1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
|
.. _gr-poly:
**gr_poly.h** -- dense univariate polynomials over generic rings
===============================================================================
A :type:`gr_poly_t` represents a univariate polynomial `f \in R[X]`
implemented as a dense array of coefficients in a generic ring *R*.
In this module, the context object ``ctx`` always represents the
coefficient ring *R* unless otherwise stated.
Creating a context object representing the polynomial ring `R[X]`
only becomes necessary when one
wants to manipulate polynomials using generic ring methods
like ``gr_add`` instead of the designated polynomial
methods like ``gr_poly_add``.
Most functions are provided in two versions: an underscore method which
operates directly on pre-allocated arrays of coefficients and generally
has some restrictions (often requiring the lengths to be nonzero
and not supporting aliasing of the input and output arrays),
and a non-underscore method which performs automatic memory
management and handles degenerate cases.
Supported coefficient domains
-------------------------------------------------------------------------------
Some methods in this module implicitly assume that *R* is a commutative
ring or an approximate (e.g. floating-point) commutative ring.
When used with a more general *R*, they may output nonsense without
returning the appropriate ``GR_DOMAIN`` or ``GR_UNABLE`` flags.
Better support for noncommutative coefficients is planned for the future.
Some methods make stronger implicit assumptions, for example that *R*
is an integral domain or a field. Such assumptions are documented on
a case by case basis.
Type compatibility
-------------------------------------------------------------------------------
The ``gr_poly`` type has the same data layout as the following
polynomial types: ``fmpz_poly``, ``fq_poly``, ``fq_nmod_poly``,
``fq_zech_poly``, ``arb_poly``, ``acb_poly``, ``ca_poly``.
Methods in this module can therefore be mixed freely with
methods in the corresponding FLINT modules
when the underlying coefficient type is the same.
It is not directly compatible with the following types:
``fmpq_poly`` (coefficients are stored with a common denominator),
``nmod_poly`` (modulus data is stored as part of the polynomial object).
Weak normalization
-------------------------------------------------------------------------------
A :type:`gr_poly_t` is always normalised by removing leading zeros.
For rings without decidable equality (e.g. rings with inexact
representation), only coefficients that are provably zero will be
removed, and there can thus be spurious leading zeros in the
internal representation.
Methods that depend on knowing the exact degree of a polynomial
will act appropriately, typically by returning ``GR_UNABLE``
when it is unknown whether the leading stored coefficient is nonzero.
Types, macros and constants
-------------------------------------------------------------------------------
.. type:: gr_poly_struct
.. type:: gr_poly_t
Contains a pointer to an array of coefficients (``coeffs``), the used
length (``length``), and the allocated size of the array (``alloc``).
A ``gr_poly_t`` is defined as an array of length one of type
``gr_poly_struct``, permitting a ``gr_poly_t`` to
be passed by reference.
Memory management
-------------------------------------------------------------------------------
.. function:: void gr_poly_init(gr_poly_t poly, gr_ctx_t ctx)
.. function:: void gr_poly_init2(gr_poly_t poly, slong len, gr_ctx_t ctx)
.. function:: void gr_poly_clear(gr_poly_t poly, gr_ctx_t ctx)
.. function:: gr_ptr gr_poly_coeff_ptr(gr_poly_t poly, slong i, gr_ctx_t ctx)
gr_srcptr gr_poly_coeff_srcptr(const gr_poly_t poly, slong i, gr_ctx_t ctx)
.. function:: gr_ptr gr_poly_entry_ptr(gr_poly_t poly, slong i, gr_ctx_t ctx)
gr_srcptr gr_poly_entry_srcptr(const gr_poly_t poly, slong i, gr_ctx_t ctx)
These functions are deprecated aliases of :func:`gr_poly_coeff_ptr` and
:func:`gr_poly_coeff_srcptr`; use those functions instead.
.. function:: slong gr_poly_length(const gr_poly_t poly, gr_ctx_t ctx)
.. function:: void gr_poly_swap(gr_poly_t poly1, gr_poly_t poly2, gr_ctx_t ctx)
.. function:: void gr_poly_fit_length(gr_poly_t poly, slong len, gr_ctx_t ctx)
.. function:: void _gr_poly_set_length(gr_poly_t poly, slong len, gr_ctx_t ctx)
Basic manipulation
-------------------------------------------------------------------------------
.. function:: void _gr_poly_normalise(gr_poly_t poly, gr_ctx_t ctx)
.. function:: int gr_poly_set(gr_poly_t res, const gr_poly_t src, gr_ctx_t ctx)
int gr_poly_get_fmpz_poly(gr_poly_t res, const fmpz_poly_t src, gr_ctx_t ctx)
int gr_poly_set_fmpq_poly(gr_poly_t res, const fmpq_poly_t src, gr_ctx_t ctx)
int gr_poly_set_gr_poly_other(gr_poly_t res, const gr_poly_t x, gr_ctx_t x_ctx, gr_ctx_t ctx)
.. function:: int _gr_poly_reverse(gr_ptr res, gr_srcptr poly, slong len, slong n, gr_ctx_t ctx)
int gr_poly_reverse(gr_poly_t res, const gr_poly_t poly, slong n, gr_ctx_t ctx)
.. function:: int gr_poly_truncate(gr_poly_t res, const gr_poly_t poly, slong newlen, gr_ctx_t ctx)
.. function:: int gr_poly_zero(gr_poly_t poly, gr_ctx_t ctx)
int gr_poly_one(gr_poly_t poly, gr_ctx_t ctx)
int gr_poly_neg_one(gr_poly_t poly, gr_ctx_t ctx)
int gr_poly_gen(gr_poly_t poly, gr_ctx_t ctx)
.. function:: int gr_poly_write(gr_stream_t out, const gr_poly_t poly, const char * x, gr_ctx_t ctx)
int _gr_poly_write(gr_stream_t out, gr_srcptr poly, slong n, const char * x, gr_ctx_t ctx)
int _gr_poly_get_str(char ** res, const gr_poly_t f, const char * x, gr_ctx_t ctx)
int gr_poly_get_str(char ** res, const gr_poly_t f, const char * x, gr_ctx_t ctx)
int gr_poly_print(const gr_poly_t poly, gr_ctx_t ctx)
.. function:: int _gr_poly_set_str(gr_ptr res, const char * s, const char * x, slong len, gr_ctx_t ctx)
int gr_poly_set_str(gr_poly_t res, const char * s, const char * x, gr_ctx_t ctx)
Parse polynomial from an expression string, assuming that the string in *x* gives
the name of the generator. The underscore method zero-pads the result if
the length of the parsed polynomial is shorter than *len*, and returns
``GR_UNABLE`` if the length of the parsed polynomial exceeds *len*.
Intermediate terms are allowed to be longer than *len*.
Warning: these methods are not currently optimized for polynomials of high degree
and may run with quadratic complexity.
.. function:: int gr_poly_randtest(gr_poly_t poly, flint_rand_t state, slong len, gr_ctx_t ctx)
.. function:: truth_t _gr_poly_equal(gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, gr_ctx_t ctx)
truth_t gr_poly_equal(const gr_poly_t poly1, const gr_poly_t poly2, gr_ctx_t ctx)
.. function:: truth_t gr_poly_is_zero(const gr_poly_t poly, gr_ctx_t ctx)
truth_t gr_poly_is_one(const gr_poly_t poly, gr_ctx_t ctx)
truth_t gr_poly_is_gen(const gr_poly_t poly, gr_ctx_t ctx)
truth_t gr_poly_is_scalar(const gr_poly_t poly, gr_ctx_t ctx)
.. function:: int gr_poly_set_scalar(gr_poly_t poly, gr_srcptr c, gr_ctx_t ctx)
int gr_poly_set_si(gr_poly_t poly, slong c, gr_ctx_t ctx)
int gr_poly_set_ui(gr_poly_t poly, ulong c, gr_ctx_t ctx)
int gr_poly_set_fmpz(gr_poly_t poly, const fmpz_t c, gr_ctx_t ctx)
int gr_poly_set_fmpq(gr_poly_t poly, const fmpq_t c, gr_ctx_t ctx)
.. function:: int gr_poly_set_coeff_scalar(gr_poly_t poly, slong n, gr_srcptr c, gr_ctx_t ctx)
int gr_poly_set_coeff_si(gr_poly_t poly, slong n, slong c, gr_ctx_t ctx)
int gr_poly_set_coeff_ui(gr_poly_t poly, slong n, ulong c, gr_ctx_t ctx)
int gr_poly_set_coeff_fmpz(gr_poly_t poly, slong n, const fmpz_t c, gr_ctx_t ctx)
int gr_poly_set_coeff_fmpq(gr_poly_t poly, slong n, const fmpq_t c, gr_ctx_t ctx)
.. function:: int gr_poly_get_coeff_scalar(gr_ptr res, const gr_poly_t poly, slong n, gr_ctx_t ctx)
Arithmetic
-------------------------------------------------------------------------------
.. function:: int gr_poly_neg(gr_poly_t res, const gr_poly_t src, gr_ctx_t ctx)
.. function:: int _gr_poly_add(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, gr_ctx_t ctx)
int gr_poly_add(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, gr_ctx_t ctx)
.. function:: int _gr_poly_sub(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, gr_ctx_t ctx)
int gr_poly_sub(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, gr_ctx_t ctx)
.. function:: int _gr_poly_mul(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, gr_ctx_t ctx)
int gr_poly_mul(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, gr_ctx_t ctx)
.. function:: int _gr_poly_mullow_generic(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, slong len, gr_ctx_t ctx)
int _gr_poly_mullow(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, slong len, gr_ctx_t ctx)
int gr_poly_mullow(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, slong len, gr_ctx_t ctx)
Note: multiplication and low multiplication call :func:`_gr_poly_mullow_generic`
by default, which currently always delegates to :func:`_gr_poly_mullow_classical`.
This can be overridden by specific rings.
Multiplication algorithms
-------------------------------------------------------------------------------
.. function:: int _gr_poly_mullow_classical(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, slong n, gr_ctx_t ctx)
int gr_poly_mullow_classical(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, slong n, gr_ctx_t ctx)
Multiply using the classical (schoolbook) algorithm, performing
a sequence of dot products.
.. function:: int _gr_poly_mullow_bivariate_KS(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, slong n, gr_ctx_t ctx)
int gr_poly_mullow_bivariate_KS(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, slong n, gr_ctx_t ctx)
Assuming that the coefficients are polynomials of type ``gr_poly``,
reduce the bivariate product to a single univariate product using
Kronecker substitution. Returns ``GR_UNABLE`` if the elements are not
of type ``gr_poly``.
