File: nf_elem.rst

package info (click to toggle)
flint 3.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 68,996 kB
  • sloc: ansic: 915,350; asm: 14,605; python: 5,340; sh: 4,512; lisp: 2,621; makefile: 787; cpp: 341
file content (370 lines) | stat: -rw-r--r-- 15,538 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
.. _nf_elem:

**nf_elem.h** -- number field elements
========================================================================================

Authors:

* William Hart

Initialisation
--------------------------------------------------------------------------------

.. type:: nf_elem_struct

.. type:: nf_elem_t

    Represents a number field element.

.. function:: void nf_elem_init(nf_elem_t a, const nf_t nf)

    Initialise a number field element to belong to the given number field
    ``nf``. The element is set to zero.

.. function:: void nf_elem_clear(nf_elem_t a, const nf_t nf)

    Clear resources allocated by the given number field element in the given
    number field.

.. function:: void nf_elem_randtest(nf_elem_t a, flint_rand_t state, flint_bitcnt_t bits, const nf_t nf)

    Generate a random number field element `a` in the number field ``nf``
    whose coefficients have up to the given number of bits.

.. function:: void nf_elem_canonicalise(nf_elem_t a, const nf_t nf)

    Canonicalise a number field element, i.e. reduce numerator and denominator
    to lowest terms. If the numerator is `0`, set the denominator to `1`.

.. function:: void _nf_elem_reduce(nf_elem_t a, const nf_t nf)

    Reduce a number field element modulo the defining polynomial. This is used
    with functions such as ``nf_elem_mul_red`` which allow reduction to be
    delayed. Does not canonicalise.

.. function:: void nf_elem_reduce(nf_elem_t a, const nf_t nf)

    Reduce a number field element modulo the defining polynomial. This is used
    with functions such as ``nf_elem_mul_red`` which allow reduction to be
    delayed.

.. function:: int _nf_elem_invertible_check(nf_elem_t a, const nf_t nf)

    Whilst the defining polynomial for a number field should by definition be
    irreducible, it is not enforced. Thus in test code, it is convenient to be
    able to check that a given number field element is invertible modulo the
    defining polynomial of the number field. This function does precisely this.

    If `a` is invertible modulo the defining polynomial of ``nf`` the value
    `1` is returned, otherwise `0` is returned.

    The function is only intended to be used in test code.

Conversion
--------------------------------------------------------------------------------

.. function:: void nf_elem_set_fmpz_mat_row(nf_elem_t b, const fmpz_mat_t M, const slong i, fmpz_t den, const nf_t nf)

    Set `b` to the element specified by row `i` of the matrix `M` and with the
    given denominator `d`. Column `0` of the matrix corresponds to the constant
    coefficient of the number field element.

.. function:: void nf_elem_get_fmpz_mat_row(fmpz_mat_t M, const slong i, fmpz_t den, const nf_elem_t b, const nf_t nf)

    Set the row `i` of the matrix `M` to the coefficients of the numerator of
    the element `b` and `d` to the denominator of `b`. Column `0` of the matrix
    corresponds to the constant coefficient of the number field element.

.. function:: void nf_elem_set_fmpq_poly(nf_elem_t a, const fmpq_poly_t pol, const nf_t nf)

    Set `a` to the element corresponding to the polynomial ``pol``.

.. function:: void nf_elem_get_fmpq_poly(fmpq_poly_t pol, const nf_elem_t a, const nf_t nf)

    Set ``pol`` to a polynomial corresponding to `a`, reduced modulo the
    defining polynomial of ``nf``.

.. function:: void nf_elem_get_nmod_poly_den(nmod_poly_t pol, const nf_elem_t a, const nf_t nf, int den)

    Set ``pol`` to the reduction of the polynomial corresponding to the
    numerator of `a`. If ``den == 1``, the result is multiplied by the
    inverse of the denominator of `a`. In this case it is assumed that the
    reduction of the denominator of `a` is invertible.

.. function:: void nf_elem_get_nmod_poly(nmod_poly_t pol, const nf_elem_t a, const nf_t nf)

    Set ``pol`` to the reduction of the polynomial corresponding to the
    numerator of `a`. The result is multiplied by the inverse of the
    denominator of `a`. It is assumed that the reduction of the denominator of
    `a` is invertible.

