File: nmod_poly.rst

package info (click to toggle)
flint 3.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 68,996 kB
  • sloc: ansic: 915,350; asm: 14,605; python: 5,340; sh: 4,512; lisp: 2,621; makefile: 787; cpp: 341
file content (2730 lines) | stat: -rw-r--r-- 126,169 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
.. _nmod-poly:

**nmod_poly.h** -- univariate polynomials over integers mod n (word-size n)
===============================================================================

The :type:`nmod_poly_t` data type represents elements of
`\mathbb{Z}/n\mathbb{Z}[x]` for a fixed modulus `n`. The ``nmod_poly``
module provides routines for memory management, basic arithmetic and
some higher level functions such as GCD, etc.

Each coefficient of an :type:`nmod_poly_t` is of type ``ulong``
and represents an integer reduced modulo the fixed modulus `n`.

Unless otherwise specified, all functions in this section permit
aliasing between their input arguments and between their input and
output arguments.

The :type:`nmod_poly_t` type is a typedef for an array of length 1 of
:type:`nmod_poly_struct`'s. This permits passing parameters of type
:type:`nmod_poly_t` by reference.

In reality one never deals directly with the ``struct`` and simply
deals with objects of type :type:`nmod_poly_t`. For simplicity we will
think of an :type:`nmod_poly_t` as a ``struct``, though in practice to
access fields of this ``struct``, one needs to dereference first,
e.g.\ to access the ``length`` field of an :type:`nmod_poly_t` called
``poly1`` one writes ``poly1->length``.

An :type:`nmod_poly_t` is said to be *normalised* if either ``length``
is zero, or if the leading coefficient of the polynomial is non-zero.
All ``nmod_poly`` functions expect their inputs to be normalised and
for all coefficients to be reduced modulo `n` and unless otherwise
specified they produce output that is normalised with coefficients
reduced modulo `n`.

It is recommended that users do not access the fields of an
:type:`nmod_poly_t` or its coefficient data directly, but make use of
the functions designed for this purpose, detailed below.

Functions in ``nmod_poly`` do all the memory management for the user.
One does not need to specify the maximum length in advance before
using a polynomial object. FLINT reallocates space automatically as
the computation proceeds, if more space is required.

Simple example
--------------

The following example computes the square of the polynomial `5x^3 + 6`
in `\mathbb{Z}/7\mathbb{Z}[x]`.

.. code:: c

   #include "nmod_poly.h"
   int main()
   {
       nmod_poly_t x, y;
       nmod_poly_init(x, 7);
       nmod_poly_init(y, 7);
       nmod_poly_set_coeff_ui(x, 3, 5);
       nmod_poly_set_coeff_ui(x, 0, 6);
       nmod_poly_mul(y, x, x);
       nmod_poly_print(x); flint_printf("\n");
       nmod_poly_print(y); flint_printf("\n");
       nmod_poly_clear(x);
       nmod_poly_clear(y);
   }

The output is:

::

   4 7  6 0 0 5
   7 7  1 0 0 4 0 0 4

Types, macros and constants
-------------------------------------------------------------------------------

.. type:: nmod_poly_struct

.. type:: nmod_poly_t


Memory management
--------------------------------------------------------------------------------

.. function:: void nmod_poly_init(nmod_poly_t poly, ulong n)

    Initialises ``poly``. It will have coefficients modulo `n`.

.. function:: void nmod_poly_init_preinv(nmod_poly_t poly, ulong n, ulong ninv)

    Initialises ``poly``. It will have coefficients modulo `n`.
    The caller supplies a precomputed inverse limb generated by
    :func:`n_preinvert_limb`.

.. function:: void nmod_poly_init_mod(nmod_poly_t poly, const nmod_t mod)

    Initialises ``poly`` using an already initialised modulus ``mod``.

.. function:: void nmod_poly_init2(nmod_poly_t poly, ulong n, slong alloc)

    Initialises ``poly``. It will have coefficients modulo `n`.
    Up to ``alloc`` coefficients may be stored in ``poly``.

.. function:: void nmod_poly_init2_preinv(nmod_poly_t poly, ulong n, ulong ninv, slong alloc)

    Initialises ``poly``. It will have coefficients modulo `n`.
    The caller supplies a precomputed inverse limb generated by
    :func:`n_preinvert_limb`. Up to ``alloc`` coefficients may
    be stored in ``poly``.

.. function:: void nmod_poly_realloc(nmod_poly_t poly, slong alloc)

    Reallocates ``poly`` to the given length. If the current
    length is less than ``alloc``, the polynomial is truncated
    and normalised.  If ``alloc`` is zero, the polynomial is
    cleared.

