.
    The *charpoly* version computes and then evaluates the
    characteristic polynomial, requiring `O(n^{1/2})`
    matrix multiplications plus `O(n^3)` or `O(n^4)` operations
    for the characteristic polynomial itself depending on the
    algorithm used.

Characteristic polynomial
-------------------------------------------------------------------------------

.. function:: int _gr_mat_charpoly(gr_ptr res, const gr_mat_t mat, gr_ctx_t ctx)
              int gr_mat_charpoly(gr_poly_t res, const gr_mat_t mat, gr_ctx_t ctx)

    Computes the characteristic polynomial using an algorithm choice
    which defaults to :func:`_gr_mat_charpoly_generic` but may be overridden
    by specific rings for performance. The underscore method assumes that *res*
    is a preallocated array of `n + 1` coefficients.

.. function:: int _gr_mat_charpoly_generic(gr_ptr res, const gr_mat_t mat, gr_ctx_t ctx)
              int gr_mat_charpoly_generic(gr_poly_t res, const gr_mat_t mat, gr_ctx_t ctx)

    Computes the characteristic polynomial using a generic algorithm choice.

.. function:: int _gr_mat_charpoly_berkowitz(gr_ptr res, const gr_mat_t mat, gr_ctx_t ctx)
              int gr_mat_charpoly_berkowitz(gr_poly_t res, const gr_mat_t mat, gr_ctx_t ctx)

    Sets *res* to the characteristic polynomial of the square matrix
    *mat*, computed using the division-free Berkowitz algorithm.
    The number of operations is `O(n^4)` where *n* is the
    size of the matrix.

.. function:: int _gr_mat_charpoly_danilevsky_inplace(gr_ptr res, gr_mat_t mat, gr_ctx_t ctx)
              int _gr_mat_charpoly_danilevsky(gr_ptr res, const gr_mat_t mat, gr_ctx_t ctx)
              int gr_mat_charpoly_danilevsky(gr_poly_t res, const gr_mat_t mat, gr_ctx_t ctx)
              int _gr_mat_charpoly_gauss(gr_ptr res, const gr_mat_t mat, gr_ctx_t ctx)
              int gr_mat_charpoly_gauss(gr_poly_t res, const gr_mat_t mat, gr_ctx_t ctx)
              int _gr_mat_charpoly_householder(gr_ptr res, const gr_mat_t mat, gr_ctx_t ctx)
              int gr_mat_charpoly_householder(gr_poly_t res, const gr_mat_t mat, gr_ctx_t ctx)

    Sets *res* to the characteristic polynomial of the square matrix
    *mat*, computed using the Danilevsky algorithm,
    Hessenberg reduction using Gaussian elimination,
    and Hessenberg reduction using Householder reflections.
    The number of operations of each method is `O(n^3)` where *n* is the
    size of the matrix. The *inplace* version overwrites the input matrix.

    These methods require divisions and can therefore fail when the
    ring is not a field. They also require zero tests.
    The *householder* version also requires square roots.
    The flags ``GR_UNABLE`` or ``GR_DOMAIN`` are returned when
    an impossible division or square root
    is encountered or when a comparison cannot be performed.

.. function:: int _gr_mat_charpoly_faddeev(gr_ptr res, gr_mat_t adj, const gr_mat_t mat, gr_ctx_t ctx)
              int gr_mat_charpoly_faddeev(gr_poly_t res, gr_mat_t adj, const gr_mat_t mat, gr_ctx_t ctx)
              int _gr_mat_charpoly_faddeev_bsgs(gr_ptr res, gr_mat_t adj, const gr_mat_t mat, gr_ctx_t ctx)
              int gr_mat_charpoly_faddeev_bsgs(gr_poly_t res, gr_mat_t adj, const gr_mat_t mat, gr_ctx_t ctx)

    Sets *res* to the characteristic polynomial of the square matrix
    *mat*, computed using the Faddeev-LeVerrier algorithm.
    If the optional output argument *adj* is not *NULL*, it is
    set to the adjugate matrix, which is computed free of charge.

    The *bsgs* version uses a baby-step giant-step strategy,
    also known as the Preparata-Sarwate algorithm.
    This reduces the complexity from `O(n^4)` to `O(n^{3.5})` operations
    at the cost of requiring `n^{0.5}` temporary matrices to be
    stored.

