1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
|
.. _mag:
**mag.h** -- fixed-precision unsigned floating-point numbers for bounds
===============================================================================
The :type:`mag_t` type holds an unsigned floating-point number with a
fixed-precision mantissa (30 bits) and an arbitrary-precision
exponent (represented as an :type:`fmpz_t`), suited for
representing magnitude bounds.
The special values zero and positive infinity are supported, but not NaN.
Operations that involve rounding will always produce a valid upper bound,
or a lower bound if the function name has the suffix *lower*.
For performance reasons, no attempt is made to compute the best possible bounds:
in general, a bound may be several ulps larger/smaller than the optimal bound.
Some functions such as :func:`mag_set` and :func:`mag_mul_2exp_si` are always
exact and therefore do not require separate *lower* versions.
A common mistake is to forget computing a lower bound for the argument
of a decreasing function that is meant to be bounded from above,
or vice versa. For example, to compute an upper bound for `(x+1)/(y+1)`,
the parameter *x* should initially be an upper bound while *y* should be
a lower bound, and one should do::
mag_add_ui(tmp1, x, 1);
mag_add_ui_lower(tmp2, y, 1);
mag_div(res, tmp1, tmp2);
For a lower bound of the same expression, *x* should be a lower bound while
*y* should be an upper bound, and one should do::
mag_add_ui_lower(tmp1, x, 1);
mag_add_ui(tmp2, y, 1);
mag_div_lower(res, tmp1, tmp2);
Applications requiring floating-point arithmetic with more flexibility
(such as correct rounding, or higher precision) should use the :type:`arf_t`
type instead. For calculations where a complex alternation between upper and
lower bounds is necessary, it may be cleaner to use :type:`arb_t`
arithmetic and convert to a :type:`mag_t` bound only in the end.
Types, macros and constants
-------------------------------------------------------------------------------
.. type:: mag_struct
A :type:`mag_struct` holds a mantissa and an exponent.
Special values are encoded by the mantissa being set to zero.
.. type:: mag_t
A :type:`mag_t` is defined as an array of length one of type
:type:`mag_struct`, permitting a :type:`mag_t` to be passed by reference.
Memory management
-------------------------------------------------------------------------------
.. function:: void mag_init(mag_t x)
Initializes the variable *x* for use. Its value is set to zero.
.. function:: void mag_clear(mag_t x)
Clears the variable *x*, freeing or recycling its allocated memory.
.. function:: void mag_swap(mag_t x, mag_t y)
Swaps *x* and *y* efficiently.
.. function:: mag_ptr _mag_vec_init(slong n)
Allocates a vector of length *n*. All entries are set to zero.
.. function:: void _mag_vec_clear(mag_ptr v, slong n)
Clears a vector of length *n*.
.. function:: slong mag_allocated_bytes(const mag_t x)
Returns the total number of bytes heap-allocated internally by this object.
The count excludes the size of the structure itself. Add
``sizeof(mag_struct)`` to get the size of the object as a whole.
Special values
-------------------------------------------------------------------------------
.. function:: void mag_zero(mag_t res)
Sets *res* to zero.
.. function:: void mag_one(mag_t res)
Sets *res* to one.
.. function:: void mag_inf(mag_t res)
Sets *res* to positive infinity.
.. function:: int mag_is_special(const mag_t x)
Returns nonzero iff *x* is zero or positive infinity.
.. function:: int mag_is_zero(const mag_t x)
Returns nonzero iff *x* is zero.
.. function:: int mag_is_inf(const mag_t x)
Returns nonzero iff *x* is positive infinity.
.. function:: int mag_is_finite(const mag_t x)
Returns nonzero iff *x* is not positive infinity (since there is no
NaN value, this function is exactly the logical negation of :func:`mag_is_inf`).
Assignment and conversions
-------------------------------------------------------------------------------
.. function:: void mag_init_set(mag_t res, const mag_t x)
Initializes *res* and sets it to the value of *x*. This operation is always exact.
.. function:: void mag_set(mag_t res, const mag_t x)
Sets *res* to the value of *x*. This operation is always exact.
.. function:: void mag_set_d(mag_t res, double x)
.. function:: void mag_set_ui(mag_t res, ulong x)
.. function:: void mag_set_fmpz(mag_t res, const fmpz_t x)
Sets *res* to an upper bound for `|x|`. The operation may be inexact
even if *x* is exactly representable.
.. function:: void mag_set_d_lower(mag_t res, double x)
.. function:: void mag_set_ui_lower(mag_t res, ulong x)
.. function:: void mag_set_fmpz_lower(mag_t res, const fmpz_t x)
Sets *res* to a lower bound for `|x|`.
The operation may be inexact even if *x* is exactly representable.