.. function:: void nf_elem_get_fmpz_mod_poly_den(fmpz_mod_poly_t pol, const nf_elem_t a, const nf_t nf, int den, const fmpz_mod_ctx_t ctx)

    Set ``pol`` to the reduction of the polynomial corresponding to the
    numerator of `a`. If ``den == 1``, the result is multiplied by the
    inverse of the denominator of `a`. In this case it is assumed that the
    reduction of the denominator of `a` is invertible.

.. function:: void nf_elem_get_fmpz_mod_poly(fmpz_mod_poly_t pol, const nf_elem_t a, const nf_t nf, const fmpz_mod_ctx_t ctx)

    Set ``pol`` to the reduction of the polynomial corresponding to the
    numerator of `a`. The result is multiplied by the inverse of the
    denominator of `a`. It is assumed that the reduction of the denominator of
    `a` is invertible.

Basic manipulation
--------------------------------------------------------------------------------

.. function:: void nf_elem_set_den(nf_elem_t b, fmpz_t d, const nf_t nf)

    Set the denominator of the ``nf_elem_t b`` to the given integer `d`.
    Assumes `d > 0`.

.. function:: void nf_elem_get_den(fmpz_t d, const nf_elem_t b, const nf_t nf)

    Set `d` to the denominator of the ``nf_elem_t b``.

.. function:: void _nf_elem_set_coeff_num_fmpz(nf_elem_t a, slong i, const fmpz_t d, const nf_t nf)

    Set the `i`-th coefficient of the denominator of `a` to the given integer
    `d`.

Comparison
--------------------------------------------------------------------------------

.. function:: int _nf_elem_equal(const nf_elem_t a, const nf_elem_t b, const nf_t nf)

    Return `1` if the given number field elements are equal in the given
    number field ``nf``. This function does \emph{not} assume `a` and `b`
    are canonicalised.

.. function:: int nf_elem_equal(const nf_elem_t a, const nf_elem_t b, const nf_t nf)

    Return `1` if the given number field elements are equal in the given
    number field ``nf``. This function assumes `a` and `b` \emph{are}
    canonicalised.

.. function:: int nf_elem_is_zero(const nf_elem_t a, const nf_t nf)

    Return `1` if the given number field element is equal to zero, 
    otherwise return `0`.

.. function:: int nf_elem_is_one(const nf_elem_t a, const nf_t nf)

    Return `1` if the given number field element is equal to one, 
    otherwise return `0`.

I/O
--------------------------------------------------------------------------------

.. function:: void nf_elem_print_pretty(const nf_elem_t a, const nf_t nf, const char * var)

    Print the given number field element to ``stdout`` using the
    null-terminated string ``var`` not equal to ``"\0"`` as the
    name of the primitive element.

Arithmetic
--------------------------------------------------------------------------------

.. function:: void nf_elem_zero(nf_elem_t a, const nf_t nf)

   Set the given number field element to zero.

.. function:: void nf_elem_one(nf_elem_t a, const nf_t nf)

   Set the given number field element to one.

.. function:: void nf_elem_set(nf_elem_t a, const nf_elem_t b, const nf_t nf)

    Set the number field element `a` to equal the number field element `b`,
    i.e. set `a = b`. 

.. function:: void nf_elem_neg(nf_elem_t a, const nf_elem_t b, const nf_t nf)

    Set the number field element `a` to minus the number field element `b`,
    i.e. set `a = -b`. 

.. function:: void nf_elem_swap(nf_elem_t a, nf_elem_t b, const nf_t nf)

    Efficiently swap the two number field elements `a` and `b`.

.. function:: void nf_elem_mul_gen(nf_elem_t a, const nf_elem_t b, const nf_t nf)
    
    Multiply the element `b` with the generator of the number field.

.. function:: void _nf_elem_add(nf_elem_t r, const nf_elem_t a, const nf_elem_t b, const nf_t nf)

    Add two elements of a number field ``nf``, i.e. set `r = a + b`.
    Canonicalisation is not performed.