    This method requires divisions by small integers and can
    therefore fail (returning the ``GR_UNABLE`` or ``GR_DOMAIN`` flags)
    in finite characteristic or when the underlying ring does
    not implement a division algorithm.

.. function:: int _gr_mat_charpoly_from_hessenberg(gr_ptr res, const gr_mat_t mat, gr_ctx_t ctx)
              int gr_mat_charpoly_from_hessenberg(gr_poly_t res, const gr_mat_t mat, gr_ctx_t ctx)

    Sets *res* to the characteristic polynomial of the square matrix
    *mat*, which is assumed to be in Hessenberg form (this is
    currently not checked).

Minimal polynomial
-------------------------------------------------------------------------------

.. function:: int gr_mat_minpoly_field(gr_poly_t res, const gr_mat_t mat, gr_ctx_t ctx)

    Compute the minimal polynomial of the matrix *mat*.
    The algorithm assumes that the coefficient ring is a field.

Companion matrix
-------------------------------------------------------------------------------

.. function:: int _gr_mat_companion(gr_mat_t res, gr_srcptr poly, gr_ctx_t ctx)
              int gr_mat_companion(gr_mat_t res, const gr_poly_t poly, gr_ctx_t ctx)

    Sets the *n* by *n* matrix *res* to the companion matrix of the polynomial
    *poly* which must have degree *n*.
    The underscore method reads `n + 1` input coefficients.
    The algorithm assumes that the leading coefficient of *poly* is invertible.

.. function:: int _gr_mat_companion_fraction(gr_mat_t res_num, gr_ptr res_den, gr_srcptr poly, gr_ctx_t ctx)
              int gr_mat_companion_fraction(gr_mat_t res_num, gr_ptr res_den, const gr_poly_t poly, gr_ctx_t ctx)

    Sets the *n* by *n* matrix *res_num* and the polynomial *res_den* so that
    the fraction is the companion matrix of the polynomial *poly* which must
    have degree *n*. The underscore method reads `n + 1` input coefficients.

Similarity transformations
-------------------------------------------------------------------------------

.. function:: int gr_mat_apply_row_similarity(gr_mat_t M, slong r, gr_ptr d, gr_ctx_t ctx)

    Applies an elementary similarity transform to the `n\times n` matrix `M`
    in-place.

    If `P` is the `n\times n` identity matrix the zero entries of whose row
    `r` (`0`-indexed) have been replaced by `d`, this transform is equivalent
    to `M = P^{-1}MP`.

    Similarity transforms preserve the determinant, characteristic polynomial
    and minimal polynomial.

Eigenvalues
-------------------------------------------------------------------------------

.. function:: int gr_mat_eigenvalues(gr_vec_t lambda, gr_vec_t mult, const gr_mat_t mat, int flags, gr_ctx_t ctx)
              int gr_mat_eigenvalues_other(gr_vec_t lambda, gr_vec_t mult, const gr_mat_t mat, gr_ctx_t mat_ctx, int flags, gr_ctx_t ctx)

    Finds all eigenvalues of the given matrix in the ring defined by *ctx*,
    storing the eigenvalues without duplication in *lambda* (a vector with
    elements of type ``ctx``) and the corresponding multiplicities in
    *mult* (a vector with elements of type ``fmpz``).

    The interface is essentially the same as that of
    :func:`gr_poly_roots`; see its documentation for details.

.. function:: int gr_mat_diagonalization_precomp(gr_vec_t D, gr_mat_t L, gr_mat_t R, const gr_mat_t A, const gr_vec_t eigenvalues, const gr_vec_t mult, gr_ctx_t ctx)
              int gr_mat_diagonalization_generic(gr_vec_t D, gr_mat_t L, gr_mat_t R, const gr_mat_t A, int flags, gr_ctx_t ctx)
              int gr_mat_diagonalization(gr_vec_t D, gr_mat_t L, gr_mat_t R, const gr_mat_t A, int flags, gr_ctx_t ctx)

    Computes a diagonalization `LAR = D` given a square matrix `A`,
    where `D` is a diagonal matrix (returned as a vector) of the eigenvalues
    repeated according to their multiplicities,
    `L` is a matrix of left eigenvectors,
    and `R` is a matrix of right eigenvectors,
    normalized such that `L = R^{-1}`.
    This implies that `A = RDL = RDR^{-1}`.
    Either `L` or `R` (or both) can be set to ``NULL`` to omit computing
    the respective matrix.