.. function:: int _gr_poly_mullow_complex_reorder(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, slong n, int karatsuba, gr_ctx_t ctx, gr_ctx_t real_ctx)
int gr_poly_mullow_complex_reorder(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, slong n, int karatsuba, gr_ctx_t ctx, gr_ctx_t real_ctx)
Assuming that the coefficients of the polynomials of type ``ctx`` are
complex numbers represented in Cartesian form as pairs of elements
of type ``real_ctx``, multiply by reordering to obtain a set of
real polynomial products.
If at least one polynomial is detected to be purely real or imaginary, one or two
real multiplications are used. Otherwise, four real multiplications
are used unless the *karatsuba* flag is set in which three
multiplications are used.
When squaring, two real squarings and one real multiplication are used
unless the *karatsuba* flag is set in which case three real squarings are used.
.. function:: int _gr_poly_mul_karatsuba(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, gr_ctx_t ctx)
int gr_poly_mul_karatsuba(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, gr_ctx_t ctx)
Karatsuba multiplication.
Not optimized for unbalanced operands, and not memory-optimized for recursive calls.
The underscore method requires positive lengths and does not support aliasing.
This function calls :func:`_gr_poly_mul` recursively rather than itself, so to get a recursive
algorithm with `O(n^{1.6})` complexity, the ring must overload :func:`_gr_poly_mul` to dispatch
to :func:`_gr_poly_mul_karatsuba` above some cutoff.
.. function:: int _gr_poly_mul_toom33(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, gr_ctx_t ctx);
int gr_poly_mul_toom33(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, gr_ctx_t ctx);
Balanced Toom-3 multiplication with interpolation in five points,
using the Bodrato evaluation scheme. Assumes commutativity and that the ring
supports exact division by 2 and 3.
Not optimized for squaring.
The underscore method requires positive lengths and does not support aliasing.
This function calls :func:`_gr_poly_mul` recursively rather than itself, so to get a recursive
algorithm with `O(n^{1.5})` complexity, the ring must overload :func:`_gr_poly_mul` to dispatch
to :func:`_gr_poly_mul_toom33` above some cutoff.
.. function:: int gr_poly_add_scalar(gr_poly_t res, const gr_poly_t poly, gr_srcptr c, gr_ctx_t ctx)
int gr_poly_add_ui(gr_poly_t res, const gr_poly_t poly, ulong c, gr_ctx_t ctx)
int gr_poly_add_si(gr_poly_t res, const gr_poly_t poly, slong c, gr_ctx_t ctx)
int gr_poly_add_fmpz(gr_poly_t res, const gr_poly_t poly, const fmpz c, gr_ctx_t ctx)
int gr_poly_add_fmpq(gr_poly_t res, const gr_poly_t poly, const fmpq c, gr_ctx_t ctx)
Sets *res* to *poly* plus the scalar *c* which must be
an element of or coercible to the coefficient ring.
.. function:: int gr_poly_sub_scalar(gr_poly_t res, const gr_poly_t poly, gr_srcptr c, gr_ctx_t ctx)
int gr_poly_sub_ui(gr_poly_t res, const gr_poly_t poly, ulong c, gr_ctx_t ctx)
int gr_poly_sub_si(gr_poly_t res, const gr_poly_t poly, slong c, gr_ctx_t ctx)
int gr_poly_sub_fmpz(gr_poly_t res, const gr_poly_t poly, const fmpz c, gr_ctx_t ctx)
int gr_poly_sub_fmpq(gr_poly_t res, const gr_poly_t poly, const fmpq c, gr_ctx_t ctx)
Sets *res* to *poly* minus the scalar *c* which must be
an element of or coercible to the coefficient ring.
.. function:: int gr_poly_mul_scalar(gr_poly_t res, const gr_poly_t poly, gr_srcptr c, gr_ctx_t ctx)
int gr_poly_scalar_mul(gr_poly_t res, gr_srcptr c, const gr_poly_t poly, gr_ctx_t ctx)
int gr_poly_mul_ui(gr_poly_t res, const gr_poly_t poly, ulong c, gr_ctx_t ctx)
int gr_poly_mul_si(gr_poly_t res, const gr_poly_t poly, slong c, gr_ctx_t ctx)
int gr_poly_mul_fmpz(gr_poly_t res, const gr_poly_t poly, const fmpz c, gr_ctx_t ctx)
int gr_poly_mul_fmpq(gr_poly_t res, const gr_poly_t poly, const fmpq c, gr_ctx_t ctx)
Sets *res* to *poly* multiplied by the scalar *c* (or the scalar *c* multiplied by *poly*)
which must be an element of or coercible to the coefficient ring.
.. function:: int gr_poly_addmul_scalar(gr_poly_t res, const gr_poly_t poly, gr_srcptr c, gr_ctx_t ctx)
Adds *poly* multiplied by the scalar *c* to *res*.
.. function:: int gr_poly_submul_scalar(gr_poly_t res, const gr_poly_t poly, gr_srcptr c, gr_ctx_t ctx)
Subtracts *poly* multiplied by the scalar *c* from *res*.
Powering
--------------------------------------------------------------------------------
.. function:: int _gr_poly_pow_series_ui_binexp(gr_ptr res, gr_srcptr f, slong flen, ulong exp, slong len, gr_ctx_t ctx)
int gr_poly_pow_series_ui_binexp(gr_poly_t res, const gr_poly_t poly, ulong exp, slong len, gr_ctx_t ctx)
.. function:: int _gr_poly_pow_series_ui(gr_ptr res, gr_srcptr f, slong flen, ulong exp, slong len, gr_ctx_t ctx)
int gr_poly_pow_series_ui(gr_poly_t res, const gr_poly_t poly, ulong exp, slong len, gr_ctx_t ctx)
.. function:: int _gr_poly_pow_ui_binexp(gr_ptr res, gr_srcptr f, slong flen, ulong exp, gr_ctx_t ctx)
int gr_poly_pow_ui_binexp(gr_poly_t res, const gr_poly_t poly, ulong exp, gr_ctx_t ctx)
.. function:: int _gr_poly_pow_ui(gr_ptr res, gr_srcptr f, slong flen, ulong exp, gr_ctx_t ctx)
int gr_poly_pow_ui(gr_poly_t res, const gr_poly_t poly, ulong exp, gr_ctx_t ctx)
.. function:: int gr_poly_pow_fmpz(gr_poly_t res, const gr_poly_t poly, const fmpz_t exp, gr_ctx_t ctx)
.. function:: int _gr_poly_pow_series_fmpq_recurrence(gr_ptr h, gr_srcptr f, slong flen, const fmpq_t exp, slong len, int precomp, gr_ctx_t ctx)
int gr_poly_pow_series_fmpq_recurrence(gr_poly_t res, const gr_poly_t poly, const fmpq_t exp, slong len, gr_ctx_t ctx)
Shifting
-------------------------------------------------------------------------------
.. function:: int _gr_poly_shift_left(gr_ptr res, gr_srcptr poly, slong len, slong n, gr_ctx_t ctx)
int gr_poly_shift_left(gr_poly_t res, const gr_poly_t poly, slong n, gr_ctx_t ctx)
.. function:: int _gr_poly_shift_right(gr_ptr res, gr_srcptr poly, slong len, slong n, gr_ctx_t ctx)
int gr_poly_shift_right(gr_poly_t res, const gr_poly_t poly, slong n, gr_ctx_t ctx)
Scalar division
--------------------------------------------------------------------------------
.. function:: int gr_poly_div_scalar(gr_poly_t res, const gr_poly_t poly, gr_srcptr c, gr_ctx_t ctx)
Division with remainder
--------------------------------------------------------------------------------
.. function:: int _gr_poly_divrem_divconquer_preinv1(gr_ptr Q, gr_ptr R, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_srcptr invB, slong cutoff, gr_ctx_t ctx)
int _gr_poly_divrem_divconquer_noinv(gr_ptr Q, gr_ptr R, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, slong cutoff, gr_ctx_t ctx)
int _gr_poly_divrem_divconquer(gr_ptr Q, gr_ptr R, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, slong cutoff, gr_ctx_t ctx)
int gr_poly_divrem_divconquer(gr_poly_t Q, gr_poly_t R, const gr_poly_t A, const gr_poly_t B, slong cutoff, gr_ctx_t ctx)
int _gr_poly_divrem_basecase_preinv1(gr_ptr Q, gr_ptr R, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_srcptr invB, gr_ctx_t ctx)
int _gr_poly_divrem_basecase_noinv(gr_ptr Q, gr_ptr R, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_ctx_t ctx)
int _gr_poly_divrem_basecase(gr_ptr Q, gr_ptr R, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_ctx_t ctx)
int gr_poly_divrem_basecase(gr_poly_t Q, gr_poly_t R, const gr_poly_t A, const gr_poly_t B, gr_ctx_t ctx)
int _gr_poly_divrem_newton(gr_ptr Q, gr_ptr R, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_ctx_t ctx)
int gr_poly_divrem_newton(gr_poly_t Q, gr_poly_t R, const gr_poly_t A, const gr_poly_t B, gr_ctx_t ctx)
int _gr_poly_divrem(gr_ptr Q, gr_ptr R, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_ctx_t ctx)
int gr_poly_divrem(gr_poly_t Q, gr_poly_t R, const gr_poly_t A, const gr_poly_t B, gr_ctx_t ctx)
These functions implement Euclidean division with remainder:
given polynomials `A, B \in K[x]` where `K` is a field, with `B \ne 0`,
there is a unique quotient `Q` and remainder `R` such that `A = BQ + R`
and either `R = 0` or `\deg(R) < \deg(B)`.
If *B* is provably zero, ``GR_DOMAIN`` is returned.
When `K` is a commutative ring and `\operatorname{lc}(B)` is a unit in `K`,
the situation is the same as over fields. In particular, Euclidean division
with remainder always makes sense over commutative rings when `B` is monic.
If `\operatorname{lc}(B)` is not a unit, the division still makes sense if
the coefficient quotient `\operatorname{lc}(r)` / `\operatorname{lc}(B)`
exists for each partial remainder `r`. Indeed,
the *basecase* and *divconquer* algorithms return ``GR_DOMAIN`` precisely when
encountering a leading quotient `\operatorname{lc}(r)` / `\operatorname{lc}(B) \not \in K`.
However, the *newton* algorithm as currently implemented
returns ``GR_DOMAIN`` when `\operatorname{lc}(B)^{-1} \not \in K`.
The underscore methods make the following assumptions:
* *Q* has room for ``lenA - lenB + 1`` coefficients.
* *R* has room for ``lenB - 1`` coefficients.
* ``lenA >= lenB >= 1``.
* *Q* is not aliased with either *A* or *B*.
* *R* is not aliased with *B*.