.. function:: void nmod_poly_clear(nmod_poly_t poly)

    Clears the polynomial and releases any memory it used. The polynomial
    cannot be used again until it is initialised.

.. function:: void nmod_poly_fit_length(nmod_poly_t poly, slong alloc)

    Ensures ``poly`` has space for at least ``alloc`` coefficients.
    This function only ever grows the allocated space, so no data loss can
    occur.

.. function:: void _nmod_poly_normalise(nmod_poly_t poly)

    Internal function for normalising a polynomial so that the top
    coefficient, if there is one at all, is not zero.


Polynomial properties
--------------------------------------------------------------------------------


.. function:: slong nmod_poly_length(const nmod_poly_t poly)

    Returns the length of the polynomial ``poly``. The zero polynomial
    has length zero.

.. function:: slong nmod_poly_degree(const nmod_poly_t poly)

    Returns the degree of the polynomial ``poly``. The zero polynomial
    is deemed to have degree `-1`.

.. function:: ulong nmod_poly_modulus(const nmod_poly_t poly)

    Returns the modulus of the polynomial ``poly``. This will be a
    positive integer.

.. function:: flint_bitcnt_t nmod_poly_max_bits(const nmod_poly_t poly)

    Returns the maximum number of bits of any coefficient of ``poly``.

.. function:: int nmod_poly_is_unit(const nmod_poly_t poly)

   Returns `1` if the polynomial is a nonzero constant (in the case of prime
   modulus, this is equivalent to being a unit), otherwise `0`.

.. function:: int nmod_poly_is_monic(const nmod_poly_t poly)

   Returns `1` if the polynomial is monic, i.e. nonzero with leading
   coefficient `1`, otherwise `0`.


Assignment and basic manipulation
--------------------------------------------------------------------------------


.. function:: void nmod_poly_set(nmod_poly_t a, const nmod_poly_t b)

    Sets ``a`` to a copy of ``b``.

.. function:: void nmod_poly_swap(nmod_poly_t poly1, nmod_poly_t poly2)

    Efficiently swaps ``poly1`` and ``poly2`` by swapping pointers
    internally.

.. function:: void nmod_poly_zero(nmod_poly_t res)

    Sets ``res`` to the zero polynomial.

.. function:: void nmod_poly_truncate(nmod_poly_t poly, slong len)

    Truncates ``poly`` to the given length and normalises it.
    If ``len`` is greater than the current length of ``poly``,
    then nothing happens.

.. function:: void nmod_poly_set_trunc(nmod_poly_t res, const nmod_poly_t poly, slong len)

    Notionally truncate ``poly`` to length ``len`` and set ``res`` to the
    result. The result is normalised.

.. function:: void _nmod_poly_reverse(nn_ptr output, nn_srcptr input, slong len, slong m)

    Sets ``output`` to the reverse of ``input``, which is of length
    ``len``, but thinking of it as a polynomial of length ``m``,
    notionally zero-padded if necessary. The length ``m`` must be
    non-negative, but there are no other restrictions. The polynomial
    ``output`` must have space for ``m`` coefficients. Supports
    aliasing of ``output`` and ``input``, but the behaviour is
    undefined in case of partial overlap.

.. function:: void nmod_poly_reverse(nmod_poly_t output, const nmod_poly_t input, slong m)

    Sets ``output`` to the reverse of ``input``, thinking of it as
    a polynomial of length ``m``, notionally zero-padded if necessary).
    The length ``m`` must be non-negative, but there are no other
    restrictions. The output polynomial will be set to length ``m``
    and then normalised.


Randomization
--------------------------------------------------------------------------------


.. function:: void nmod_poly_randtest(nmod_poly_t poly, flint_rand_t state, slong len)

    Generates a random polynomial with length up to ``len``.

.. function:: void nmod_poly_randtest_monic(nmod_poly_t poly, flint_rand_t state, slong len)

    Generates a random monic polynomial with length ``len``.

.. function:: void nmod_poly_randtest_trinomial(nmod_poly_t poly, flint_rand_t state, slong len)

    Generates a random monic trinomial of length ``len``.

.. function:: void nmod_poly_randtest_pentomial(nmod_poly_t poly, flint_rand_t state, slong len)

    Generates a random monic pentomial of length ``len``.

Construction of irreducible polynomials
--------------------------------------------------------------------------------

The following functions assume a prime modulus.

.. function:: void nmod_poly_minimal_irreducible(nmod_poly_t res, ulong n)

    Generates a monic irreducible polynomial of degree ``n`` with minimal
    weight (minimal number of nonzero terms). We generate a binomial
    if possible, otherwise a trinomial, etc.
    It is conjectured that one never needs more than a pentanomial
    modulo `p = 2` and a tetranomial modulo `p > 2`.