.. function:: void mag_set_d_2exp_fmpz(mag_t res, double x, const fmpz_t y)
.. function:: void mag_set_fmpz_2exp_fmpz(mag_t res, const fmpz_t x, const fmpz_t y)
.. function:: void mag_set_ui_2exp_si(mag_t res, ulong x, slong y)
Sets *res* to an upper bound for `|x| \cdot 2^y`.
.. function:: void mag_set_d_2exp_fmpz_lower(mag_t res, double x, const fmpz_t y)
.. function:: void mag_set_fmpz_2exp_fmpz_lower(mag_t res, const fmpz_t x, const fmpz_t y)
Sets *res* to a lower bound for `|x| \cdot 2^y`.
.. function:: double mag_get_d(const mag_t x)
Returns a *double* giving an upper bound for *x*.
.. function:: double mag_get_d_log2_approx(const mag_t x)
Returns a *double* approximating `\log_2(x)`, suitable for estimating
magnitudes (warning: not a rigorous bound).
The value is clamped between *COEFF_MIN* and *COEFF_MAX*.
.. function:: void mag_get_fmpq(fmpq_t res, const mag_t x)
.. function:: void mag_get_fmpz(fmpz_t res, const mag_t x)
.. function:: void mag_get_fmpz_lower(fmpz_t res, const mag_t x)
Sets *res*, respectively, to the exact rational number represented by *x*,
the integer exactly representing the ceiling function of *x*, or the
integer exactly representing the floor function of *x*.
These functions are unsafe: the user must check in advance that *x* is of
reasonable magnitude. If *x* is infinite or has a bignum exponent, an
abort will be raised. If the exponent otherwise is too large or too small,
the available memory could be exhausted resulting in undefined behavior.
Comparisons
-------------------------------------------------------------------------------
.. function:: int mag_equal(const mag_t x, const mag_t y)
Returns nonzero iff *x* and *y* have the same value.
.. function:: int mag_cmp(const mag_t x, const mag_t y)
Returns negative, zero, or positive, depending on whether *x*
is smaller, equal, or larger than *y*.
.. function:: int mag_cmp_2exp_si(const mag_t x, slong y)
Returns negative, zero, or positive, depending on whether *x*
is smaller, equal, or larger than `2^y`.
.. function:: void mag_min(mag_t res, const mag_t x, const mag_t y)
.. function:: void mag_max(mag_t res, const mag_t x, const mag_t y)
Sets *res* respectively to the smaller or the larger of *x* and *y*.
Input and output
-------------------------------------------------------------------------------
.. function:: void mag_print(const mag_t x)
Prints *x* to standard output.
.. function:: void mag_fprint(FILE * file, const mag_t x)
Prints *x* to the stream *file*.
.. function:: char * mag_dump_str(const mag_t x)
Allocates a string and writes a binary representation of *x* to it that can
be read by :func:`mag_load_str`. The returned string needs to be
deallocated with *flint_free*.
.. function:: int mag_load_str(mag_t x, const char * str)
Parses *str* into *x*. Returns a nonzero value if *str* is not formatted
correctly.
.. function:: int mag_dump_file(FILE * stream, const mag_t x)
Writes a binary representation of *x* to *stream* that can be read by
:func:`mag_load_file`. Returns a nonzero value if the data could not be
written.
.. function:: int mag_load_file(mag_t x, FILE * stream)
Reads *x* from *stream*. Returns a nonzero value if the data is not
formatted correctly or the read failed. Note that the data is assumed to be
delimited by a whitespace or end-of-file, i.e., when writing multiple
values with :func:`mag_dump_file` make sure to insert a whitespace to
separate consecutive values.
Random generation
-------------------------------------------------------------------------------
.. function:: void mag_randtest(mag_t res, flint_rand_t state, slong expbits)
Sets *res* to a random finite value, with an exponent up to *expbits* bits large.
.. function:: void mag_randtest_special(mag_t res, flint_rand_t state, slong expbits)
Like :func:`mag_randtest`, but also sometimes sets *res* to infinity.
Arithmetic
-------------------------------------------------------------------------------
.. function:: void mag_add(mag_t res, const mag_t x, const mag_t y)
.. function:: void mag_add_ui(mag_t res, const mag_t x, ulong y)
Sets *res* to an upper bound for `x + y`.
.. function:: void mag_add_lower(mag_t res, const mag_t x, const mag_t y)
.. function:: void mag_add_ui_lower(mag_t res, const mag_t x, ulong y)
Sets *res* to a lower bound for `x + y`.
.. function:: void mag_add_2exp_fmpz(mag_t res, const mag_t x, const fmpz_t e)
Sets *res* to an upper bound for `x + 2^e`.