    If the matrix has entries in a field then a return flag
    of ``GR_DOMAIN`` indicates that the matrix is non-diagonalizable
    over this field.

    The *precomp* version requires as input a precomputed set of eigenvalues
    with corresponding multiplicities, which can be computed
    with :func:`gr_mat_eigenvalues`.

Jordan decomposition
-------------------------------------------------------------------------------

.. function:: int gr_mat_set_jordan_blocks(gr_mat_t mat, const gr_vec_t lambda, slong num_blocks, slong * block_lambda, slong * block_size, gr_ctx_t ctx)
              int gr_mat_jordan_blocks(gr_vec_t lambda, slong * num_blocks, slong * block_lambda, slong * block_size, const gr_mat_t A, gr_ctx_t ctx)
              int gr_mat_jordan_transformation(gr_mat_t mat, const gr_vec_t lambda, slong num_blocks, slong * block_lambda, slong * block_size, const gr_mat_t A, gr_ctx_t ctx)
              int gr_mat_jordan_form(gr_mat_t J, gr_mat_t P, const gr_mat_t A, gr_ctx_t ctx)

Matrix functions
-------------------------------------------------------------------------------

.. function:: int gr_mat_func_jordan(gr_mat_t res, const gr_mat_t A, gr_method_vec_op jet_func, gr_ctx_t ctx)
              int gr_mat_func_param_jordan(gr_mat_t res, const gr_mat_t A, gr_method_vec_scalar_op jet_func, gr_srcptr c, gr_ctx_t ctx)

    Computes the matrix function `f(A)` using Jordan decomposition.
    The user supplies ``int jet_func(gr_ptr r, gr_srcptr x, slong n, gr_ctx_t ctx)`` which given a scalar
    `x` writes the jet `f(x), f'(x), \ldots, f^{(n-1)} / (n-1)!` to
    the array `r`.

    The *param* version takes as input a function with
    signature ``int jet_func(gr_ptr r, gr_srcptr x, slong n, gr_srcptr c, gr_ctx_t ctx)`` for evaluating
    a function `f(x, c)` depending on an extra parameter `c`.
    Although ``c`` is nominally passed as a ``gr_srcptr``,
    it can be a void pointer to arbitrary data that ``jet_func`` knows
    how to handle.

.. function:: int gr_mat_exp_jordan(gr_mat_t res, const gr_mat_t A, gr_ctx_t ctx)
              int gr_mat_exp(gr_mat_t res, const gr_mat_t A, gr_ctx_t ctx)

.. function:: int gr_mat_log_jordan(gr_mat_t res, const gr_mat_t A, gr_ctx_t ctx)
              int gr_mat_log(gr_mat_t res, const gr_mat_t A, gr_ctx_t ctx)

.. function:: int gr_mat_pow_scalar_jordan(gr_mat_t res, const gr_mat_t A, gr_srcptr c, gr_ctx_t ctx)
              int gr_mat_pow_scalar(gr_mat_t res, const gr_mat_t A, gr_srcptr c, gr_ctx_t ctx)
              int gr_mat_pow_fmpq_jordan(gr_mat_t res, const gr_mat_t mat, const fmpq_t exp, gr_ctx_t ctx)
              int gr_mat_pow_fmpq(gr_mat_t res, const gr_mat_t mat, const fmpq_t exp, gr_ctx_t ctx)

    Compute `A^c` using Jordan decomposition. The non-Jordan
    methods also check for small integer exponents and delegate those
    to the standard powering method.

.. function:: int gr_mat_sqrt(gr_mat_t res, const gr_mat_t A, gr_ctx_t ctx)
              int gr_mat_rsqrt(gr_mat_t res, const gr_mat_t A, gr_ctx_t ctx)

    Compute a square root `A^{1/2}` or a reciprocal square root `A^{-1/2}`.
    Currently the only implemented algorithm is the Jordan decomposition.
    Warning: this will often fail and return ``GR_UNABLE`` when the
    scalar type is not an algebraically closed field, even if the matrix
    is a perfect square.