    More specifically, this function returns the first among all minimal-weight
    polynomials in the following ordering.
    Firstly, for trinomials, `x^n + a x^k + b` comes before
    its monic reversal `x^n + a' x^{n-k} + b'` if `k < n - k`.
    Secondly, writing
    `f = x^n + a_1 x^{k_1} + a_2 x^{k_2} + \ldots + a_t x^{k_t}`
    with `n > k_1 > k_2 \ldots > k_t`, we order tuples
    `(a_1, \ldots, a_{t}, k_1, \ldots, k_t)` lexicographically.
    We thus favor polynomials with smaller coefficients
    (all 1 if possible), and secondly with smaller degrees for the
    middle terms.

.. function:: void nmod_poly_randtest_irreducible(nmod_poly_t poly, flint_rand_t state, slong len)

    Generates a random irreducible polynomial with length up to ``len``.

.. function:: void nmod_poly_randtest_monic_irreducible(nmod_poly_t poly, flint_rand_t state, slong len)

    Generates a random monic irreducible polynomial with length ``len``.

.. function:: void nmod_poly_randtest_monic_primitive(nmod_poly_t poly, flint_rand_t state, slong len)

    Generates a random monic irreducible primitive polynomial with
    length ``len``.

.. function:: int nmod_poly_randtest_trinomial_irreducible(nmod_poly_t poly, flint_rand_t state, slong len, slong max_attempts)

    Attempts to set ``poly`` to a monic irreducible trinomial of
    length ``len``.  It will generate up to ``max_attempts``
    trinomials in attempt to find an irreducible one.  If
    ``max_attempts`` is ``0``, then it will keep generating
    trinomials until an irreducible one is found.  Returns `1` if one
    is found and `0` otherwise.

.. function:: int nmod_poly_randtest_pentomial_irreducible(nmod_poly_t poly, flint_rand_t state, slong len, slong max_attempts)

    Attempts to set ``poly`` to a monic irreducible pentomial of
    length ``len``.  It will generate up to ``max_attempts``
    pentomials in attempt to find an irreducible one.  If
    ``max_attempts`` is ``0``, then it will keep generating
    pentomials until an irreducible one is found.  Returns `1` if one
    is found and `0` otherwise.

.. function:: void nmod_poly_randtest_sparse_irreducible(nmod_poly_t poly, flint_rand_t state, slong len)

    Attempts to set ``poly`` to a sparse, monic irreducible polynomial
    with length ``len``.  It attempts to find an irreducible
    trinomial.  If that does not succeed, it attempts to find a
    irreducible pentomial.  If that fails, then ``poly`` is just
    set to a random monic irreducible polynomial.


Getting and setting coefficients
--------------------------------------------------------------------------------


.. function:: ulong nmod_poly_get_coeff_ui(const nmod_poly_t poly, slong j)

    Returns the coefficient of ``poly`` at index ``j``, where
    coefficients are numbered with zero being the constant coefficient,
    and returns it as an ``ulong``. If ``j`` refers to a
    coefficient beyond the end of ``poly``, zero is returned.

.. function:: void nmod_poly_set_coeff_ui(nmod_poly_t poly, slong j, ulong c)

    Sets the coefficient of ``poly`` at index ``j``, where
    coefficients are numbered with zero being the constant coefficient,
    to the value ``c`` reduced modulo the modulus of ``poly``.
    If ``j`` refers to a coefficient beyond the current end of ``poly``,
    the polynomial is first resized, with intervening coefficients being
    set to zero.


Input and output
--------------------------------------------------------------------------------


.. function:: char * nmod_poly_get_str(const nmod_poly_t poly)

    Writes ``poly`` to a string representation. The format is as
    described for :func:`nmod_poly_print`. The string must be freed by the
    user when finished. For this it is sufficient to call :func:`flint_free`.

.. function:: char * nmod_poly_get_str_pretty(const nmod_poly_t poly, const char * x)

    Writes ``poly`` to a pretty string representation. The format is as
    described for :func:`nmod_poly_print_pretty`. The string must be freed
    by the user when finished. For this it is sufficient to call
    :func:`flint_free`.

    It is assumed that the top coefficient is non-zero.

.. function:: int nmod_poly_set_str(nmod_poly_t poly, const char * s)

    Reads ``poly`` from a string ``s``. The format is as described
    for :func:`nmod_poly_print`. If a polynomial in the correct format
    is read, a positive value is returned, otherwise a non-positive value
    is returned.

.. function:: int nmod_poly_print(const nmod_poly_t a)

    Prints the polynomial to ``stdout``. The length is printed,
    followed by a space, then the modulus. If the length is zero this is
    all that is printed, otherwise two spaces followed by a space
    separated list of coefficients is printed, beginning with the constant
    coefficient.