.. function:: void nf_elem_add(nf_elem_t r, const nf_elem_t a, const nf_elem_t b, const nf_t nf)

    Add two elements of a number field ``nf``, i.e. set `r = a + b`.

.. function:: void _nf_elem_sub(nf_elem_t r, const nf_elem_t a, const nf_elem_t b, const nf_t nf)

    Subtract two elements of a number field ``nf``, i.e. set `r = a - b`.
    Canonicalisation is not performed.

.. function:: void nf_elem_sub(nf_elem_t r, const nf_elem_t a, const nf_elem_t b, const nf_t nf)

    Subtract two elements of a number field ``nf``, i.e. set `r = a - b`.

.. function:: void _nf_elem_mul(nf_elem_t a, const nf_elem_t b, const nf_elem_t c, const nf_t nf)
   
    Multiply two elements of a number field ``nf``, i.e. set `r = a * b`.
    Does not canonicalise. Aliasing of inputs with output is not supported.

.. function:: void _nf_elem_mul_red(nf_elem_t a, const nf_elem_t b, const nf_elem_t c, const nf_t nf, int red)
   
    As per ``_nf_elem_mul``, but reduction modulo the defining polynomial
    of the number field is only carried out if ``red == 1``. Assumes both
    inputs are reduced.

.. function:: void nf_elem_mul(nf_elem_t a, const nf_elem_t b, const nf_elem_t c, const nf_t nf)

    Multiply two elements of a number field ``nf``, i.e. set `r = a * b`.

.. function:: void nf_elem_mul_red(nf_elem_t a, const nf_elem_t b, const nf_elem_t c, const nf_t nf, int red)

    As per ``nf_elem_mul``, but reduction modulo the defining polynomial
    of the number field is only carried out if ``red == 1``. Assumes both
    inputs are reduced.

.. function:: void _nf_elem_inv(nf_elem_t r, const nf_elem_t a, const nf_t nf)

    Invert an element of a number field ``nf``, i.e. set `r = a^{-1}`.
    Aliasing of the input with the output is not supported.

.. function:: void nf_elem_inv(nf_elem_t r, const nf_elem_t a, const nf_t nf)

    Invert an element of a number field ``nf``, i.e. set `r = a^{-1}`.

.. function:: void _nf_elem_div(nf_elem_t a, const nf_elem_t b, const nf_elem_t c, const nf_t nf)

    Set `a` to `b/c` in the given number field. Aliasing of `a` and `b` is not
    permitted.

.. function:: void nf_elem_div(nf_elem_t a, const nf_elem_t b, const nf_elem_t c, const nf_t nf)

    Set `a` to `b/c` in the given number field.

.. function:: void _nf_elem_pow(nf_elem_t res, const nf_elem_t a, ulong e, const nf_t nf)

    Set ``res`` to `a^e` using left-to-right binary exponentiation as 
    described on p. 461 of [Knu1997]_.
    
    Assumes that `a \neq 0` and `e > 1`. Does not support aliasing.

.. function:: void nf_elem_pow(nf_elem_t res, const nf_elem_t a, ulong e, const nf_t nf)

    Set ``res`` = ``a^e`` using the binary exponentiation algorithm.  
    If `e` is zero, returns one, so that in particular ``0^0 = 1``.

.. function:: void _nf_elem_norm(fmpz_t rnum, fmpz_t rden, const nf_elem_t a, const nf_t nf)

    Set ``rnum, rden`` to the absolute norm of the given number field
    element `a`.

.. function:: void nf_elem_norm(fmpq_t res, const nf_elem_t a, const nf_t nf)

    Set ``res`` to the absolute norm of the given number field
    element `a`.

.. function:: void nf_elem_norm_div(fmpq_t res, const nf_elem_t a, const nf_t nf, const fmpz_t div, slong nbits)

    Set ``res`` to the absolute norm of the given number field element `a`,
    divided by ``div`` . Assumes the result to be an integer and having
    at most ``nbits`` bits.

.. function:: void _nf_elem_norm_div(fmpz_t rnum, fmpz_t rden, const nf_elem_t a, const nf_t nf, const fmpz_t divisor, slong nbits)

    Set ``rnum, rden`` to the absolute norm of the given number field element `a`,
    divided by ``div`` . Assumes the result to be an integer and having
    at most ``nbits`` bits.