* *R* may be aliased with *A*, in which case all ``lenA``
entries may be used as scratch space. Note that in this case,
only the low ``lenB - 1`` coefficients of *R* actually represent
valid coefficients on output: the higher scratch coefficients will not
necessarily be zeroed.
* The divisor *B* is normalized to have nonzero leading coefficient.
(The non-underscore methods check for leading coefficients that
are not provably nonzero and return ``GR_UNABLE``.)
The *preinv1* functions take a precomputed inverse of the
leading coefficient as input.
The *noinv* versions perform repeated checked divisions
by the leading coefficient.
.. function:: int _gr_poly_div_divconquer_preinv1(gr_ptr Q, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_srcptr invB, slong cutoff, gr_ctx_t ctx)
int _gr_poly_div_divconquer_noinv(gr_ptr Q, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, slong cutoff, gr_ctx_t ctx)
int _gr_poly_div_divconquer(gr_ptr Q, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, slong cutoff, gr_ctx_t ctx)
int gr_poly_div_divconquer(gr_poly_t Q, const gr_poly_t A, const gr_poly_t B, slong cutoff, gr_ctx_t ctx)
int _gr_poly_div_basecase_preinv1(gr_ptr Q, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_srcptr invB, gr_ctx_t ctx)
int _gr_poly_div_basecase_noinv(gr_ptr Q, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_ctx_t ctx)
int _gr_poly_div_basecase(gr_ptr Q, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_ctx_t ctx)
int gr_poly_div_basecase(gr_poly_t Q, const gr_poly_t A, const gr_poly_t B, gr_ctx_t ctx)
int _gr_poly_div_newton(gr_ptr Q, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_ctx_t ctx)
int gr_poly_div_newton(gr_poly_t Q, const gr_poly_t A, const gr_poly_t B, gr_ctx_t ctx)
int _gr_poly_div(gr_ptr Q, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_ctx_t ctx)
int gr_poly_div(gr_poly_t Q, const gr_poly_t A, const gr_poly_t B, gr_ctx_t ctx)
Versions of the *divrem* functions which output only the quotient.
These are generally faster.
.. function:: int _gr_poly_rem(gr_ptr R, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_ctx_t ctx)
int gr_poly_rem(gr_poly_t R, const gr_poly_t A, const gr_poly_t B, gr_ctx_t ctx)
Versions of the *divrem* functions which output only the remainder.
Division with remainder with full precomputed inverse
--------------------------------------------------------------------------------
.. function:: int _gr_poly_div_newton_n_preinv(gr_ptr Q, gr_srcptr A, slong lenA, gr_srcptr FLINT_UNUSED(B), slong lenB, gr_srcptr Binv, slong lenBinv, gr_ctx_t ctx)
Notionally computes polynomials `Q` and `R` such that `A = BQ + R` with
`\operatorname{len}(R)` less than ``lenB``, where ``A`` is of length ``lenA``
and ``B`` is of length ``lenB``, but return only `Q`.
We require that `Q` have space for ``lenA - lenB + 1`` coefficients
and assume that the leading coefficient of `B` is a unit. Furthermore, we
assume that `Binv` is the inverse of the reverse of `B` mod `x^{\operatorname{len}(B)}`.
The algorithm used is to reverse the polynomials and divide the
resulting power series, then reverse the result.
.. function:: int gr_poly_div_newton_n_preinv(gr_poly_t Q, const gr_poly_t A, const gr_poly_t B, const gr_poly_t Binv, gr_ctx_t ctx)
Notionally computes `Q` and `R` such that `A = BQ + R` with
`\operatorname{len}(R) < \operatorname{len}(B)`, but returns only `Q`.
We assume that the leading coefficient of `B` is a unit and that `Binv` is
the inverse of the reverse of `B` mod `x^{\operatorname{len}(B)}`.
It is required that the length of `A` is less than or equal to
2*the length of `B` - 2.
The algorithm used is to reverse the polynomials and divide the
resulting power series, then reverse the result.
.. function:: int _gr_poly_divrem_newton_n_preinv(gr_ptr Q, gr_ptr R, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_srcptr Binv, slong lenBinv, gr_ctx_t ctx)
Computes `Q` and `R` such that `A = BQ + R` with `\operatorname{len}(R)` less
than ``lenB``, where `A` is of length ``lenA`` and `B` is of
length ``lenB``. We require that `Q` have space for
``lenA - lenB + 1`` coefficients. Furthermore, we assume that `Binv` is
the inverse of the reverse of `B` mod `x^{\operatorname{len}(B)}`. The algorithm
used is to call :func:`_gr_poly_div_newton_n_preinv` and then multiply out
and compute the remainder.
.. function:: int gr_poly_divrem_newton_n_preinv(gr_poly_t Q, gr_poly_t R, const gr_poly_t A, const gr_poly_t B, const gr_poly_t Binv, gr_ctx_t ctx)
Computes `Q` and `R` such that `A = BQ + R` with `\operatorname{len}(R) <
\operatorname{len}(B)`. We assume `Binv` is the inverse of the reverse of `B`
mod `x^{\operatorname{len}(B)}`.
It is required (not checked) that the length of `A` is less than or equal to
2*the length of `B` - 2.
Power series division
--------------------------------------------------------------------------------
For divide-and-conquer (including Newton-like) algorithms, *cutoff* has the
following meaning: we use the basecase algorithm for lengths `n < \operatorname{cutoff}`
and the divide-and-conquer algorithm for `n \ge \operatorname{cutoff}`.
Using `\operatorname{cutoff} = n` thus results in exactly one divide-and-conquer
step with a basecase length of `\lceil n / 2 \rceil`.
One should **avoid** calling the Newton methods with `n < \operatorname{cutoff}`
as this may result in much worse performance if those methods
do not have a specific escape check for that case.
The *newton* versions uses Newton iteration, switching to a basecase
algorithm when the length is smaller than the specified *cutoff*.
Division uses the Karp-Markstein algorithm.
.. function:: int _gr_poly_inv_series_newton(gr_ptr res, gr_srcptr A, slong Alen, slong len, slong cutoff, gr_ctx_t ctx)
int gr_poly_inv_series_newton(gr_poly_t res, const gr_poly_t A, slong len, slong cutoff, gr_ctx_t ctx)
int _gr_poly_inv_series_basecase_preinv1(gr_ptr res, gr_srcptr A, slong Alen, gr_srcptr Ainv, slong len, gr_ctx_t ctx)
int _gr_poly_inv_series_basecase(gr_ptr res, gr_srcptr A, slong Alen, slong len, gr_ctx_t ctx)
int gr_poly_inv_series_basecase(gr_poly_t res, const gr_poly_t A, slong len, gr_ctx_t ctx)
int _gr_poly_inv_series(gr_ptr res, gr_srcptr A, slong Alen, slong len, gr_ctx_t ctx)
int gr_poly_inv_series(gr_poly_t res, const gr_poly_t A, slong len, gr_ctx_t ctx)
.. function:: int _gr_poly_div_series_newton(gr_ptr res, gr_srcptr A, slong Alen, gr_srcptr B, slong Blen, slong len, slong cutoff, gr_ctx_t ctx)
int gr_poly_div_series_newton(gr_poly_t res, const gr_poly_t A, const gr_poly_t B, slong len, slong cutoff, gr_ctx_t ctx)
int _gr_poly_div_series_divconquer(gr_ptr res, gr_srcptr B, slong Blen, gr_srcptr A, slong Alen, slong len, slong cutoff, gr_ctx_t ctx)
int gr_poly_div_series_divconquer(gr_poly_t Q, const gr_poly_t A, const gr_poly_t B, slong len, slong cutoff, gr_ctx_t ctx)
int _gr_poly_div_series_invmul(gr_ptr res, gr_srcptr B, slong Blen, gr_srcptr A, slong Alen, slong len, gr_ctx_t ctx)
int gr_poly_div_series_invmul(gr_poly_t res, const gr_poly_t A, const gr_poly_t B, slong len, gr_ctx_t ctx)
int _gr_poly_div_series_basecase_preinv1(gr_ptr Q, gr_srcptr A, slong Alen, gr_srcptr B, slong Blen, gr_srcptr Binv, slong len, gr_ctx_t ctx)
int _gr_poly_div_series_basecase_noinv(gr_ptr Q, gr_srcptr A, slong Alen, gr_srcptr B, slong Blen, slong len, gr_ctx_t ctx)
int _gr_poly_div_series_basecase(gr_ptr res, gr_srcptr A, slong Alen, gr_srcptr B, slong Blen, slong len, gr_ctx_t ctx)
int gr_poly_div_series_basecase(gr_poly_t res, const gr_poly_t A, const gr_poly_t B, slong len, gr_ctx_t ctx)
int _gr_poly_div_series(gr_ptr res, gr_srcptr A, slong Alen, gr_srcptr B, slong Blen, slong len, gr_ctx_t ctx)
int gr_poly_div_series(gr_poly_t res, const gr_poly_t A, const gr_poly_t B, slong len, gr_ctx_t ctx)
Exact division
--------------------------------------------------------------------------------
These functions compute a quotient `Q = A / B` which is known to be exact
(without remainder) in `R[x]` (or in `R[[x]] / x^n` in the case of series
division). Given a nonexact division, they are allowed to set `Q` to
an arbitrary polynomial and return ``GR_SUCCESS`` instead of returning an
error flag.
`R` is assumed to be an integral domain (this is not checked).
For exact division, we have the choice of starting the division
from the most significant terms (classical division) or the least significant
(power series division). Which direction is more efficient depends
in part on whether the leading or trailing coefficient of `B` is cheaper
to use for divisions. In a generic setting, this is hard to predict.
The *bidirectional* algorithms combine two half-divisions from both ends.
This halves the number of operations in the basecase regime, though an
extra coefficient inversion may be needed.
The ``noinv`` versions perform repeated ``divexact`` operations in the
scalar domain without attempting to invert the leading (or trailing) coefficient,
while other versions check invertibility first.
There are no ``divexact_preinv1`` versions because those are identical to the
``div_preinv1`` counterparts.