    In case of success, returns a positive value.  In case of failure,
    returns a non-positive value.

.. function:: int nmod_poly_print_pretty(const nmod_poly_t a, const char * x)

    Prints the polynomial to ``stdout`` using the string ``x`` to
    represent the indeterminate.

    It is assumed that the top coefficient is non-zero.

    In case of success, returns a positive value.  In case of failure,
    returns a non-positive value.

.. function:: int nmod_poly_fread(FILE * f, nmod_poly_t poly)

    Reads ``poly`` from the file stream ``f``. If this is a file
    that has just been written, the file should be closed then opened
    again. The format is as described for :func:`nmod_poly_print`. If a
    polynomial in the correct format is read, a positive value is returned,
    otherwise a non-positive value is returned.

.. function:: int nmod_poly_fprint(FILE * f, const nmod_poly_t poly)

    Writes a polynomial to the file stream ``f``. If this is a file
    then the file should be closed and reopened before being read.
    The format is as described for :func:`nmod_poly_print`. If the
    polynomial is written correctly, a positive value is returned,
    otherwise a non-positive value is returned.

    In case of success, returns a positive value.  In case of failure,
    returns a non-positive value.

.. function:: int nmod_poly_fprint_pretty(FILE * f, const nmod_poly_t poly, const char * x)

    Writes a polynomial to the file stream ``f``. If this is a file
    then the file should be closed and reopened before being read.
    The format is as described for :func:`nmod_poly_print_pretty`. If the
    polynomial is written correctly, a positive value is returned,
    otherwise a non-positive value is returned.

    It is assumed that the top coefficient is non-zero.

    In case of success, returns a positive value.  In case of failure,
    returns a non-positive value.

.. function:: int nmod_poly_read(nmod_poly_t poly)

    Read ``poly`` from ``stdin``. The format is as described for
    :func:`nmod_poly_print`. If a polynomial in the correct format is read, a
    positive value is returned, otherwise a non-positive value is returned.


Comparison
--------------------------------------------------------------------------------


.. function:: int nmod_poly_equal(const nmod_poly_t a, const nmod_poly_t b)

    Returns `1` if the polynomials are equal, otherwise `0`.

.. function:: int nmod_poly_equal_nmod(const nmod_poly_t poly, ulong cst)

    Returns `1` if the polynomial ``poly`` is constant, equal to ``cst``,
    otherwise `0`.
    ``cst`` is assumed to be already reduced, i.e. less than the modulus of
    ``poly``.

.. function:: int nmod_poly_equal_ui(const nmod_poly_t poly, ulong cst)

    Returns `1` if the polynomial ``poly`` is constant and equal to ``cst`` up to
    reduction modulo the modulus of ``poly``, otherwise returns `0`.

.. function:: int nmod_poly_equal_trunc(const nmod_poly_t poly1, const nmod_poly_t poly2, slong n)

    Notionally truncate ``poly1`` and ``poly2`` to length `n` and return
    `1` if the truncations are equal, otherwise return `0`.

.. function:: int nmod_poly_is_zero(const nmod_poly_t poly)

    Returns `1` if the polynomial ``poly`` is the zero polynomial,
    otherwise returns `0`.

.. function:: int nmod_poly_is_one(const nmod_poly_t poly)

    Returns `1` if the polynomial ``poly`` is the constant polynomial 1,
    otherwise returns `0`.

.. function:: int nmod_poly_is_gen(const nmod_poly_t poly)

   Returns `1` if the polynomial is the generating indeterminate (i.e. has
   degree `1`, constant coefficient `0`, and leading coefficient `1`), otherwise
   returns `0`.


Shifting
--------------------------------------------------------------------------------


.. function:: void _nmod_poly_shift_left(nn_ptr res, nn_srcptr poly, slong len, slong k)

    Sets ``(res, len + k)`` to ``(poly, len)`` shifted left by
    ``k`` coefficients. Assumes that ``res`` has space for
    ``len + k`` coefficients.

.. function:: void nmod_poly_shift_left(nmod_poly_t res, const nmod_poly_t poly, slong k)

    Sets ``res`` to ``poly`` shifted left by ``k`` coefficients,
    i.e. multiplied by `x^k`.

.. function:: void _nmod_poly_shift_right(nn_ptr res, nn_srcptr poly, slong len, slong k)

    Sets ``(res, len - k)`` to ``(poly, len)`` shifted left by
    ``k`` coefficients. It is assumed that ``k <= len`` and that
    ``res`` has space for at least ``len - k`` coefficients.

