1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
|
.. _algorithms_hypergeometric:
Algorithms for hypergeometric functions
===============================================================================
The algorithms used to compute hypergeometric functions are
described in [Joh2016]_. Here, we state the most important error bounds.
.. _algorithms_hypergeometric_convergent:
Convergent series
-------------------------------------------------------------------------------
Let
.. math::
T(k) = \frac{\prod_{i=0}^{p-1} (a_i)_k}{\prod_{i=0}^{q-1} (b_i)_k} z^k.
We compute a factor *C* such that
.. math::
\left|\sum_{k=n}^{\infty} T(k)\right| \le C |T(n)|.
We check that `\operatorname{Re}(b+n) > 0` for all lower
parameters *b*. If this does not hold, *C* is set to infinity.
Otherwise, we cancel out pairs of parameters
`a` and `b` against each other. We have
.. math::
\left|\frac{a+k}{b+k}\right| = \left|1 + \frac{a-b}{b+k}\right| \le 1 + \frac{|a-b|}{|b+n|}
and
.. math::
\left|\frac{1}{b+k}\right| \le \frac{1}{|b+n|}
for all `k \ge n`. This gives us a constant *D* such that
`T(k+1) \le D T(k)` for all `k \ge n`.
If `D \ge 1`, we set *C* to infinity. Otherwise, we take
`C = \sum_{k=0}^{\infty} D^k = (1-D)^{-1}`.
Convergent series of power series
-------------------------------------------------------------------------------
The same principle is used to get tail bounds for
with `a_i, b_i, z \in \mathbb{C}[[x]]`,
or more precisely, bounds for each coefficient in
`\sum_{k=N}^{\infty} T(k) \in \mathbb{C}[[x]] / \langle x^n \rangle`
given `a_i, b_i, z \in \mathbb{C}[[x]] / \langle x^n \rangle`.
First, we fix some notation, assuming that `A` and `B` are power series:
* `A_{[k]}` denotes the coefficient of `x^k` in `A`, and `A_{[m:n]}` denotes the power series `\sum_{k=m}^{n-1} A_{[k]} x^k`.
* `|A|` denotes `\sum_{k=0}^{\infty} |A_{[k]}| x^k` (this can be viewed as an element of `\mathbb{R}_{\ge 0}[[x]]`).
* `A \le B` signifies that `|A|_{[k]} \le |B|_{[k]}` holds for all `k`.
* We define `\mathcal{R}(B) = |B_{[0]}| - |B_{[1:\infty]}|`.
Using the formulas
.. math::
(A B)_{[k]} = \sum_{j=0}^k A_{[j]} B_{[k-j]}, \quad (1 / B)_{[k]} = \frac{1}{B_{[0]}} \sum_{j=1}^k -B_{[j]} (1/B)_{[k-j]},
it is easy prove the following bounds for the coefficients
of sums, products and quotients of formal power series:
.. math::
|A + B| \le |A| + |B|,
\quad |A B| \le |A| |B|,
\quad |A / B| \le |A| / \mathcal{R}(B).
If `p \le q` and `\operatorname{Re}({b_i}_{[0]}+N) > 0` for all `b_i`, then we may take
.. math::
D = |z| \, \prod_{i=1}^p \left(1 + \frac{|a_i-b_i|}{\mathcal{R}(b_i+N)}\right) \prod_{i=p+1}^{q} \frac{1}{\mathcal{R}(b_i + N)}.
If `D_{[0]} < 1`,then `(1 - D)^{-1} |T(n)|` gives the error bound.
Note when adding and multiplying power series with (complex) interval coefficients,
we can use point-valued upper bounds for the absolute values instead
of performing interval arithmetic throughout.
For `\mathcal{R}(B)`, we must then pick a lower bound for `|B_{[0]}|` and upper bounds for
the coefficients of `|B_{[1:\infty]}|`.
.. _algorithms_hypergeometric_asymptotic_confluent:
Asymptotic series for the confluent hypergeometric function
-------------------------------------------------------------------------------
Let `U(a,b,z)` denote the confluent hypergeometric function of the second
kind with the principal branch cut, and
let `U^{*} = z^a U(a,b,z)`.
For all `z \ne 0` and `b \notin \mathbb{Z}` (but valid for all `b` as a limit),
we have (DLMF 13.2.42)
.. math::
U(a,b,z)
= \frac{\Gamma(1-b)}{\Gamma(a-b+1)} M(a,b,z)
+ \frac{\Gamma(b-1)}{\Gamma(a)} z^{1-b} M(a-b+1,2-b,z).