.. function:: int _gr_poly_divexact_basecase_bidirectional(gr_ptr Q, gr_srcptr A, slong Alen, gr_srcptr B, slong Blen, gr_ctx_t ctx)
int gr_poly_divexact_basecase_bidirectional(gr_poly_t Q, const gr_poly_t A, const gr_poly_t B, gr_ctx_t ctx)
int _gr_poly_divexact_bidirectional(gr_ptr Q, gr_srcptr A, slong Alen, gr_srcptr B, slong Blen, gr_ctx_t ctx)
int gr_poly_divexact_bidirectional(gr_poly_t Q, const gr_poly_t A, const gr_poly_t B, gr_ctx_t ctx)
int _gr_poly_divexact_basecase_noinv(gr_ptr Q, gr_srcptr A, slong Alen, gr_srcptr B, slong Blen, gr_ctx_t ctx)
int _gr_poly_divexact_basecase(gr_ptr Q, gr_srcptr A, slong Alen, gr_srcptr B, slong Blen, gr_ctx_t ctx)
int gr_poly_divexact_basecase(gr_poly_t Q, const gr_poly_t A, const gr_poly_t B, gr_ctx_t ctx)
.. function:: int _gr_poly_divexact_series_basecase_noinv(gr_ptr Q, gr_srcptr A, slong Alen, gr_srcptr B, slong Blen, slong len, gr_ctx_t ctx)
int _gr_poly_divexact_series_basecase(gr_ptr Q, gr_srcptr A, slong Alen, gr_srcptr B, slong Blen, slong len, gr_ctx_t ctx)
int gr_poly_divexact_series_basecase(gr_poly_t Q, const gr_poly_t A, const gr_poly_t B, slong len, gr_ctx_t ctx)
Square roots
--------------------------------------------------------------------------------
.. function:: int _gr_poly_sqrt_series_newton(gr_ptr res, gr_srcptr f, slong flen, slong len, slong cutoff, gr_ctx_t ctx)
int gr_poly_sqrt_series_newton(gr_poly_t res, const gr_poly_t f, slong len, slong cutoff, gr_ctx_t ctx)
int _gr_poly_sqrt_series_basecase(gr_ptr res, gr_srcptr f, slong flen, slong len, gr_ctx_t ctx)
int gr_poly_sqrt_series_basecase(gr_poly_t res, const gr_poly_t f, slong len, gr_ctx_t ctx)
int _gr_poly_sqrt_series_miller(gr_ptr res, gr_srcptr f, slong flen, slong len, gr_ctx_t ctx)
int gr_poly_sqrt_series_miller(gr_poly_t res, const gr_poly_t f, slong len, gr_ctx_t ctx)
int _gr_poly_sqrt_series(gr_ptr res, gr_srcptr f, slong flen, slong len, gr_ctx_t ctx)
int gr_poly_sqrt_series(gr_poly_t res, const gr_poly_t f, slong len, gr_ctx_t ctx)
.. function:: int _gr_poly_rsqrt_series_newton(gr_ptr res, gr_srcptr f, slong flen, slong len, slong cutoff, gr_ctx_t ctx)
int gr_poly_rsqrt_series_newton(gr_poly_t res, const gr_poly_t f, slong len, slong cutoff, gr_ctx_t ctx)
int _gr_poly_rsqrt_series_basecase(gr_ptr res, gr_srcptr f, slong flen, slong len, gr_ctx_t ctx)
int gr_poly_rsqrt_series_basecase(gr_poly_t res, const gr_poly_t f, slong len, gr_ctx_t ctx)
int _gr_poly_rsqrt_series_miller(gr_ptr res, gr_srcptr f, slong flen, slong len, gr_ctx_t ctx)
int gr_poly_rsqrt_series_miller(gr_poly_t res, const gr_poly_t f, slong len, gr_ctx_t ctx)
int _gr_poly_rsqrt_series(gr_ptr res, gr_srcptr f, slong flen, slong len, gr_ctx_t ctx)
int gr_poly_rsqrt_series(gr_poly_t res, const gr_poly_t f, slong len, gr_ctx_t ctx)
Evaluation
-------------------------------------------------------------------------------
.. function:: int _gr_poly_evaluate_rectangular(gr_ptr res, gr_srcptr poly, slong len, gr_srcptr x, gr_ctx_t ctx)
int gr_poly_evaluate_rectangular(gr_ptr res, const gr_poly_t poly, gr_srcptr x, gr_ctx_t ctx)
.. function:: int _gr_poly_evaluate_modular(gr_ptr res, gr_srcptr poly, slong len, gr_srcptr x, gr_ctx_t ctx)
int gr_poly_evaluate_modular(gr_ptr res, const gr_poly_t poly, gr_srcptr x, gr_ctx_t ctx)
.. function:: int _gr_poly_evaluate_horner(gr_ptr res, gr_srcptr poly, slong len, gr_srcptr x, gr_ctx_t ctx)
int gr_poly_evaluate_horner(gr_ptr res, const gr_poly_t poly, gr_srcptr x, gr_ctx_t ctx)
.. function:: int _gr_poly_evaluate(gr_ptr res, gr_srcptr poly, slong len, gr_srcptr x, gr_ctx_t ctx)
int gr_poly_evaluate(gr_ptr res, const gr_poly_t poly, gr_srcptr x, gr_ctx_t ctx)
Set *res* to *poly* evaluated at *x*.
.. function:: int _gr_poly_evaluate_other_horner(gr_ptr res, gr_srcptr f, slong len, const gr_srcptr x, gr_ctx_t x_ctx, gr_ctx_t ctx)
int gr_poly_evaluate_other_horner(gr_ptr res, const gr_poly_t f, gr_srcptr x, gr_ctx_t x_ctx, gr_ctx_t ctx)
int _gr_poly_evaluate_other_rectangular(gr_ptr res, gr_srcptr f, slong len, const gr_srcptr x, gr_ctx_t x_ctx, gr_ctx_t ctx)
int gr_poly_evaluate_other_rectangular(gr_ptr res, const gr_poly_t f, gr_srcptr x, gr_ctx_t x_ctx, gr_ctx_t ctx)
int _gr_poly_evaluate_other(gr_ptr res, gr_srcptr f, slong len, const gr_srcptr x, gr_ctx_t x_ctx, gr_ctx_t ctx)
int gr_poly_evaluate_other(gr_ptr res, const gr_poly_t f, gr_srcptr x, gr_ctx_t x_ctx, gr_ctx_t ctx)
Set *res* to *poly* evaluated at *x*, where the coefficients of *f*
belong to *ctx* while both *x* and *res* belong to *x_ctx*.
Newton basis
-------------------------------------------------------------------------------
Let `C = (c_0, c_1, c_2, \ldots)` be a sequence of
values of the commutative ring *R*.
Then the sequence of polynomials
.. math::
\begin{matrix}
N_0 & = & 1, \\
N_1 & = & (x-c_0), \\
N_2 & = & (x-c_0)(x-c_1), \\
N_3 & = & (x-c_0)(x-c_1)(x-c_2), \ldots
\end{matrix}
with roots in `C` forms a basis of `R[x]` called the *Newton basis*
associated with *C*.
Given a polynomial `f = f_0 + f_1 x + \ldots + f_n x^n` in the
standard monomial basis, there are accordingly coefficients `g_0, \ldots, g_n`
such that `f = g_0 N_0 + g_1 N_1 + \ldots + g_n N_n`
and vice versa.
In the following functions, some finite initial segment of `C` is represented
by a vector called *basis*, and a polynomial in the Newton basis is
represented formally as the polynomial
`g = g_0 + g_1 x + \ldots + g_n x^n`.
The following functions all support aliasing between inputs and outputs
except that no output may be aliased with *basis*.
.. function:: int _gr_poly_newton_basis_from_monomial(gr_ptr res, gr_srcptr basis, gr_srcptr poly, slong len, gr_ctx_t ctx)
int gr_poly_newton_basis_from_monomial(gr_poly_t res, const gr_vec_t basis, const gr_poly_t poly, gr_ctx_t ctx)
int _gr_poly_newton_basis_to_monomial(gr_ptr res, gr_srcptr basis, gr_srcptr poly, slong len, gr_ctx_t ctx)
int gr_poly_newton_basis_to_monomial(gr_poly_t res, const gr_vec_t basis, const gr_poly_t poly, gr_ctx_t ctx)
Given *poly* of length *len* in the standard monomial basis, set *res* to
the polynomial in the Newton basis and vice versa.
The underscore methods require that ``basis`` is a pointer to at least
`len - 1` entries. The non-underscore methods return ``GR_UNABLE`` if
*basis* does not contain at least `len - 1` entries.
.. function:: int _gr_poly_newton_basis_evaluate(gr_ptr res, gr_srcptr basis, gr_srcptr poly, slong len, gr_srcptr x, gr_ctx_t ctx)
int gr_poly_newton_basis_evaluate(gr_ptr res, const gr_vec_t basis, const gr_poly_t poly, gr_srcptr x, gr_ctx_t ctx)
Given *poly* of length *len* in the Newton basis, set *res* to the
evaluation at *x*.
The underscore method requires that ``basis`` is a pointer to at least
`len - 1` entries. The non-underscore method returns ``GR_UNABLE`` if
*basis* does not contain at least `len - 1` entries.
.. function:: int _gr_poly_newton_basis_interpolate_exact(gr_ptr res, gr_srcptr basis, gr_srcptr ys, slong len, gr_ctx_t ctx)
int gr_poly_newton_basis_interpolate_exact(gr_poly_t res, const gr_vec_t basis, const gr_vec_t ys, gr_ctx_t ctx)
int _gr_poly_newton_basis_interpolate(gr_ptr res, gr_srcptr basis, gr_srcptr ys, slong len, gr_ctx_t ctx)
int gr_poly_newton_basis_interpolate(gr_poly_t res, const gr_vec_t basis, const gr_vec_t ys, gr_ctx_t ctx)
Given a vector *y* containing *len* values, set *res* to the Newton basis form
of the unique interpolating
polynomial *f* of length (up to) *len* such that
`y_0 = f(c_0), \ldots, y_{len-1} = f(c_{len-1})`
evaluated at the roots of the Newton basis.
We presume, but do not check, that the ring is an integral domain.
These functions may succeed over non-integral domains, but
the result need not be an interpolating polynomial.
We require that *basis* contains at least *len* initial roots which
are pairwise distinct.
These functions return ``GR_DOMAIN`` (and/or ``GR_UNABLE``)
in either of the following situations:
* The vector *basis* does not have sufficiently many points (checked by the
non-underscore functions only).
* The evaluation points *xs* are not pairwise distinct.
* The interpolating polynomial *f* has coefficients in the fraction field
of *R* but not in *R* itself.
The *exact* versions presume that the evaluation points are distinct
and that *f* has coefficients in *R*; they may silently output some
arbitary polynomial otherwise.
Multipoint evaluation and interpolation
-------------------------------------------------------------------------------
.. function:: gr_ptr * _gr_poly_tree_alloc(slong len, gr_ctx_t ctx)
.. function:: void _gr_poly_tree_free(gr_ptr * tree, slong len, gr_ctx_t ctx)
.. function:: int _gr_poly_tree_build(gr_ptr * tree, gr_srcptr roots, slong len, gr_ctx_t ctx)
Initialize a subproduct tree over the given roots.