.. function:: void mag_add_ui_2exp_si(mag_t res, const mag_t x, ulong y, slong e)
Sets *res* to an upper bound for `x + y 2^e`.
.. function:: void mag_sub(mag_t res, const mag_t x, const mag_t y)
Sets *res* to an upper bound for `\max(x-y, 0)`.
.. function:: void mag_sub_lower(mag_t res, const mag_t x, const mag_t y)
Sets *res* to a lower bound for `\max(x-y, 0)`.
.. function:: void mag_mul_2exp_si(mag_t res, const mag_t x, slong y)
.. function:: void mag_mul_2exp_fmpz(mag_t res, const mag_t x, const fmpz_t y)
Sets *res* to `x \cdot 2^y`. This operation is exact.
.. function:: void mag_mul(mag_t res, const mag_t x, const mag_t y)
.. function:: void mag_mul_ui(mag_t res, const mag_t x, ulong y)
.. function:: void mag_mul_fmpz(mag_t res, const mag_t x, const fmpz_t y)
Sets *res* to an upper bound for `xy`.
.. function:: void mag_mul_lower(mag_t res, const mag_t x, const mag_t y)
.. function:: void mag_mul_ui_lower(mag_t res, const mag_t x, ulong y)
.. function:: void mag_mul_fmpz_lower(mag_t res, const mag_t x, const fmpz_t y)
Sets *res* to a lower bound for `xy`.
.. function:: void mag_addmul(mag_t z, const mag_t x, const mag_t y)
Sets *z* to an upper bound for `z + xy`.
.. function:: void mag_div(mag_t res, const mag_t x, const mag_t y)
.. function:: void mag_div_ui(mag_t res, const mag_t x, ulong y)
.. function:: void mag_div_fmpz(mag_t res, const mag_t x, const fmpz_t y)
Sets *res* to an upper bound for `x / y`.
.. function:: void mag_div_lower(mag_t res, const mag_t x, const mag_t y)
Sets *res* to a lower bound for `x / y`.
.. function:: void mag_inv(mag_t res, const mag_t x)
Sets *res* to an upper bound for `1 / x`.
.. function:: void mag_inv_lower(mag_t res, const mag_t x)
Sets *res* to a lower bound for `1 / x`.
Fast, unsafe arithmetic
-------------------------------------------------------------------------------
The following methods assume that all inputs are finite and that all exponents
(in all inputs as well as the final result) fit as *fmpz* inline values.
They also assume that the output variables do not have promoted exponents,
as they will be overwritten directly (thus leaking memory).
.. function:: void mag_fast_init_set(mag_t x, const mag_t y)
Initialises *x* and sets it to the value of *y*.
.. function:: void mag_fast_zero(mag_t res)
Sets *res* to zero.
.. function:: int mag_fast_is_zero(const mag_t x)
Returns nonzero iff *x* to zero.
.. function:: void mag_fast_mul(mag_t res, const mag_t x, const mag_t y)
Sets *res* to an upper bound for `xy`.
.. function:: void mag_fast_addmul(mag_t z, const mag_t x, const mag_t y)
Sets *z* to an upper bound for `z + xy`.
.. function:: void mag_fast_add_2exp_si(mag_t res, const mag_t x, slong e)
Sets *res* to an upper bound for `x + 2^e`.
.. function:: void mag_fast_mul_2exp_si(mag_t res, const mag_t x, slong e)
Sets *res* to an upper bound for `x 2^e`.
Powers and logarithms
-------------------------------------------------------------------------------
.. function:: void mag_pow_ui(mag_t res, const mag_t x, ulong e)
.. function:: void mag_pow_fmpz(mag_t res, const mag_t x, const fmpz_t e)
Sets *res* to an upper bound for `x^e`.
.. function:: void mag_pow_ui_lower(mag_t res, const mag_t x, ulong e)
.. function:: void mag_pow_fmpz_lower(mag_t res, const mag_t x, const fmpz_t e)
Sets *res* to a lower bound for `x^e`.
.. function:: void mag_sqrt(mag_t res, const mag_t x)
Sets *res* to an upper bound for `\sqrt{x}`.
.. function:: void mag_sqrt_lower(mag_t res, const mag_t x)
Sets *res* to a lower bound for `\sqrt{x}`.
.. function:: void mag_rsqrt(mag_t res, const mag_t x)
Sets *res* to an upper bound for `1/\sqrt{x}`.
.. function:: void mag_rsqrt_lower(mag_t res, const mag_t x)
Sets *res* to an lower bound for `1/\sqrt{x}`.
.. function:: void mag_hypot(mag_t res, const mag_t x, const mag_t y)
Sets *res* to an upper bound for `\sqrt{x^2 + y^2}`.