Moreover, for all `z \ne 0` we have
.. math::
\frac{{}_1F_1(a,b,z)}{\Gamma(b)}
= \frac{(-z)^{-a}}{\Gamma(b-a)} U^{*}(a,b,z)
+ \frac{z^{a-b} e^z}{\Gamma(a)} U^{*}(b-a,b,-z)
which is equivalent to DLMF 13.2.41 (but simpler in form).
We have the asymptotic expansion
.. math::
U^{*}(a,b,z) \sim {}_2F_0(a, a-b+1, -1/z)
where `{}_2F_0(a,b,z)` denotes a formal hypergeometric series, i.e.
.. math::
U^{*}(a,b,z) = \sum_{k=0}^{n-1} \frac{(a)_k (a-b+1)_k}{k! (-z)^k} + \varepsilon_n(z).
The error term `\varepsilon_n(z)` is bounded according to DLMF 13.7.
A case distinction is made depending on whether `z` lies in one
of three regions which we index by `R`.
Our formula for the error bound increases with the value of `R`, so we
can always choose the larger out of two indices if `z` lies in
the union of two regions.
Let `r = |b-2a|`.
If `\operatorname{Re}(z) \ge r`, set `R = 1`.
Otherwise, if `\operatorname{Im}(z) \ge r` or `\operatorname{Re}(z) \ge 0 \land |z| \ge r`, set `R = 2`.
Otherwise, if `|z| \ge 2r`, set `R = 3`.
Otherwise, the bound is infinite.
If the bound is finite, we have
.. math::
|\varepsilon_n(z)| \le 2 \alpha C_n \left|\frac{(a)_n (a-b+1)_n}{n! z^n} \right| \exp(2 \alpha \rho C_1 / |z|)
in terms of the following auxiliary quantities
.. math::
\sigma = |(b-2a)/z|
.. math::
C_n = \begin{cases}
1 & \text{if } R = 1 \\
\chi(n) & \text{if } R = 2 \\
(\chi(n) + \sigma \nu^2 n) \nu^n & \text{if } R = 3
\end{cases}
.. math::
\nu = \left(\tfrac{1}{2} + \tfrac{1}{2}\sqrt{1-4\sigma^2}\right)^{-1/2} \le 1 + 2 \sigma^2
.. math::
\chi(n) = \sqrt{\pi} \Gamma(\tfrac{1}{2}n+1) / \Gamma(\tfrac{1}{2} n + \tfrac{1}{2})
.. math::
\sigma' = \begin{cases}
\sigma & \text{if } R \ne 3 \\
\nu \sigma & \text{if } R = 3
\end{cases}
.. math::
\alpha = (1 - \sigma')^{-1}
.. math::
\rho = \tfrac{1}{2} |2a^2-2ab+b| + \sigma' (1+ \tfrac{1}{4} \sigma') (1-\sigma')^{-2}
.. _algorithms_hypergeometric_asymptotic_airy:
Asymptotic series for Airy functions
-------------------------------------------------------------------------------
Error bounds are based on Olver (DLMF section 9.7).
For `\arg(z) < \pi` and `\zeta = (2/3) z^{3/2}`, we have
.. math::
\operatorname{Ai}(z) = \frac{e^{-\zeta}}{2 \sqrt{\pi} z^{1/4}} \left[S_n(\zeta) + R_n(z)\right], \quad
\operatorname{Ai}'(z) = -\frac{z^{1/4} e^{-\zeta}}{2 \sqrt{\pi}} \left[(S'_n(\zeta) + R'_n(z)\right]
.. math::
S_n(\zeta) = \sum_{k=0}^{n-1} (-1)^k \frac{u(k)}{\zeta^k}, \quad
S'_n(\zeta) = \sum_{k=0}^{n-1} (-1)^k \frac{v(k)}{\zeta^k}
.. math::
u(k) = \frac{(1/6)_k (5/6)_k}{2^k k!}, \quad
v(k) = \frac{6k+1}{1-6k} u(k).
Assuming that *n* is positive, the error terms are bounded by
.. math::
|R_n(z)| \le C |u(n)| |\zeta|^{-n}, \quad |R'_n(z)| \le C |v(n)| |\zeta|^{-n}
where
.. math::
C = \begin{cases}
2 \exp(7 / (36 |\zeta|)) & |\arg(z)| \le \pi/3 \\
2 \chi(n) \exp(7 \pi / (72 |\zeta|)) & \pi/3 \le |\arg(z)| \le 2\pi/3 \\
4 \chi(n) \exp(7 \pi / (36 |\operatorname{re}(\zeta)|)) |\cos(\arg(\zeta))|^{-n} & 2\pi/3 \le |\arg(z)| < \pi.