.. function:: int _gr_poly_product_roots(gr_ptr poly, gr_srcptr xs, slong n, gr_ctx_t ctx)
int gr_poly_product_roots(gr_poly_t poly, const gr_vec_t xs, gr_ctx_t ctx)
Set *poly* to the polynomial `(x-x_0) (x-x_1) \cdots (x-x_{n-1})`.
.. function:: int _gr_poly_evaluate_vec_fast_precomp(gr_ptr vs, gr_srcptr poly, slong plen, const gr_ptr * tree, slong len, gr_ctx_t ctx)
.. function:: int _gr_poly_evaluate_vec_fast(gr_ptr ys, gr_srcptr poly, slong plen, gr_srcptr xs, slong n, gr_ctx_t ctx)
int gr_poly_evaluate_vec_fast(gr_vec_t ys, const gr_poly_t poly, const gr_vec_t xs, gr_ctx_t ctx)
.. function:: int _gr_poly_evaluate_vec_iter(gr_ptr ys, gr_srcptr poly, slong plen, gr_srcptr xs, slong n, gr_ctx_t ctx)
int gr_poly_evaluate_vec_iter(gr_vec_t ys, const gr_poly_t poly, const gr_vec_t xs, gr_ctx_t ctx)
.. function:: int _gr_poly_interpolate_exact(gr_ptr res, gr_srcptr xs, gr_srcptr ys, slong len, gr_ctx_t ctx)
int gr_poly_interpolate_exact(gr_poly_t poly, const gr_vec_t xs, const gr_vec_t ys, gr_ctx_t ctx)
int _gr_poly_interpolate(gr_ptr res, gr_srcptr xs, gr_srcptr ys, slong len, gr_ctx_t ctx)
int gr_poly_interpolate(gr_poly_t poly, const gr_vec_t xs, const gr_vec_t ys, gr_ctx_t ctx)
Given vectors *xs* and *ys* of length *len* where the entries of *xs*
are pairwise distinct, set *res* to the
interpolating polynomial *f* of length (up to) *len* such that
`y_0 = f(x_0), \ldots, y_{len-1} = f(x_{len-1})`.
We presume, but do not check, that the ring is an integral domain.
These functions may succeed over non-integral domains, but
the result might not be an interpolating polynomial.
These functions return ``GR_DOMAIN`` (and/or ``GR_UNABLE``)
in either of the following situations:
* The vectors *xs* and *ys* do not have the same length (checked by the
non-underscore functions only).
* The evaluation points *xs* are not pairwise distinct.
* The interpolating polynomial *f* has coefficients in the fraction field
of *R* but not in *R* itself.
The *exact* versions presume that the evaluation points are distinct
and that *f* has coefficients in *R*; they may silently output some
arbitary polynomial otherwise.
.. function:: int _gr_poly_interpolation_weights(gr_ptr w, const gr_ptr * tree, slong len, gr_ctx_t ctx)
int _gr_poly_interpolate_fast_precomp(gr_ptr poly, gr_srcptr ys, const gr_ptr * tree, gr_srcptr weights, slong len, gr_ctx_t ctx)
int _gr_poly_interpolate_fast(gr_ptr res, gr_srcptr xs, gr_srcptr ys, slong len, gr_ctx_t ctx)
int gr_poly_interpolate_fast(gr_poly_t poly, const gr_vec_t xs, const gr_vec_t ys, gr_ctx_t ctx)
Fast polynomial interpolation using a subproduct tree. The *precomp*
version requires a precomputed subproduct tree generated using
:func:`_gr_poly_tree_build` and precomputed interpolation weights
generated using :func:`_gr_poly_interpolation_weights`.
This currently requires a field.
Composition
-------------------------------------------------------------------------------
.. function:: int _gr_poly_taylor_shift_horner(gr_ptr res, gr_srcptr poly, slong len, gr_srcptr c, gr_ctx_t ctx)
int gr_poly_taylor_shift_horner(gr_poly_t res, const gr_poly_t poly, gr_srcptr c, gr_ctx_t ctx)
int _gr_poly_taylor_shift_divconquer(gr_ptr res, gr_srcptr poly, slong len, gr_srcptr c, gr_ctx_t ctx)
int gr_poly_taylor_shift_divconquer(gr_poly_t res, const gr_poly_t poly, gr_srcptr c, gr_ctx_t ctx)
int _gr_poly_taylor_shift_convolution(gr_ptr res, gr_srcptr poly, slong len, gr_srcptr c, gr_ctx_t ctx)
int gr_poly_taylor_shift_convolution(gr_poly_t res, const gr_poly_t poly, gr_srcptr c, gr_ctx_t ctx)
int _gr_poly_taylor_shift(gr_ptr res, gr_srcptr poly, slong len, gr_srcptr c, gr_ctx_t ctx)
int gr_poly_taylor_shift(gr_poly_t res, const gr_poly_t poly, gr_srcptr c, gr_ctx_t ctx)
Sets *res* to the Taylor shift `f(x+c)`, where *f* is given by
*poly*, computed respectively using
an optimized form of Horner's rule, divide-and-conquer, a single
convolution, and an automatic choice between the three algorithms.
The underscore methods support aliasing.
.. function:: int _gr_poly_compose_horner(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, gr_ctx_t ctx)
int gr_poly_compose_horner(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, gr_ctx_t ctx)
int _gr_poly_compose_divconquer(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, gr_ctx_t ctx)
int gr_poly_compose_divconquer(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, gr_ctx_t ctx)
int _gr_poly_compose(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, gr_ctx_t ctx)
int gr_poly_compose(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, gr_ctx_t ctx)
Sets *res* to the composition `f(g(x))` where *f* is given by *poly1*
and *g* is given by *poly2*, respectively using Horner's rule,
divide-and-conquer, and an automatic choice between the two algorithms.
The default algorithm also handles special-form input `g = ax^n + c`
efficiently by performing a Taylor shift followed by a rescaling.
The underscore methods do not support aliasing of the output
with either input polynomial.
Power series composition and reversion
-------------------------------------------------------------------------------
.. function:: int _gr_poly_compose_series_horner(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, slong n, gr_ctx_t ctx)
int gr_poly_compose_series_horner(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, slong n, gr_ctx_t ctx)
int _gr_poly_compose_series_brent_kung(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, slong n, gr_ctx_t ctx)
int gr_poly_compose_series_brent_kung(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, slong n, gr_ctx_t ctx)
int _gr_poly_compose_series_divconquer(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, slong n, gr_ctx_t ctx)
int gr_poly_compose_series_divconquer(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, slong n, gr_ctx_t ctx)
int _gr_poly_compose_series(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, slong n, gr_ctx_t ctx)
int gr_poly_compose_series(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, slong n, gr_ctx_t ctx)
Sets *res* to the power series composition `h(x) = f(g(x))` truncated
to order `O(x^n)` where `f` is given by *poly1* and `g` is given by *poly2*,
respectively using Horner's rule, the Brent-Kung baby step-giant step
algorithm [BrentKung1978]_, divide-and-conquer, and an automatic choice between the algorithms.
The default algorithm also handles short input and
special-form input `g = ax^n` efficiently.
We require that the constant term in `g(x)` is exactly zero.
The underscore methods do not support aliasing of the output
with either input polynomial, and do not zero-pad the result.
.. function:: int _gr_poly_revert_series_lagrange(gr_ptr res, gr_srcptr f, slong flen, slong n, gr_ctx_t ctx)
int gr_poly_revert_series_lagrange(gr_poly_t res, const gr_poly_t f, slong n, gr_ctx_t ctx)
int _gr_poly_revert_series_lagrange_fast(gr_ptr res, gr_srcptr f, slong flen, slong n, gr_ctx_t ctx)
int gr_poly_revert_series_lagrange_fast(gr_poly_t res, const gr_poly_t f, slong n, gr_ctx_t ctx)
int _gr_poly_revert_series_newton(gr_ptr res, gr_srcptr f, slong flen, slong n, gr_ctx_t ctx)
int gr_poly_revert_series_newton(gr_poly_t res, const gr_poly_t f, slong n, gr_ctx_t ctx)
int _gr_poly_revert_series(gr_ptr res, gr_srcptr f, slong flen, slong n, gr_ctx_t ctx)
int gr_poly_revert_series(gr_poly_t res, const gr_poly_t f, slong n, gr_ctx_t ctx)
Sets *res* to the power series reversion `f^{-1}(x)` which satisfies
`f^{-1}(f(x)) = f(f^{-1}(x)) = x` mod `x^n`.
For the series reversion to exist, we require that the constant term
in `f` is zero and that the linear coefficient is invertible.
The flag ``GR_DOMAIN`` is returned otherwise.
The *lagrange* and *lagrange_fast* algorithms require the ability
to divide by `2, 3, \ldots, n-1` and will return
the ``GR_UNABLE`` flag in too small characteristic.
The underscore methods do not support aliasing of the output
with the input.
The Newton method is described in [BrentKung1978]_; the
*lagrange* algorithm implements the Lagrange inversion formula,
while the *lagrange_fast* algorithm implements the baby-step
giant-step algorithm described in [Joh2015b]_.
Derivative and integral
-------------------------------------------------------------------------------
.. function:: int _gr_poly_derivative(gr_ptr res, gr_srcptr poly, slong len, gr_ctx_t ctx)
int gr_poly_derivative(gr_poly_t res, const gr_poly_t poly, gr_ctx_t ctx)
.. function:: int _gr_poly_nth_derivative(gr_ptr res, gr_srcptr poly, ulong n, slong len, gr_ctx_t ctx)
int gr_poly_nth_derivative(gr_poly_t res, const gr_poly_t poly, ulong n, gr_ctx_t ctx)
.. function:: int _gr_poly_integral(gr_ptr res, gr_srcptr poly, slong len, gr_ctx_t ctx)
int gr_poly_integral(gr_poly_t res, const gr_poly_t poly, gr_ctx_t ctx)
Monic polynomials
-------------------------------------------------------------------------------
.. function:: int _gr_poly_make_monic(gr_ptr res, gr_srcptr poly, slong len, gr_ctx_t ctx)
int gr_poly_make_monic(gr_poly_t res, const gr_poly_t src, gr_ctx_t ctx)
.. function:: truth_t _gr_poly_is_monic(gr_srcptr poly, slong len, gr_ctx_t ctx)
truth_t gr_poly_is_monic(const gr_poly_t res, gr_ctx_t ctx)
.. function:: int gr_poly_canonical_associate(gr_poly_t res, gr_poly_t u, const gr_poly_t src, gr_ctx_t ctx)
GCD
-------------------------------------------------------------------------------
.. function:: int _gr_poly_hgcd(gr_ptr r, slong * sgn, gr_ptr * M, slong * lenM, gr_ptr A, slong * lenA, gr_ptr B, slong * lenB, gr_srcptr a, slong lena, gr_srcptr b, slong lenb, slong cutoff, gr_ctx_t ctx)
Computes the HGCD of `a` and `b`, that is, a matrix `M`, a sign `\sigma`
and two polynomials `A` and `B` such that
.. math::
(A,B)^t = \sigma M^{-1} (a,b)^t.