Hessenberg form
-------------------------------------------------------------------------------

.. function:: truth_t gr_mat_is_hessenberg(const gr_mat_t mat, gr_ctx_t ctx)

    Returns whether *mat* is in upper Hessenberg form.

.. function:: int gr_mat_hessenberg_gauss(gr_mat_t res, const gr_mat_t mat, gr_ctx_t ctx)
              int gr_mat_hessenberg_householder(gr_mat_t res, const gr_mat_t mat, gr_ctx_t ctx)
              int gr_mat_hessenberg(gr_mat_t res, const gr_mat_t mat, gr_ctx_t ctx)

    Sets *res* to an upper Hessenberg form of *mat*.
    The *gauss* version uses Gaussian elimination.
    The *householder* version uses Householder reflections.

    These methods require divisions and zero testing
    and can therefore fail (returning ``GR_UNABLE`` or ``GR_DOMAIN``)
    when the ring is not a field.
    The *householder* version additionally requires complex
    conjugation and the ability to compute square roots.

Random matrices
-------------------------------------------------------------------------------

.. function:: int gr_mat_randtest(gr_mat_t res, flint_rand_t state, gr_ctx_t ctx)

    Sets *res* to a random matrix. The distribution is nonuniform.

.. function:: int gr_mat_randops(gr_mat_t mat, flint_rand_t state, slong count, gr_ctx_t ctx)

    Randomises *mat* in-place by performing elementary row or column
    operations. More precisely, at most *count* random additions or
    subtractions of distinct rows and columns will be performed.

.. function:: int gr_mat_randpermdiag(int * parity, gr_mat_t mat, flint_rand_t state, gr_ptr diag, slong n, gr_ctx_t ctx)

    Sets mat to a random permutation of the diagonal matrix with *n* leading entries given by
    the vector ``diag``. Returns ``GR_DOMAIN`` if the main diagonal of ``mat``
    does not have room for at least *n* entries.
    The parity (0 or 1) of the permutation is written to ``parity``.

.. function:: int gr_mat_randrank(gr_mat_t mat, flint_rand_t state, slong rank, gr_ctx_t ctx)

    Sets ``mat`` to a random sparse matrix with the given rank, having exactly as many
    non-zero elements as the rank. The matrix can be transformed into a dense matrix
    with unchanged rank by subsequently calling :func:`gr_mat_randops`.

    This operation only makes sense over integral domains (currently not checked).

.. function:: int gr_mat_randsimilar(gr_mat_t mat, flint_rand_t state, slong opcount, gr_ctx_t ctx)

    Randomises *mat* in-place by conjugating by elementary row/column
    operations. More precisely, at most *opcount* conjugations by random
    elementary row/column operations will be performed.

Orthogonal matrices
-------------------------------------------------------------------------------

.. function:: truth_t gr_mat_is_orthogonal(const gr_mat_t A, gr_ctx_t ctx)

    Returns whether *A* is an orthogonal matrix (orthonormal matrix),
    i.e. a square matrix satisfying `A A^T = A^T A = I`. It is assumed
    (not checked) that the scalar ring is commutative.

.. function:: truth_t gr_mat_is_row_orthogonal(const gr_mat_t A, gr_ctx_t ctx)
              truth_t gr_mat_is_col_orthogonal(const gr_mat_t A, gr_ctx_t ctx)
              truth_t gr_mat_is_row_orthonormal(const gr_mat_t A, gr_ctx_t ctx)
              truth_t gr_mat_is_col_orthonormal(const gr_mat_t A, gr_ctx_t ctx)

    Returns whether *A* is of the following type:

    * Row-orthogonal: `A A^T = D` for some diagonal matrix *D*.

    * Column-orthogonal: `A^T A = D` for some diagonal matrix *D*.

    * Row-orthonormal: `A A^T = I`.

    * Column-orthonormal: `A^T A = I`.

.. function:: int gr_mat_randtest_orthogonal(gr_mat_t A, flint_rand_t state, gr_ctx_t ctx)

    Generates a random orthogonal matrix. Uses Cayley's construction,
    with a permutation matrix as a fallback. It is assumed (not checked) that
    the scalar ring is commutative.
    Fails with ``GR_DOMAIN`` if *A* is not square.