\end{cases}
For computing Bi when *z* is roughly in the positive half-plane, we use the
connection formulas
.. math::
\operatorname{Bi}(z) = -i (2 w^{+1} \operatorname{Ai}(z w^{-2}) - \operatorname{Ai}(z))
\operatorname{Bi}(z) = +i (2 w^{-1} \operatorname{Ai}(z w^{+2}) - \operatorname{Ai}(z))
where `w = \exp(\pi i/3)`. Combining roots of unity gives
.. math::
\operatorname{Bi}(z) = \frac{1}{2 \sqrt{\pi} z^{1/4}} [2X + iY]
.. math::
\operatorname{Bi}(z) = \frac{1}{2 \sqrt{\pi} z^{1/4}} [2X - iY]
.. math::
X = \exp(+\zeta) [S_n(-\zeta) + R_n(z w^{\mp 2})], \quad Y = \exp(-\zeta) [S_n(\zeta) + R_n(z)]
where the upper formula is valid
for `-\pi/3 < \arg(z) < \pi` and the lower formula is valid for `-\pi < \arg(z) < \pi/3`.
We proceed analogously for the derivative of Bi.
In the negative half-plane, we use the connection formulas
.. math::
\operatorname{Ai}(z) = e^{+\pi i/3} \operatorname{Ai}(z_1) + e^{-\pi i/3} \operatorname{Ai}(z_2)
.. math::
\operatorname{Bi}(z) = e^{-\pi i/6} \operatorname{Ai}(z_1) + e^{+\pi i/6} \operatorname{Ai}(z_2)
where `z_1 = -z e^{+\pi i/3}`, `z_2 = -z e^{-\pi i/3}`.
Provided that `|\arg(-z)| < 2 \pi / 3`, we have
`|\arg(z_1)|, |\arg(z_2)| < \pi`, and thus the asymptotic expansion
for Ai can be used. As before, we collect roots of unity to obtain
.. math::
\operatorname{Ai}(z) = A_1 [S_n(i \zeta) + R_n(z_1)]
+ A_2 [S_n(-i \zeta) + R_n(z_2)]
.. math::
\operatorname{Bi}(z) = A_3 [S_n(i \zeta) + R_n(z_1)]
+ A_4 [S_n(-i \zeta) + R_n(z_2)]
where `\zeta = (2/3) (-z)^{3/2}` and
.. math::
A_1 = \frac{\exp(-i (\zeta - \pi/4))}{2 \sqrt{\pi} (-z)^{1/4}}, \quad
A_2 = \frac{\exp(+i (\zeta - \pi/4))}{2 \sqrt{\pi} (-z)^{1/4}}, \quad
A_3 = -i A_1, \quad
A_4 = +i A_2.
The differentiated formulas are analogous.
Corner case of the Gauss hypergeometric function
-------------------------------------------------------------------------------
In the corner case where `z` is near `\exp(\pm \pi i / 3)`, none of the
linear fractional transformations is effective.
In this case, we use Taylor series to analytically continue the solution
of the hypergeometric differential equation from the origin.
The function `f(z) = {}_2F_1(a,b,c,z_0+z)` satisfies
.. math::
f''(z) = -\frac{((z_0+z)(a+b+1)-c)}{(z_0+z)(z_0-1+z)} f'(z) - \frac{a b}{(z_0+z)(z_0-1+z)} f(z).
Knowing `f(0), f'(0)`, we can compute the consecutive derivatives
recursively, and evaluating the truncated Taylor series allows us to
compute `f(z), f'(z)` to high accuracy
for sufficiently small `z`.
Some experimentation showed that two continuation steps
.. math::
0 \quad \to \quad 0.375 \pm 0.625i \quad \to \quad 0.5 \pm 0.8125i \quad \to \quad z
gives good performance.
Error bounds for the truncated Taylor series are obtained
using the Cauchy-Kovalevskaya majorant method,
following the outline in [Hoe2001]_.
The differential equation is majorized by
.. math::
g''(z) = \frac{N+1}{2} \left( \frac{\nu}{1-\nu z} \right) g'(z)
+ \frac{(N+1)N}{2} \left( \frac{\nu}{1-\nu z} \right)^2 g(z)
provided that `N` and `\nu \ge \max(1/|z_0|, 1/|z_0-1|)`
are chosen sufficiently large. It follows that we can compute explicit
numbers `A, N, \nu` such that the simple solution `g(z) = A (1-\nu z)^{-N}`
of the differential equation provides the bound
.. math::
|f_{[k]}| \le g_{[k]} = A {{N+k} \choose k} \nu^k.
|