Assumes that `\operatorname{len}(a) > \operatorname{len}(b) > 0`.
Assumes that `A` and `B` have space of size at least `\operatorname{len}(a)`
and `\operatorname{len}(b)`, respectively. On exit, ``*lenA`` and ``*lenB``
will contain the correct lengths of `A` and `B`.
Assumes that ``M[0]``, ``M[1]``, ``M[2]``, and ``M[3]``
each point to a vector of size at least `\operatorname{len}(a)`.
If `r` is not ``NULL``, writes to that variable the corresponding value
for computing resultants using the HGCD algorithm.
.. function:: int _gr_poly_gcd_hgcd(gr_ptr G, slong * _lenG, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, slong inner_cutoff, slong cutoff, gr_ctx_t ctx)
int gr_poly_gcd_hgcd(gr_poly_t G, const gr_poly_t A, const gr_poly_t B, slong inner_cutoff, slong cutoff, gr_ctx_t ctx)
int _gr_poly_gcd_euclidean(gr_ptr G, slong * lenG, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_ctx_t ctx)
int gr_poly_gcd_euclidean(gr_poly_t G, const gr_poly_t A, const gr_poly_t B, gr_ctx_t ctx)
int _gr_poly_gcd_subresultant(gr_ptr G, slong * lenG, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_ctx_t ctx)
int gr_poly_gcd_subresultant(gr_poly_t G, const gr_poly_t A, const gr_poly_t B, gr_ctx_t ctx)
int _gr_poly_gcd_generic(gr_ptr G, slong * lenG, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_ctx_t ctx)
int _gr_poly_gcd(gr_ptr G, slong * lenG, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_ctx_t ctx)
int gr_poly_gcd(gr_poly_t G, const gr_poly_t A, const gr_poly_t B, gr_ctx_t ctx)
GCD in the polynomial ring `R[x]`.
The *gcd_subresultant* algorithm assumes that *R* is a unique factorization
domain. The *euclidean* and *hgcd* algorithms assume that *R* is a field.
The time complexity of the half-GCD algorithm is `\mathcal{O}(n \log^2 n)`
field operations. For further details, see [ThullYap1990]_.
The *gcd_generic* fallback implementation checks if *R* is a field
or UFD and dispatches to an appropriate algorithm, and otherwise
returns ``GR_UNABLE``. The main *gcd* function is synonymous with
*gcd_generic* unless overridden by a particular ring.
The non-underscore methods canonicalise the leading coefficient of the output
by calling ``gr_poly_canonical_associate``. Over a field, this corresponds
to making the output monic. The underscore methods need not perform this
canonicalisation.
The underscore methods assume ``lenA >= lenB >= 1`` and that both
*A* and *B* have nonzero leading coefficient.
.. function:: int _gr_poly_xgcd_euclidean(slong * lenG, gr_ptr G, gr_ptr S, gr_ptr T, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_ctx_t ctx)
int gr_poly_xgcd_euclidean(gr_poly_t G, gr_poly_t S, gr_poly_t T, const gr_poly_t A, const gr_poly_t B, gr_ctx_t ctx)
.. function:: int _gr_poly_xgcd_hgcd(slong * Glen, gr_ptr G, gr_ptr S, gr_ptr T, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, slong hgcd_cutoff, slong cutoff, gr_ctx_t ctx)
int gr_poly_xgcd_hgcd(gr_poly_t G, gr_poly_t S, gr_poly_t T, const gr_poly_t A, const gr_poly_t B, slong hgcd_cutoff, slong cutoff, gr_ctx_t ctx)
.. function:: int _gr_poly_xgcd_generic(slong * lenG, gr_ptr G, gr_ptr S, gr_ptr T, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_ctx_t ctx)
int _gr_poly_xgcd(slong * lenG, gr_ptr G, gr_ptr S, gr_ptr T, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_ctx_t ctx)
int gr_poly_xgcd(gr_poly_t G, gr_poly_t S, gr_poly_t T, const gr_poly_t A, const gr_poly_t B, gr_ctx_t ctx)
Resultant
-------------------------------------------------------------------------------
For two non-zero polynomials `f(x) = a_m x^m + \dotsb + a_0` and
`g(x) = b_n x^n + \dotsb + b_0` of degrees `m` and `n`, the resultant
is defined to be
.. math::
a_m^n b_n^m \prod_{(x, y) : f(x) = g(y) = 0} (x - y).
For convenience, we define the resultant to be equal to zero if either
of the two polynomials is zero.
.. function:: int _gr_poly_resultant_euclidean(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, gr_ctx_t ctx)
int gr_poly_resultant_euclidean(gr_ptr res, const gr_poly_t f, const gr_poly_t g, gr_ctx_t ctx)
int _gr_poly_resultant_hgcd(gr_ptr res, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, slong inner_cutoff, slong cutoff, gr_ctx_t ctx)
int gr_poly_resultant_hgcd(gr_ptr res, const gr_poly_t f, const gr_poly_t g, slong inner_cutoff, slong cutoff, gr_ctx_t ctx)
int _gr_poly_resultant_sylvester(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, gr_ctx_t ctx)
int gr_poly_resultant_sylvester(gr_ptr res, const gr_poly_t f, const gr_poly_t g, gr_ctx_t ctx)
int _gr_poly_resultant_small(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, gr_ctx_t ctx)
int gr_poly_resultant_small(gr_ptr res, const gr_poly_t f, const gr_poly_t g, gr_ctx_t ctx)
int _gr_poly_resultant(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, gr_ctx_t ctx)
int gr_poly_resultant(gr_ptr res, const gr_poly_t f, const gr_poly_t g, gr_ctx_t ctx)
Sets *res* to the resultant of *poly1* and *poly2*.
The underscore methods assume that `len1 \ge len2 \ge 1`
and that the leading coefficients are nonzero.
The *euclidean* algorithm is the ordinary Euclidean algorithm.
The *hgcd* version uses the quasilinear half-GCD algorithm.
It requires two extra tuning parameters ``inner_cutoff``
(recursion threshold passed forward to the HGCD algorithm)
and ``cutoff``. Both algorithms can fail when run over
non-fields; they will return ``GR_DOMAIN``
when encountering an impossible inverse.
The *small* version uses division-free straight-line programs
optimized for short polynomials.
It returns ``GR_UNABLE`` if the polynomials are too large.
Currently this function handles the cases where `len1 \le 2`
or `len2 \le 3`.
The *sylvester* version constructs the Sylvester matrix
and computes its determinant. This is useful over inexact rings
and as a fallback for rings without division.
The default version attempts to choose an appropriate
algorithm automatically.
Currently no algorithm has been implemented that is appropriate for
integral domains.
Squarefree factorization
-------------------------------------------------------------------------------
TODO: currently only fields of characteristic 0 are supported.
.. function:: int gr_poly_factor_squarefree(gr_ptr c, gr_vec_t fac, gr_vec_t exp, const gr_poly_t poly, gr_ctx_t ctx)
Computes a squarefree factorization of *poly*.
The constant *c* is set to an element of the scalar ring.
The factors in *fac* are set to polynomials; the user must thus
initialize it to a vector of polynomials of the same type as
*poly* (and *not* to the parent *ctx*).
The exponent vector *exp* must be initialized to the *fmpz* type.
.. function:: int gr_poly_squarefree_part(gr_poly_t res, const gr_poly_t poly, gr_ctx_t ctx)
Sets *res* to the squarefreepart of *poly*.
Shift equivalence
-------------------------------------------------------------------------------
.. function:: truth_t gr_poly_shift_equivalent(fmpz_t shift, const gr_poly_t p, const gr_poly_t q, gr_ctx_t ctx)
Returns whether there exists an integer *n* such that `p(x + n) = q(x)`. If
the result is ``T_TRUE`` and *shift* is not ``NULL``, *shift* is set to
such an *n*.
.. function:: int gr_poly_leading_taylor_shift(gr_ptr shift, const gr_poly_t p, const gr_poly_t q, gr_ctx_t ctx)
Computes (if possible) *s* such that `p(x+s) = q(x)(1+O(x^2))`.
.. function:: int gr_poly_dispersion_resultant(fmpz_t disp, gr_vec_t disp_set, const gr_poly_t f, const gr_poly_t g, gr_ctx_t ctx);
int gr_poly_dispersion_factor(fmpz_t disp, gr_vec_t disp_set, const gr_poly_t f, const gr_poly_t g, gr_ctx_t ctx);
int gr_poly_dispersion(fmpz_t disp, gr_vec_t disp_set, const gr_poly_t f, const gr_poly_t g, gr_ctx_t ctx);
Computes the dispersion and/or the dispersion set of *f* and *g*.
The dispersion set of two polynomials *f* and *g* (over a unique
factorization domain of characteristic zero) is the set of nonnegative
integers *n* such that `f(x + n)` and `g(x)` have a nonconstant common
factor. The dispersion is the largest element of the dispersion set.
The output variables *disp* and/or *disp_set* can be ``NULL``, in which case
the corresponding result is not stored.
When the dispersion set is empty, *disp* is left unchanged.
The elements of *disp_set* are sorted in increasing order.
The *factor* version uses the algorithm described in [ManWright1994]_.
The *resultant* version computes the integer roots of a bivariate resultant
and is mainly intended for testing.
.. function:: int gr_poly_dispersion_from_factors(fmpz_t disp, gr_vec_t disp_set, const gr_vec_t ffac, const gr_vec_t gfac, gr_ctx_t ctx);
Same as :func:`gr_poly_dispersion_factor` for nonzero *f* and *g* but takes
as input their nonconstant irreducible factors (without multiplicities)
instead of the polynomials themselves.
.. function:: int gr_poly_shiftless_decomposition_factor(gr_ptr c, gr_vec_t slfac, gr_vec_t slshifts, gr_vec_t slmult, const gr_poly_t f, gr_ctx_t ctx)
int gr_poly_shiftless_decomposition(gr_ptr c, gr_vec_t slfac, gr_vec_t slshifts, gr_vec_t slmult, const gr_poly_t f, gr_ctx_t ctx)
Computes a decomposition of *f* of the form
.. math:: c \prod_i \prod_j g_i(x + h_{i,j})^{e_{i,j}}
where
* `c` is a constant,
* the `g_i` are squarefree polynomials of degree at least one,
* `g_i(x)` and `g_j(x + h)` (with `i \neq j`) are coprime for all
`h \in \mathbb Z`,
* `g_i(x)` and `g_i(x + h)` are coprime for all nonzero `h \in \mathbb Z`,
* `e_{i,j}` and `h_{i,j}` are integers with `e_{i,j} \geq 1`
and `0 = h_{i,1} < h_{i,2} < \cdots`.