QR decomposition
-------------------------------------------------------------------------------

.. function:: int gr_mat_lq_gso(gr_mat_t L, gr_mat_t Q, const gr_mat_t A, gr_ctx_t ctx)
              int gr_mat_lq_recursive(gr_mat_t L, gr_mat_t Q, const gr_mat_t A, gr_ctx_t ctx)
              int gr_mat_lq_generic(gr_mat_t L, gr_mat_t Q, const gr_mat_t A, gr_ctx_t ctx)
              int gr_mat_lq(gr_mat_t L, gr_mat_t Q, const gr_mat_t A, gr_ctx_t ctx)
              int gr_mat_qr(gr_mat_t Q, gr_mat_t R, const gr_mat_t A, gr_ctx_t ctx)

    Computes a QR or LQ decomposition.
    The `A = QR` decomposition orthogonalizes the columns of `A`:

    * `A` is `m \times n` with `m \ge n` and full rank (`A` has `n` linearly independent columns)

    * `Q` is `m \times n` and column-orthonormal

    * `R` is `n \times n` and upper triangular

    The `A = LQ` decomposition is the transposed operation, which
    orthogonalizes the rows of `A`:

    * `A` is `m \times n` with `m \le n` and full rank (`A` has `m` linearly independent rows)

    * `L` is `m \times m` and lower triangular

    * `Q` is `m \times n` and row-orthonormal

    For rectangular matrices, these definitions correspond to
    the "reduced", "compact" or "economy-sized" QR or LQ decomposition.
    To construct a "full" QR decomposition where `Q` is a square, orthogonal
    matrix, one can compute the reduced QR decomposition, extend
    `Q` with its orthogonal complement, and pad `R` or `L` with zeros.

    The input matrix `A` should have elements in a
    subfield of `\mathbb{R}` or real floating-point entries. These functions
    may succeed for other types, but the Euclidean norm normalizations will
    not necessarily be meaningful.

    The *gso* algorithm uses Gram-Schmidt orthogonalization.
    The *recursive* algorithm uses block recursion.
    The QR decomposition is a simple wrapper around the LQ decomposition.
    We use the LQ decomposition internally as row operations are
    more efficient than column operations in the row-major format
    of :type:`gr_mat_t`.

    Aliasing of `A` and `Q` is handled efficiently in-place.
    Aliasing of `A` and `R` or `L` is allowed, but requires a temporary
    internal copy.

    These methods return ``GR_DOMAIN`` if the matrix dimensions are not
    compatible, if `A` does not have full rank, or if the base ring does
    not support the necessary divisions or square roots to normalize
    vectors.

Special matrices
-------------------------------------------------------------------------------

For the following functions, the user supplies an output matrix
with the intended number of rows and columns.

.. function:: int gr_mat_ones(gr_mat_t res, gr_ctx_t ctx)

    Sets all entries in *res* to one.

.. function:: int gr_mat_pascal(gr_mat_t res, int triangular, gr_ctx_t ctx)

    Sets *res* to a Pascal matrix, whose entries are binomial coefficients.
    If *triangular* is 0, constructs a full symmetric matrix
    with the rows of Pascal's triangle as successive antidiagonals.
    If *triangular* is 1, constructs the upper triangular matrix with
    the rows of Pascal's triangle as columns, and if *triangular* is -1,
    constructs the lower triangular matrix with the rows of Pascal's
    triangle as rows.

.. function:: int gr_mat_stirling(gr_mat_t res, int kind, gr_ctx_t ctx)

    Sets *res* to a Stirling matrix, whose entries are Stirling numbers.
    If *kind* is 0, the entries are set to the unsigned Stirling numbers
    of the first kind. If *kind* is 1, the entries are set to the signed
    Stirling numbers of the first kind. If *kind* is 2, the entries are
    set to the Stirling numbers of the second kind.

.. function:: int gr_mat_hilbert(gr_mat_t res, gr_ctx_t ctx)

    Sets *res* to the Hilbert matrix, which has entries `1/(i+j+1)`
    for `i, j \ge 0`.