.. function:: void nmod_poly_shift_right(nmod_poly_t res, const nmod_poly_t poly, slong k)

    Sets ``res`` to ``poly`` shifted right by ``k`` coefficients,
    i.e. divide by `x^k` and throw away the remainder. If ``k`` is
    greater than or equal to the length of ``poly``, the result is the
    zero polynomial.


Addition and subtraction
--------------------------------------------------------------------------------


.. function:: void _nmod_poly_add(nn_ptr res, nn_srcptr poly1, slong len1, nn_srcptr poly2, slong len2, nmod_t mod)

    Sets ``res`` to the sum of ``(poly1, len1)`` and
    ``(poly2, len2)``. There are no restrictions on the lengths.

.. function:: void nmod_poly_add(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2)

    Sets ``res`` to the sum of ``poly1`` and ``poly2``.

.. function:: void nmod_poly_add_series(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2, slong n)

    Notionally truncate ``poly1`` and ``poly2`` to length `n` and set
    ``res`` to the sum.

.. function:: void _nmod_poly_sub(nn_ptr res, nn_srcptr poly1, slong len1, nn_srcptr poly2, slong len2, nmod_t mod)

    Sets ``res`` to the difference of ``(poly1, len1)`` and
    ``(poly2, len2)``. There are no restrictions on the lengths.

.. function:: void nmod_poly_sub(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2)

    Sets ``res`` to the difference of ``poly1`` and ``poly2``.

.. function:: void nmod_poly_sub_series(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2, slong n)

    Notionally truncate ``poly1`` and ``poly2`` to length `n` and set
    ``res`` to the difference.

.. function:: void nmod_poly_neg(nmod_poly_t res, const nmod_poly_t poly)

    Sets ``res`` to the negation of ``poly``.


Scalar multiplication and division
--------------------------------------------------------------------------------


.. function:: void nmod_poly_scalar_mul_nmod(nmod_poly_t res, const nmod_poly_t poly, ulong c)

    Sets ``res`` to ``poly`` multiplied by `c`. The element `c` is assumed
    to be less than the modulus of ``poly``.

.. function:: void nmod_poly_scalar_addmul_nmod(nmod_poly_t res, const nmod_poly_t poly, ulong c)

    Adds ``poly`` multiplied by `c` to ``res``. The element `c` is assumed
    to be less than the modulus of ``poly``.

.. function:: void _nmod_poly_make_monic(nn_ptr res, nn_srcptr poly, slong len, nmod_t mod)

    Requires that ``res`` and ``poly`` have length at least ``len``, with ``len
    > 0``, and that ``poly[len-1]`` is invertible modulo ``mod.n``. Sets
    ``res[i]`` to the modular product of `c` and ``poly[i]`` for `i` from `0`
    to ``len-1``, where `c` is the inverse of ``poly[len-1]``.

.. function:: void nmod_poly_make_monic(nmod_poly_t res, const nmod_poly_t poly)

    Sets ``res`` to be the scalar multiple of ``poly`` with leading coefficient
    one. If ``poly`` is zero, an exception is raised.


Bit packing and unpacking
--------------------------------------------------------------------------------


.. function:: void _nmod_poly_bit_pack(nn_ptr res, nn_srcptr poly, slong len, flint_bitcnt_t bits)

    Packs ``len`` coefficients of ``poly`` into fields of the given
    number of bits in the large integer ``res``, i.e. evaluates
    ``poly`` at ``2^bits`` and store the result in ``res``.
    Assumes ``len > 0`` and ``bits > 0``. Also assumes that no
    coefficient of ``poly`` is bigger than ``bits/2`` bits. We
    also assume ``bits < 3 * FLINT_BITS``.

.. function:: void _nmod_poly_bit_unpack(nn_ptr res, slong len, nn_srcptr mpn, ulong bits, nmod_t mod)

    Unpacks ``len`` coefficients stored in the big integer ``mpn``
    in bit fields of the given number of bits, reduces them modulo the
    given modulus, then stores them in the polynomial ``res``.
    We assume ``len > 0`` and ``3 * FLINT_BITS > bits > 0``.
    There are no restrictions on the size of the actual coefficients as
    stored within the bitfields.

.. function:: void nmod_poly_bit_pack(fmpz_t f, const nmod_poly_t poly, flint_bitcnt_t bit_size)

    Packs ``poly`` into bitfields of size ``bit_size``, writing the
    result to ``f``.

.. function:: void nmod_poly_bit_unpack(nmod_poly_t poly, const fmpz_t f, flint_bitcnt_t bit_size)

    Unpacks the polynomial from fields of size ``bit_size`` as
    represented by the integer ``f``.