The output variable *slfac* must be initialized to a vector of polynomials
of the same type as *f*. The other two output vectors *slshift* and
*slmult* must be initialized to vectors *of vectors* with entries of type
*fmpz*.
The *factor* version computes an irreducible factorization and sorts the
factors into shift-equivalence classes.
No algorithm avoiding a full irreducible factorization is currently
implemented.
.. function:: int _gr_poly_shiftless_decomposition_from_factors(gr_vec_t slfac, gr_vec_t slshifts, gr_vec_t slmult, const gr_vec_t fac, const gr_vec_t mult, gr_ctx_t ctx)
int gr_poly_shiftless_decomposition_from_factors(gr_vec_t slfac, gr_vec_t slshifts, gr_vec_t slmult, const gr_vec_t fac, const gr_vec_t mult, gr_ctx_t ctx)
Same as :func:`gr_poly_shiftless_decomposition_factor` but takes as input
an irreducible factorization (*fac*, *mult*) of *f* (without the
prefactor *c*). The underscore method does not support aliasing of *slfac*
with *fac*.
Roots
-------------------------------------------------------------------------------
.. function:: int gr_poly_roots(gr_vec_t roots, gr_vec_t mult, const gr_poly_t poly, int flags, gr_ctx_t ctx)
int gr_poly_roots_other(gr_vec_t roots, gr_vec_t mult, const gr_poly_t poly, gr_ctx_t poly_ctx, int flags, gr_ctx_t ctx)
Finds all roots of the given polynomial in the ring defined by *ctx*,
storing the roots without duplication in *roots* (a vector with
elements of type ``ctx``) and the corresponding multiplicities in
*mult* (a vector with elements of type ``fmpz``).
If the target ring is not an algebraically closed field, then
the sum of multiplicities can be smaller than the degree of the
polynomial. For example, with ``fmpz`` coefficients, we only
find integer roots.
The *other* version of this function takes as input a polynomial
with entries in a different ring ``poly_ctx``. For example,
we can compute ``qqbar`` or ``arb`` roots for a polynomial
with ``fmpz`` coefficients.
Whether the roots are sorted in any particular order is
ring-dependent.
We consider roots of the zero polynomial to be ill-defined and return
``GR_DOMAIN`` in that case.
.. function:: int _gr_poly_refine_roots_aberth(gr_ptr w, gr_srcptr f, gr_srcptr f_prime, slong deg, gr_srcptr z, int progressive, gr_ctx_t ctx)
int _gr_poly_refine_roots_wdk(gr_ptr w, gr_srcptr f, slong deg, gr_srcptr z, int progressive, gr_ctx_t ctx)
Given a vector of approximate complex roots `z_1, \ldots, z_{deg}`
of `f = \sum_{i=0}^{deg} f_i x^i`,
computes a vector of corrections `w_1, \ldots, w_{deg}` such that
`z_k - w_k` is a closer approximation of the respective root
provided that the initial approximations are close enough
and that the polynomial evaluation is numerically accurate.
The user will typically call these methods in a loop.
The *wdk* version performs the Weierstrass-Durand-Kerner update
.. math ::
w_k = \frac{f(z_k)}{\prod_{j \ne k} (z_k - z_j)}, \quad k = 1, \ldots, deg.
The *aberth* version performs the Aberth-Ehrlich update
.. math ::
w_k = \frac{g(z_k)}{1 - g(z_k) \sum_{j \ne k} (z_k - z_j)^{-1}}, \quad g(z_k) = \frac{f(z_k)}{f'(z_k)} \quad k = 1, \ldots, deg.
requiring the coefficients of `f'` as an extra input *f_prime*.
If *progressive* flag is set, corrected roots `z_j - w_j` that
have already been computed are used in place of `z_j` in the
update loop, which can improve the rate of convergence.
Power series special functions
--------------------------------------------------------------------------------
.. function:: int _gr_poly_asin_series(gr_ptr res, gr_srcptr f, slong flen, slong len, gr_ctx_t ctx)
int gr_poly_asin_series(gr_poly_t res, const gr_poly_t f, slong len, gr_ctx_t ctx)
int _gr_poly_asinh_series(gr_ptr res, gr_srcptr f, slong flen, slong len, gr_ctx_t ctx)
int gr_poly_asinh_series(gr_poly_t res, const gr_poly_t f, slong len, gr_ctx_t ctx)
int _gr_poly_acos_series(gr_ptr res, gr_srcptr f, slong flen, slong len, gr_ctx_t ctx)
int gr_poly_acos_series(gr_poly_t res, const gr_poly_t f, slong len, gr_ctx_t ctx)
int _gr_poly_acosh_series(gr_ptr res, gr_srcptr f, slong flen, slong len, gr_ctx_t ctx)
int gr_poly_acosh_series(gr_poly_t res, const gr_poly_t f, slong len, gr_ctx_t ctx)
int _gr_poly_atan_series(gr_ptr res, gr_srcptr f, slong flen, slong len, gr_ctx_t ctx)
int gr_poly_atan_series(gr_poly_t res, const gr_poly_t f, slong len, gr_ctx_t ctx)
int _gr_poly_atanh_series(gr_ptr res, gr_srcptr f, slong flen, slong len, gr_ctx_t ctx)
int gr_poly_atanh_series(gr_poly_t res, const gr_poly_t f, slong len, gr_ctx_t ctx)
.. function:: int _gr_poly_log_series(gr_ptr res, gr_srcptr f, slong flen, slong len, gr_ctx_t ctx)
int gr_poly_log_series(gr_poly_t res, const gr_poly_t f, slong len, gr_ctx_t ctx)
int _gr_poly_log1p_series(gr_ptr res, gr_srcptr f, slong flen, slong len, gr_ctx_t ctx)
int gr_poly_log1p_series(gr_poly_t res, const gr_poly_t f, slong len, gr_ctx_t ctx)
.. function:: int _gr_poly_exp_series_basecase(gr_ptr f, gr_srcptr h, slong hlen, slong n, gr_ctx_t ctx)
int gr_poly_exp_series_basecase(gr_poly_t f, const gr_poly_t h, slong n, gr_ctx_t ctx)
int _gr_poly_exp_series_basecase_mul(gr_ptr f, gr_srcptr h, slong hlen, slong n, gr_ctx_t ctx)
int gr_poly_exp_series_basecase_mul(gr_poly_t f, const gr_poly_t h, slong n, gr_ctx_t ctx)
int _gr_poly_exp_series_newton(gr_ptr f, gr_ptr g, gr_srcptr h, slong hlen, slong n, slong cutoff, gr_ctx_t ctx)
int gr_poly_exp_series_newton(gr_poly_t f, const gr_poly_t h, slong n, slong cutoff, gr_ctx_t ctx)
int _gr_poly_exp_series_generic(gr_ptr f, gr_srcptr h, slong hlen, slong n, gr_ctx_t ctx)
int _gr_poly_exp_series(gr_ptr res, gr_srcptr f, slong flen, slong len, gr_ctx_t ctx)
int gr_poly_exp_series(gr_poly_t f, const gr_poly_t h, slong n, gr_ctx_t ctx)
.. function:: int _gr_poly_sin_cos_series_basecase(gr_ptr s, gr_ptr c, gr_srcptr h, slong hlen, slong n, int times_pi, gr_ctx_t ctx)
int gr_poly_sin_cos_series_basecase(gr_poly_t s, gr_poly_t c, const gr_poly_t h, slong n, int times_pi, gr_ctx_t ctx)
int _gr_poly_sin_cos_series_tangent(gr_ptr s, gr_ptr c, gr_srcptr h, slong hlen, slong n, int times_pi, gr_ctx_t ctx)
int gr_poly_sin_cos_series_tangent(gr_poly_t s, gr_poly_t c, const gr_poly_t h, slong n, int times_pi, gr_ctx_t ctx)
The *basecase* version uses a simple recurrence for the coefficients,
requiring `O(nm)` operations where `m` is the length of `h`.
The *tangent* version uses the tangent half-angle formulas to compute
the sine and cosine via :func:`_acb_poly_tan_series`. This
requires `O(M(n))` operations.
When `h = h_0 + h_1` where the constant term `h_0` is nonzero,
the evaluation is done as
`\sin(h_0 + h_1) = \cos(h_0) \sin(h_1) + \sin(h_0) \cos(h_1)`,
`\cos(h_0 + h_1) = \cos(h_0) \cos(h_1) - \sin(h_0) \sin(h_1)`.
The *basecase* and *tangent* versions take a flag *times_pi*
specifying that the input is to be multiplied by `\pi`.
.. function:: int _gr_poly_tan_series_basecase(gr_ptr f, gr_srcptr h, slong hlen, slong n, gr_ctx_t ctx)
int gr_poly_tan_series_basecase(gr_poly_t f, const gr_poly_t h, slong n, gr_ctx_t ctx)
int _gr_poly_tan_series_newton(gr_ptr f, gr_srcptr h, slong hlen, slong n, slong cutoff, gr_ctx_t ctx)
int gr_poly_tan_series_newton(gr_poly_t f, const gr_poly_t h, slong n, slong cutoff, gr_ctx_t ctx)
int _gr_poly_tan_series(gr_ptr f, gr_srcptr h, slong hlen, slong n, gr_ctx_t ctx)
int gr_poly_tan_series(gr_poly_t f, const gr_poly_t h, slong n, gr_ctx_t ctx)
Modular arithmetic and composition
--------------------------------------------------------------------------------
.. function:: int _gr_poly_mulmod(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, gr_srcptr f, slong lenf, gr_ctx_t ctx)
Sets ``res`` to the remainder of the product of ``poly1``
and ``poly2`` upon polynomial division by ``f``.
It is required that ``len1 + len2 - lenf > 0``, which is
equivalent to requiring that the result will actually be
reduced. Otherwise, simply use ``_fq_poly_mul`` instead.
Aliasing of ``f`` and ``res`` is not permitted.
.. function:: int gr_poly_mulmod(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, const gr_poly_t f, gr_ctx_t ctx)
Sets ``res`` to the remainder of the product of ``poly1``
and ``poly2`` upon polynomial division by ``f``.
.. function:: int _gr_poly_mulmod_preinv(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, gr_srcptr f, slong lenf, gr_srcptr finv, slong lenfinv, gr_ctx_t ctx)
Sets ``res`` to the remainder of the product of ``poly1``
and ``poly2`` upon polynomial division by ``f``.