.. function:: int gr_mat_hadamard(gr_mat_t res, gr_ctx_t ctx)

    If possible, sets *res* to a Hadamard matrix of the provided size
    and returns ``GR_SUCCESS``. Returns ``GR_DOMAIN``
    if no Hadamard matrix of the given size exists,
    and ``GR_UNABLE`` if the implementation does
    not know how to construct a Hadamard matrix of the given
    size.

    A Hadamard matrix of size *n* can only exist if *n* is 0, 1, 2,
    or a multiple of 4. It is not known whether a
    Hadamard matrix exists for every size that is a multiple of 4.
    This function uses the Paley construction, which
    succeeds for all *n* of the form `n = 2^e` or `n = 2^e (q + 1)` where
    *q* is an odd prime power. Orders *n* for which Hadamard matrices are
    known to exist but for which this construction fails are
    92, 116, 156, ... (OEIS A046116).

Helper functions for reduction
-------------------------------------------------------------------------------

.. function:: int gr_mat_reduce_row_generic(slong * column, gr_mat_t A, slong * P, slong * L, slong m, gr_ctx_t ctx)
              int gr_mat_reduce_row(slong * column, gr_mat_t A, slong * P, slong * L, slong m, gr_ctx_t ctx)

    Reduce row n of the matrix `A`, assuming the prior rows are in Gauss
    form. However those rows may not be in order. The entry `i` of the array
    `P` is the row of `A` which has a pivot in the `i`-th column. If no such
    row exists, the entry of `P` will be `-1`. The function sets *column* to the column
    in which the `n`-th row has a pivot after reduction. This will always be
    chosen to be the first available column for a pivot from the left. This
    information is also updated in `P`. Entry `i` of the array `L` contains the
    number of possibly nonzero columns of `A` row `i`. This speeds up reduction
    in the case that `A` is chambered on the right. Otherwise the entries of
    `L` can all be set to the number of columns of `A`. We require the entries
    of `L` to be monotonic increasing.

    By default the *generic* version is called; specific rings
    can overload this (typically to implement delayed canonicalisation).

LLL
-------------------------------------------------------------------------------

Let `A = (a_0, \ldots, a_{n-1})` be a set of linearly independent vectors over `\mathbb{R}`
with Gram-Schmidt orthogonalization `(b_0, \ldots, b_{n-1})`
and Gram-Schmidt coefficients `\mu_{i,j} = \langle a_i, b_i \rangle / \| b_j \|^2`.
The basis `A` is said to be LLL-reduced with parameter (`\delta`, `\eta`)
where `0.25 < \delta \le 1` and `0.5 \le \eta < \sqrt{\delta}` if they satisfy
the size reduction condition

.. math ::

    |\mu_{i,j}| \le \eta, \quad 0 \le j < i < n

and the Lovász condition

.. math ::

    (\delta - \mu_{i,i-1}^2) \| b_{i-1} \|_2^2 \le \| b_i \|_2^2, \quad 1 \le i \le n - 1.

.. function:: truth_t gr_mat_is_row_lll_reduced_naive(const gr_mat_t A, gr_srcptr delta, gr_srcptr eta, gr_ctx_t ctx)
              truth_t gr_mat_is_row_lll_reduced_with_removal_naive(const gr_mat_t A, gr_srcptr delta, gr_srcptr eta, gr_srcptr gs_B, slong newd, gr_ctx_t ctx)

    Check if the rows of *A* are LLL-reduced by naively performing the
    Gram-Schmidt orthogonalization and checking the conditions one row
    at a time.

    In interval arithmetic, these functions terminate eagerly: ``T_UNKNOWN``
    is returned if the tests are inconclusive for one row, even if there is a
    possibility that a later row could prove that the result should be ``T_FALSE``.