.. function:: void mag_root(mag_t res, const mag_t x, ulong n)
Sets *res* to an upper bound for `x^{1/n}`.
.. function:: void mag_log(mag_t res, const mag_t x)
Sets *res* to an upper bound for `\log(\max(1,x))`.
.. function:: void mag_log_lower(mag_t res, const mag_t x)
Sets *res* to a lower bound for `\log(\max(1,x))`.
.. function:: void mag_neg_log(mag_t res, const mag_t x)
Sets *res* to an upper bound for `-\log(\min(1,x))`, i.e. an upper
bound for `|\log(x)|` for `x \le 1`.
.. function:: void mag_neg_log_lower(mag_t res, const mag_t x)
Sets *res* to a lower bound for `-\log(\min(1,x))`, i.e. a lower
bound for `|\log(x)|` for `x \le 1`.
.. function:: void mag_log_ui(mag_t res, ulong n)
Sets *res* to an upper bound for `\log(n)`.
.. function:: void mag_log1p(mag_t res, const mag_t x)
Sets *res* to an upper bound for `\log(1+x)`. The bound is computed
accurately for small *x*.
.. function:: void mag_exp(mag_t res, const mag_t x)
Sets *res* to an upper bound for `\exp(x)`.
.. function:: void mag_exp_lower(mag_t res, const mag_t x)
Sets *res* to a lower bound for `\exp(x)`.
.. function:: void mag_expinv(mag_t res, const mag_t x)
Sets *res* to an upper bound for `\exp(-x)`.
.. function:: void mag_expinv_lower(mag_t res, const mag_t x)
Sets *res* to a lower bound for `\exp(-x)`.
.. function:: void mag_expm1(mag_t res, const mag_t x)
Sets *res* to an upper bound for `\exp(x) - 1`. The bound is computed
accurately for small *x*.
.. function:: void mag_exp_tail(mag_t res, const mag_t x, ulong N)
Sets *res* to an upper bound for `\sum_{k=N}^{\infty} x^k / k!`.
.. function:: void mag_binpow_uiui(mag_t res, ulong m, ulong n)
Sets *res* to an upper bound for `(1 + 1/m)^n`.
.. function:: void mag_geom_series(mag_t res, const mag_t x, ulong N)
Sets *res* to an upper bound for `\sum_{k=N}^{\infty} x^k`.
Special functions
-------------------------------------------------------------------------------
.. function:: void mag_const_pi(mag_t res)
.. function:: void mag_const_pi_lower(mag_t res)
Sets *res* to an upper (respectively lower) bound for `\pi`.
.. function:: void mag_atan(mag_t res, const mag_t x)
.. function:: void mag_atan_lower(mag_t res, const mag_t x)
Sets *res* to an upper (respectively lower) bound for `\operatorname{atan}(x)`.
.. function:: void mag_cosh(mag_t res, const mag_t x)
.. function:: void mag_cosh_lower(mag_t res, const mag_t x)
.. function:: void mag_sinh(mag_t res, const mag_t x)
.. function:: void mag_sinh_lower(mag_t res, const mag_t x)
Sets *res* to an upper or lower bound for `\cosh(x)` or `\sinh(x)`.
.. function:: void mag_fac_ui(mag_t res, ulong n)
Sets *res* to an upper bound for `n!`.
.. function:: void mag_rfac_ui(mag_t res, ulong n)
Sets *res* to an upper bound for `1/n!`.
.. function:: void mag_bin_uiui(mag_t res, ulong n, ulong k)
Sets *res* to an upper bound for the binomial coefficient `{n \choose k}`.
.. function:: void mag_bernoulli_div_fac_ui(mag_t res, ulong n)
Sets *res* to an upper bound for `|B_n| / n!` where `B_n` denotes
a Bernoulli number.
.. function:: void mag_polylog_tail(mag_t res, const mag_t z, slong s, ulong d, ulong N)
Sets *res* to an upper bound for
.. math::
\sum_{k=N}^{\infty} \frac{z^k \log^d(k)}{k^s}.
The bounding strategy is described in :ref:`algorithms_polylogarithms`.
Note: in applications where `s` in this formula may be
real or complex, the user can simply
substitute any convenient integer `s'` such that `s' \le \operatorname{Re}(s)`.
.. function:: void mag_hurwitz_zeta_uiui(mag_t res, ulong s, ulong a)
Sets *res* to an upper bound for `\zeta(s,a) = \sum_{k=0}^{\infty} (k+a)^{-s}`.
We use the formula
.. math::
\zeta(s,a) \le \frac{1}{a^s} + \frac{1}{(s-1) a^{s-1}}
which is obtained by estimating the sum by an integral.
If `s \le 1` or `a = 0`, the bound is infinite.
|