It is required that ``finv`` is the inverse of the reverse of
``f`` mod ``x^lenf``.
Aliasing of ``res`` with any of the inputs is not permitted.
.. function:: int gr_poly_mulmod_preinv(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, const gr_poly_t f, const gr_poly_t finv, gr_ctx_t ctx)
Sets ``res`` to the remainder of the product of ``poly1``
and ``poly2`` upon polynomial division by ``f``. ``finv``
is the inverse of the reverse of ``f``.
.. function:: int _gr_poly_powmod_fmpz_binexp(gr_ptr res, gr_srcptr poly, const fmpz_t e, gr_srcptr f, slong lenf, gr_ctx_t ctx)
int gr_poly_powmod_fmpz_binexp(gr_poly_t res, const gr_poly_t poly, const fmpz_t e, const gr_poly_t f, gr_ctx_t ctx)
int _gr_poly_powmod_fmpz_binexp_preinv(gr_ptr res, gr_srcptr poly, const fmpz_t e, gr_srcptr f, slong lenf, gr_srcptr finv, slong lenfinv, gr_ctx_t ctx)
int gr_poly_powmod_fmpz_binexp_preinv(gr_poly_t res, const gr_poly_t poly, const fmpz_t e, const gr_poly_t f, const gr_poly_t finv, gr_ctx_t ctx)
int _gr_poly_powmod_x_fmpz_preinv(gr_ptr res, const fmpz_t e, gr_srcptr f, slong lenf, gr_srcptr finv, slong lenfinv, gr_ctx_t ctx)
int gr_poly_powmod_x_fmpz_preinv(gr_poly_t res, const fmpz_t e, const gr_poly_t f, const gr_poly_t finv, gr_ctx_t ctx)
int _gr_poly_powmod_ui_binexp(gr_ptr res, gr_srcptr poly, ulong e, gr_srcptr f, slong lenf, gr_ctx_t ctx)
int gr_poly_powmod_ui_binexp(gr_poly_t res, const gr_poly_t poly, ulong e, const gr_poly_t f, gr_ctx_t ctx)
int _gr_poly_powmod_ui_binexp_preinv(gr_ptr res, gr_srcptr poly, ulong e, gr_srcptr f, slong lenf, gr_srcptr finv, slong lenfinv, gr_ctx_t ctx)
int gr_poly_powmod_ui_binexp_preinv(gr_poly_t res, const gr_poly_t poly, ulong e, const gr_poly_t f, const gr_poly_t finv, gr_ctx_t ctx)
int _gr_poly_powmod_fmpz_sliding_preinv(gr_ptr res, gr_srcptr poly, const fmpz_t e, ulong k, gr_srcptr f, slong lenf, gr_srcptr finv, slong lenfinv, gr_ctx_t ctx)
int gr_poly_powmod_fmpz_sliding_preinv(gr_poly_t res, const gr_poly_t poly, const fmpz_t e, ulong k, const gr_poly_t f, const gr_poly_t finv, gr_ctx_t ctx)
Sets ``res`` to ``poly`` raised to the power ``e``
modulo ``f``.
.. function:: int _gr_poly_compose_mod_horner(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, gr_srcptr poly3, slong len3, gr_ctx_t ctx)
int gr_poly_compose_mod_horner(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, const gr_poly_t poly3, gr_ctx_t ctx)
int _gr_poly_compose_mod_brent_kung(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, gr_srcptr poly3, slong len3, gr_ctx_t ctx)
int gr_poly_compose_mod_brent_kung(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, const gr_poly_t poly3, gr_ctx_t ctx)
int _gr_poly_compose_mod(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, gr_srcptr poly3, slong len3, gr_ctx_t ctx)
int gr_poly_compose_mod(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, const gr_poly_t poly3, gr_ctx_t ctx)
Sets ``res`` to the composition `f(g)` modulo `h` where *f*, *g*
and *h* are given by *poly1*, *poly2* and *poly3*.
The underscore methods require that the lengths are nonzero
and that the length of `g` is one less than the length of `h` (possibly
with zero padding). We also require that the length of `f` is less than
the length of `h`. The underscore methods do not support aliasing.
.. function:: int _gr_poly_compose_mod_horner_preinv(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, gr_srcptr poly3, slong len3, gr_srcptr poly3inv, slong inv3len, gr_ctx_t ctx)
int gr_poly_compose_mod_horner_preinv(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, const gr_poly_t poly3, const gr_poly_t poly3inv, gr_ctx_t ctx)
int _gr_poly_compose_mod_brent_kung_preinv(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, gr_srcptr poly3, slong len3, gr_srcptr poly3inv, slong inv3len, gr_ctx_t ctx)
int gr_poly_compose_mod_brent_kung_preinv(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, const gr_poly_t poly3, const gr_poly_t poly3inv, gr_ctx_t ctx)
int _gr_poly_compose_mod_preinv(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, gr_srcptr poly3, slong len3, gr_srcptr poly3inv, slong inv3len, gr_ctx_t ctx)
int gr_poly_compose_mod_preinv(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, const gr_poly_t poly3, const gr_poly_t poly3inv, gr_ctx_t ctx)
Versions accepting an additional precomputed argument ``poly3inv``
representing the inverse of the reverse of ``poly3``.
.. function:: int _gr_poly_reduce_matrix_mod_poly(gr_mat_t A, const gr_mat_t B, const gr_poly_t f, gr_ctx_t ctx)
Sets the ith row of ``A`` to the reduction of the ith row of `B` modulo
`f` for `i=1,\ldots,\sqrt{\deg(f)}`. We require `B` to be at least
a `\sqrt{\deg(f)}\times \deg(f)` matrix and `f` to be nonzero.
.. function:: int _gr_poly_precompute_matrix(gr_mat_t A, gr_srcptr f, gr_srcptr g, slong leng, gr_srcptr ginv, slong lenginv, gr_ctx_t ctx)
Sets the ith row of ``A`` to `f^i` modulo `g` for
`i=1,\ldots,\sqrt{\deg(g)}`. We require `A` to be a
`\sqrt{\deg(g)}\times \deg(g)` matrix. We require ``ginv`` to
be the inverse of the reverse of ``g`` and `g` to be nonzero.
.. function:: int gr_poly_precompute_matrix(gr_mat_t A, const gr_poly_t f, const gr_poly_t g, const gr_poly_t ginv, gr_ctx_t ctx)
Sets the ith row of ``A`` to `f^i` modulo `g` for
`i=1,\ldots,\sqrt{\deg(g)}`. We require `A` to be a
`\sqrt{\deg(g)}\times \deg(g)` matrix. We require ``ginv`` to
be the inverse of the reverse of ``g``.
.. function:: int _gr_poly_compose_mod_brent_kung_precomp_preinv(gr_ptr res, gr_srcptr f, slong lenf, const gr_mat_t A, gr_srcptr h, slong lenh, gr_srcptr hinv, slong lenhinv, gr_ctx_t ctx)
Sets ``res`` to the composition `f(g)` modulo `h`. We require
that `h` is nonzero. We require that the ith row of `A` contains
`g^i` for `i=1,\ldots,\sqrt{\deg(h)}`, i.e. `A` is a
`\sqrt{\deg(h)}\times \deg(h)` matrix. We also require that the
length of `f` is less than the length of `h`. Furthermore, we
require ``hinv`` to be the inverse of the reverse of ``h``.
The output is not allowed to be aliased with any of the inputs.
The algorithm used is the Brent-Kung matrix algorithm.
.. function:: int gr_poly_compose_mod_brent_kung_precomp_preinv(gr_poly_t res, const gr_poly_t f, const gr_mat_t A, const gr_poly_t h, const gr_poly_t hinv, gr_ctx_t ctx)
Sets ``res`` to the composition `f(g)` modulo `h`. We require
that the ith row of `A` contains `g^i` for
`i=1,\ldots,\sqrt{\deg(h)}`, i.e. `A` is a `\sqrt{\deg(h)}\times
\deg(h)` matrix. We require that `h` is nonzero and that `f` has
smaller degree than `h`. Furthermore, we require ``hinv`` to be
the inverse of the reverse of ``h``. This version of Brent-Kung
modular composition is particularly useful if one has to perform
several modular composition of the form `f(g)` modulo `h` for
fixed `g` and `h`.
Test functions
-------------------------------------------------------------------------------
The following functions run *iters* test iterations, generating
polynomials up to length *maxn*. If *ctx* is set to ``NULL``, a random
ring is generated on each test iteration, otherwise the given ring is used.
.. function:: void _gr_poly_test_mullow(gr_method_poly_binary_trunc_op mullow_impl, gr_method_poly_binary_trunc_op mullow_ref, flint_rand_t state, slong iters, slong maxn, gr_ctx_t ctx)
Tests the given function ``mullow_impl`` for correctness as an implementation
of :func:`_gr_poly_mullow`.
A reference implementation to compare against can be provided as
``mullow_ref``; if ``NULL``, classical multiplication is used.
.. function:: void _gr_poly_test_divrem(gr_method_poly_binary_binary_op divrem_impl, flint_rand_t state, slong iters, slong maxn, gr_ctx_t ctx)
Tests the given function ``divrem_impl`` for correctness as an implementation
of :func:`_gr_poly_divrem`.
.. function:: void _gr_poly_test_div(gr_method_poly_binary_op div_impl, flint_rand_t state, slong iters, slong maxn, gr_ctx_t ctx)
Tests the given function ``div_impl`` for correctness as an implementation
of :func:`_gr_poly_div`.
.. function:: void _gr_poly_test_inv_series(gr_method_poly_unary_trunc_op inv_series_impl, flint_rand_t state, slong iters, slong maxn, gr_ctx_t ctx)
Tests the given function ``inv_series_impl`` for correctness as an implementation
of :func:`_gr_poly_inv_series`.
.. function:: void _gr_poly_test_div_series(gr_method_poly_binary_trunc_op div_series_impl, flint_rand_t state, slong iters, slong maxn, gr_ctx_t ctx)
Tests the given function ``div_series_impl`` for correctness as an implementation
of :func:`_gr_poly_div_series`.
.. function:: void _gr_poly_test_gcd(gr_method_poly_gcd_op gcd_impl, flint_rand_t state, slong iters, slong maxn, gr_ctx_t ctx)
Tests the given function ``gcd_impl`` for correctness as an implementation
of :func:`_gr_poly_gcd`.
.. function:: void _gr_poly_test_xgcd(gr_method_poly_xgcd_op xgcd_impl, flint_rand_t state, slong iters, slong maxn, gr_ctx_t ctx)
Tests the given function ``xgcd_impl`` for correctness as an implementation
of :func:`_gr_poly_xgcd`.
.. raw:: latex
\newpage
|