Linear ODEs
-------------------------------------------------------------------------------

.. function:: int _gr_mat_gr_poly_solve_lode_newton_start(gr_mat_t Y, gr_mat_t Z, gr_poly_t A_denominator_inv, const gr_mat_t A_numerator, const gr_poly_t A_denominator, const gr_mat_t Y0, gr_ctx_t sol_poly_ctx)
              int _gr_mat_gr_poly_solve_lode_newton_step(gr_mat_t Y, gr_mat_t Z, gr_poly_t A_denominator_inv, slong *len, const gr_mat_t A_numerator, const gr_poly_t A_denominator, int A_is_companion, gr_ctx_t sol_poly_ctx)
              int _gr_mat_gr_poly_solve_lode_newton(gr_mat_t Y, gr_mat_t Z, const gr_mat_t A_numerator, const gr_poly_t A_denominator, const gr_mat_t Y0, slong len, gr_ctx_t A_poly_ctx, gr_ctx_t sol_poly_ctx)
              int gr_mat_gr_poly_solve_lode_newton(gr_mat_t Y, const gr_mat_t A_numerator, const gr_poly_t A_denominator, const gr_mat_t Y0, slong len, gr_ctx_t A_poly_ctx, gr_ctx_t sol_poly_ctx)

    Solves the system of linear ordinary differential
    equations `Y'(t) = A(t)Y(t)` with rational function coefficients `A(t)`
    and initial condition `Y(0) = Y_0`. Sets *Y* to the power series solution
    truncated to length *len*.
    The algorithm is a Newton iteration as described in [BCOSSS2007]_,
    but using an iteration for the power series inverse of *A_denominator*,
    and using a specialized implementation of multiplication by `A(t)` mod `t^m`
    in the case where `A(t)` is a companion matrix.
    An optimal sequence of precisions is used to reach the target *len*, even
    when it is not a power of two.

Test functions
-------------------------------------------------------------------------------

The following functions run *iters* test iterations, generating matrices
up to size *maxn*. If *ctx* is set to ``NULL``, a random ring is generated
on each test iteration, otherwise the given ring is tested.

.. function:: void gr_mat_test_mul(gr_method_mat_binary_op mul_impl, flint_rand_t state, slong iters, slong maxn, gr_ctx_t ctx)

    Tests the given function ``mul_impl`` for correctness as an implementation
    of :func:`gr_mat_mul`.

.. function:: void gr_mat_test_lu(gr_method_mat_lu_op lu_impl, flint_rand_t state, slong iters, slong maxn, gr_ctx_t ctx)

    Tests the given function ``mul_impl`` for correctness as an implementation
    of :func:`gr_mat_lu`.

.. function:: void gr_mat_test_det(gr_method_mat_unary_op_get_scalar det_impl, flint_rand_t state, slong iters, slong maxn, gr_ctx_t ctx)

    Tests the given function ``det_impl`` for correctness as an implementation
    of :func:`gr_mat_det`.

.. function:: void gr_mat_test_charpoly(gr_method_mat_unary_op_get_scalar charpoly_impl, flint_rand_t state, slong iters, slong maxn, gr_ctx_t ctx)

    Tests the given function ``charpoly_impl`` for correctness as an implementation
    of :func:`_gr_mat_charpoly`.

.. function:: void gr_mat_test_nonsingular_solve_tril(gr_method_mat_binary_op_with_flag solve_impl, flint_rand_t state, slong iters, slong maxn, gr_ctx_t ctx)
              void gr_mat_test_nonsingular_solve_triu(gr_method_mat_binary_op_with_flag solve_impl, flint_rand_t state, slong iters, slong maxn, gr_ctx_t ctx)

    Tests the given function ``solve_impl`` for correctness as an implementation
    of :func:`gr_mat_nonsingular_solve_tril` / :func:`gr_mat_nonsingular_solve_triu`.

.. function:: void gr_mat_test_approx_mul_max_norm(gr_method_mat_binary_op mul_impl, gr_srcptr rel_tol, flint_rand_t state, slong iters, slong maxn, gr_ctx_t ctx)

    Tests the given implementation of matrix multiplication for accuracy
    over an approximate numerical ring by checking that
    `|C-AB| \le |A||B| rel\_tol` holds in the max norm,
    using classical multiplication for reference.

.. function:: void gr_mat_test_approx_mul_pos_entrywise_accurate(gr_method_mat_binary_op mul_impl, gr_srcptr rel_tol, flint_rand_t state, slong iters, slong maxn, gr_ctx_t ctx)

    Tests the given implementation of matrix multiplication for accuracy
    over an approximate numerical ring by generating nonnegative matrices
    and checking that the entrywise relative error compared to
    classical multiplication does not exceed *rel_tol*.

.. raw:: latex

    \newpage