.. function:: void _nmod_poly_KS2_pack1(nn_ptr res, nn_srcptr op, slong n, slong s, ulong b, ulong k, slong r)

    Same as ``_nmod_poly_KS2_pack``, but requires ``b <= FLINT_BITS``.

.. function:: void _nmod_poly_KS2_pack(nn_ptr res, nn_srcptr op, slong n, slong s, ulong b, ulong k, slong r)

    Bit packing routine used by KS2 and KS4 multiplication.

.. function:: void _nmod_poly_KS2_unpack1(nn_ptr res, nn_srcptr op, slong n, ulong b, ulong k)

    Same as ``_nmod_poly_KS2_unpack``, but requires ``b <= FLINT_BITS``
    (i.e. writes one word per coefficient).

.. function:: void _nmod_poly_KS2_unpack2(nn_ptr res, nn_srcptr op, slong n, ulong b, ulong k)

    Same as ``_nmod_poly_KS2_unpack``, but requires
    ``FLINT_BITS < b <= 2 * FLINT_BITS`` (i.e. writes two words per
    coefficient).

.. function:: void _nmod_poly_KS2_unpack3(nn_ptr res, nn_srcptr op, slong n, ulong b, ulong k)

    Same as ``_nmod_poly_KS2_unpack``, but requires
    ``2 * FLINT_BITS < b < 3 * FLINT_BITS`` (i.e. writes three words per
    coefficient).

.. function:: void _nmod_poly_KS2_unpack(nn_ptr res, nn_srcptr op, slong n, ulong b, ulong k)

    Bit unpacking code used by KS2 and KS4 multiplication.



KS2/KS4 Reduction
--------------------------------------------------------------------------------


.. function:: void _nmod_poly_KS2_reduce(nn_ptr res, slong s, nn_srcptr op, slong n, ulong w, nmod_t mod)

    Reduction code used by KS2 and KS4 multiplication.

.. function:: void _nmod_poly_KS2_recover_reduce1(nn_ptr res, slong s, nn_srcptr op1, nn_srcptr op2, slong n, ulong b, nmod_t mod)

    Same as ``_nmod_poly_KS2_recover_reduce``, but requires
    ``0 < 2 * b <= FLINT_BITS``.

.. function:: void _nmod_poly_KS2_recover_reduce2(nn_ptr res, slong s, nn_srcptr op1, nn_srcptr op2, slong n, ulong b, nmod_t mod)

    Same as ``_nmod_poly_KS2_recover_reduce``, but requires
    ``FLINT_BITS < 2 * b < 2*FLINT_BITS``.

.. function:: void _nmod_poly_KS2_recover_reduce2b(nn_ptr res, slong s, nn_srcptr op1, nn_srcptr op2, slong n, ulong b, nmod_t mod)

    Same as ``_nmod_poly_KS2_recover_reduce``, but requires
    ``b == FLINT_BITS``.

.. function:: void _nmod_poly_KS2_recover_reduce3(nn_ptr res, slong s, nn_srcptr op1, nn_srcptr op2, slong n, ulong b, nmod_t mod)

    Same as ``_nmod_poly_KS2_recover_reduce``, but requires
    ``2 * FLINT_BITS < 2 * b <= 3 * FLINT_BITS``.

.. function:: void _nmod_poly_KS2_recover_reduce(nn_ptr res, slong s, nn_srcptr op1, nn_srcptr op2, slong n, ulong b, nmod_t mod)

    Reduction code used by KS4 multiplication.



Multiplication
--------------------------------------------------------------------------------


.. function:: void _nmod_poly_mul_classical(nn_ptr res, nn_srcptr poly1, slong len1, nn_srcptr poly2, slong len2, nmod_t mod)

    Sets ``(res, len1 + len2 - 1)`` to the product of ``(poly1, len1)``
    and ``(poly2, len2)``. Assumes ``len1 >= len2 > 0``. Aliasing of
    inputs and output is not permitted.

.. function:: void nmod_poly_mul_classical(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2)

    Sets ``res`` to the product of ``poly1`` and ``poly2``.

.. function:: void _nmod_poly_mullow_classical(nn_ptr res, nn_srcptr poly1, slong len1, nn_srcptr poly2, slong len2, slong trunc, nmod_t mod)

    Sets ``res`` to the lower ``trunc`` coefficients of the product of
    ``(poly1, len1)`` and ``(poly2, len2)``. Assumes that
    ``len1 >= len2 > 0`` and ``trunc > 0``. Aliasing of inputs and
    output is not permitted.

.. function:: void nmod_poly_mullow_classical(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2, slong trunc)

    Sets ``res`` to the lower ``trunc`` coefficients of the product
    of ``poly1`` and ``poly2``.