.. function:: void _nf_elem_trace(fmpz_t rnum, fmpz_t rden, const nf_elem_t a, const nf_t nf)

    Set ``rnum, rden`` to the absolute trace of the given number field
    element `a`.

.. function:: void nf_elem_trace(fmpq_t res, const nf_elem_t a, const nf_t nf)

    Set ``res`` to the absolute trace of the given number field
    element `a`.

Representation matrix
--------------------------------------------------------------------------------

.. function:: void nf_elem_rep_mat(fmpq_mat_t res, const nf_elem_t a, const nf_t nf)
    
    Set ``res`` to the matrix representing the multiplication with `a` with
    respect to the basis `1, a, \dotsc, a^{d - 1}`, where `a` is the generator
    of the number field of `d` is its degree.

.. function:: void nf_elem_rep_mat_fmpz_mat_den(fmpz_mat_t res, fmpz_t den, const nf_elem_t a, const nf_t nf)

    Return a tuple `M, d` such that `M/d` is the matrix representing the
    multiplication with `a` with respect to the basis `1, a, \dotsc, a^{d - 1}`,
    where `a` is the generator of the number field of `d` is its degree.
    The integral matrix `M` is primitive.

Modular reduction
--------------------------------------------------------------------------------

.. function:: void nf_elem_mod_fmpz_den(nf_elem_t z, const nf_elem_t a, const fmpz_t mod, const nf_t nf, int den)

    If ``den == 0``, return an element `z` with denominator `1`, such that
    the coefficients of `z - da` are divisible by ``mod``, where `d` is the
    denominator of `a`. The coefficients of `z` are reduced modulo ``mod``.

    If ``den == 1``, return an element `z`, such that `z - a` has
    denominator `1` and the coefficients of `z - a` are divisible by ``mod``.
    The coefficients of `z` are reduced modulo `\mathtt{mod} \cdot d`, where `d` is the
    denominator of `a`.

    Reduction takes place with respect to the positive residue system.

.. function:: void nf_elem_smod_fmpz_den(nf_elem_t z, const nf_elem_t a, const fmpz_t mod, const nf_t nf, int den)

    If ``den == 0``, return an element `z` with denominator `1`, such that
    the coefficients of `z - da` are divisible by ``mod``, where `d` is the
    denominator of `a`. The coefficients of `z` are reduced modulo ``mod``.

    If ``den == 1``, return an element `z`, such that `z - a` has
    denominator `1` and the coefficients of `z - a` are divisible by ``mod``.
    The coefficients of `z` are reduced modulo `\mathtt{mod} \cdot d`, where `d` is the
    denominator of `a`.

    Reduction takes place with respect to the symmetric residue system.

.. function:: void nf_elem_mod_fmpz(nf_elem_t res, const nf_elem_t a, const fmpz_t mod, const nf_t nf)

    Return an element `z` such that `z - a` has denominator `1` and the
    coefficients of `z - a` are divisible by ``mod``. The coefficients of
    `z` are reduced modulo `\mathtt{mod} \cdot d`, where `d` is the denominator of `b`.

    Reduction takes place with respect to the positive residue system.

.. function:: void nf_elem_smod_fmpz(nf_elem_t res, const nf_elem_t a, const fmpz_t mod, const nf_t nf)

    Return an element `z` such that `z - a` has denominator `1` and the
    coefficients of `z - a` are divisible by ``mod``. The coefficients of
    `z` are reduced modulo `\mathtt{mod} \cdot d`, where `d` is the denominator of `b`.

    Reduction takes place with respect to the symmetric residue system.

.. function:: void nf_elem_coprime_den(nf_elem_t res, const nf_elem_t a, const fmpz_t mod, const nf_t nf)

    Return an element `z` such that the denominator of `z - a` is coprime to
    ``mod``.
    
    Reduction takes place with respect to the positive residue system.

.. function:: void nf_elem_coprime_den_signed(nf_elem_t res, const nf_elem_t a, const fmpz_t mod, const nf_t nf)

    Return an element `z` such that the denominator of `z - a` is coprime to
    ``mod``.

    Reduction takes place with respect to the symmetric residue system.