.. function:: void _nmod_poly_mulhigh_classical(nn_ptr res, nn_srcptr poly1, slong len1, nn_srcptr poly2, slong len2, slong start, nmod_t mod)

    Computes the product of ``(poly1, len1)`` and ``(poly2, len2)``
    and writes the coefficients from ``start`` onwards into the high
    coefficients of ``res``, the remaining coefficients being arbitrary
    but reduced.  Assumes that ``len1 >= len2 > 0``. Aliasing of inputs
    and output is not permitted.

.. function:: void nmod_poly_mulhigh_classical(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2, slong start)

    Computes the product of ``poly1`` and ``poly2`` and writes the
    coefficients from ``start`` onwards into the high coefficients of
    ``res``, the remaining coefficients being arbitrary but reduced.

.. function:: void _nmod_poly_mul_KS(nn_ptr out, nn_srcptr in1, slong len1, nn_srcptr in2, slong len2, flint_bitcnt_t bits, nmod_t mod)

    Sets ``res`` to the product of ``in1`` and ``in2``
    assuming the output coefficients are at most the given number of
    bits wide. If ``bits`` is set to `0` an appropriate value is
    computed automatically.  Assumes that ``len1 >= len2 > 0``.

.. function:: void nmod_poly_mul_KS(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2, flint_bitcnt_t bits)

    Sets ``res`` to the product of ``poly1`` and ``poly2``
    assuming the output coefficients are at most the given number of
    bits wide. If ``bits`` is set to `0` an appropriate value
    is computed automatically.

.. function:: void _nmod_poly_mul_KS2(nn_ptr res, nn_srcptr op1, slong n1, nn_srcptr op2, slong n2, nmod_t mod)

    Sets ``res`` to the product of ``op1`` and ``op2``.
    Assumes that ``len1 >= len2 > 0``.

.. function:: void nmod_poly_mul_KS2(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2)

    Sets ``res`` to the product of ``poly1`` and ``poly2``.

.. function:: void _nmod_poly_mul_KS4(nn_ptr res, nn_srcptr op1, slong n1, nn_srcptr op2, slong n2, nmod_t mod)

    Sets ``res`` to the product of ``op1`` and ``op2``.
    Assumes that ``len1 >= len2 > 0``.

.. function:: void nmod_poly_mul_KS4(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2)

    Sets ``res`` to the product of ``poly1`` and ``poly2``.

.. function:: void _nmod_poly_mullow_KS(nn_ptr out, nn_srcptr in1, slong len1, nn_srcptr in2, slong len2, flint_bitcnt_t bits, slong n, nmod_t mod)

    Sets ``out`` to the low `n` coefficients of ``in1`` of length
    ``len1`` times ``in2`` of length ``len2``. The output must have
    space for ``n`` coefficients. We assume that ``len1 >= len2 > 0``
    and that ``0 < n <= len1 + len2 - 1``.

.. function:: void nmod_poly_mullow_KS(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2, flint_bitcnt_t bits, slong n)

    Set ``res`` to the low `n` coefficients of ``in1`` of length
    ``len1`` times ``in2`` of length ``len2``.

.. function:: void _nmod_poly_mul(nn_ptr res, nn_srcptr poly1, slong len1, nn_srcptr poly2, slong len2, nmod_t mod)

    Sets ``res`` to the product of ``poly1`` of length ``len1``
    and ``poly2`` of length ``len2``. Assumes ``len1 >= len2 > 0``.
    No aliasing is permitted between the inputs and the output.

.. function:: void nmod_poly_mul(nmod_poly_t res, const nmod_poly_t poly, const nmod_poly_t poly2)

    Sets ``res`` to the product of ``poly1`` and ``poly2``.

.. function:: void _nmod_poly_mullow(nn_ptr res, nn_srcptr poly1, slong len1, nn_srcptr poly2, slong len2, slong n, nmod_t mod)

    Sets ``res`` to the first ``n`` coefficients of the
    product of ``poly1`` of length ``len1`` and ``poly2`` of
    length ``len2``. It is assumed that ``0 < n <= len1 + len2 - 1``
    and that ``len1 >= len2 > 0``. No aliasing of inputs and output
    is permitted.

.. function:: void nmod_poly_mullow(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2, slong trunc)

    Sets ``res`` to the first ``trunc`` coefficients of the
    product of ``poly1`` and ``poly2``.

.. function:: void _nmod_poly_mulhigh(nn_ptr res, nn_srcptr poly1, slong len1, nn_srcptr poly2, slong len2, slong n, nmod_t mod)

    Sets all but the low `n` coefficients of ``res`` to the
    corresponding coefficients of the product of ``poly1`` of length
    ``len1`` and ``poly2`` of length ``len2``, the other
    coefficients being arbitrary. It is assumed that
    ``len1 >= len2 > 0`` and that ``0 < n <= len1 + len2 - 1``.
    Aliasing of inputs and output is not permitted.

.. function:: void nmod_poly_mulhigh(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2, slong n)

    Sets all but the low `n` coefficients of ``res`` to the
    corresponding coefficients of the product of ``poly1`` and
    ``poly2``, the remaining coefficients being arbitrary.

.. function:: int _nmod_poly_mullow_want_fft_small(slong len1, slong len2, slong n, int squaring, nmod_t mod)

    Estimate whether *fft_small* multiplication should be used instead of
    other multiplication algorithms, given inputs of length *len1* and *len2*
    and output truncation to length *n*.

.. function:: int _nmod_poly_mullow_fft_small_repack(nn_ptr z, nn_srcptr a, slong an, nn_srcptr b, slong bn, slong zn, nmod_t mod)

    Internal helper function for :func:`_nmod_poly_mullow_fft_small`: if the
    inputs are small enough to perform a repacked convolution of half the
    length, multiply and return 1, otherwise do nothing and return 0.
    The conditions on the arguments are the same as for :func:`_nmod_poly_mullow`.

.. function:: void _nmod_poly_mullow_fft_small(nn_ptr z, nn_srcptr a, slong an, nn_srcptr b, slong bn, slong zn, nmod_t mod)

    Low multiplication via the *fft_small* module. Throws an error
    if *fft_small* is not available. The conditions on the arguments
    are the same as for :func:`_nmod_poly_mullow`.

.. function:: void _nmod_poly_mulmod(nn_ptr res, nn_srcptr poly1, slong len1, nn_srcptr poly2, slong len2, nn_srcptr f, slong lenf, nmod_t mod)

    Sets ``res`` to the remainder of the product of ``poly1`` and
    ``poly2`` upon polynomial division by ``f``.

    It is required that ``len1 + len2 - lenf > 0``, which is equivalent
    to requiring that the result will actually be reduced. Otherwise, simply
    use ``_nmod_poly_mul`` instead.

    Aliasing of ``f`` and ``res`` is not permitted.

.. function:: void nmod_poly_mulmod(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2, const nmod_poly_t f)

    Sets ``res`` to the remainder of the product of ``poly1`` and
    ``poly2`` upon polynomial division by ``f``.

.. function:: void _nmod_poly_mulmod_preinv(nn_ptr res, nn_srcptr poly1, slong len1, nn_srcptr poly2, slong len2, nn_srcptr f, slong lenf, nn_srcptr finv, slong lenfinv, nmod_t mod)

    Sets ``res`` to the remainder of the product of ``poly1`` and
    ``poly2`` upon polynomial division by ``f``.

    It is required that ``finv`` is the inverse of the reverse of ``f``
    mod ``x^lenf``. It is required that ``len1 + len2 - lenf > 0``,
    which is equivalent to requiring that the result will actually be reduced.
    It is required that ``len1 < lenf`` and ``len2 < lenf``.
    Otherwise, simply use ``_nmod_poly_mul`` instead.

    Aliasing of ```res`` with any of the inputs is not permitted.

.. function:: void nmod_poly_mulmod_preinv(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2, const nmod_poly_t f, const nmod_poly_t finv)

    Sets ``res`` to the remainder of the product of ``poly1`` and
    ``poly2`` upon polynomial division by ``f``. ``finv`` is the
    inverse of the reverse of ``f``. It is required that ``poly1`` and
    ``poly2`` are reduced modulo ``f``.

Preconditioned modular multiplication
--------------------------------------------------------------------------------

.. type:: nmod_poly_mulmod_precond_struct
          nmod_poly_mulmod_precond_t

    Stores precomputed data for evaluating `ab \bmod d` where both `a`
    and `d` are fixed.

.. function:: void _nmod_poly_mulmod_precond_init_method(nmod_poly_mulmod_precond_t precond, nn_srcptr a, slong alen, nn_srcptr d, slong dlen, nn_srcptr dinv, slong lendinv, int method, nmod_t mod)
              void nmod_poly_mulmod_precond_init_method(nmod_poly_mulmod_precond_t precond, const nmod_poly_t a, const nmod_poly_t d, const nmod_poly_t dinv, int method)
              void _nmod_poly_mulmod_precond_init_num(nmod_poly_mulmod_precond_t precond, nn_srcptr a, slong alen, nn_srcptr d, slong dlen, nn_srcptr dinv, slong lendinv, slong num, nmod_t mod)
              void nmod_poly_mulmod_precond_init_num(nmod_poly_mulmod_precond_t precond, const nmod_poly_t a, const nmod_poly_t d, const nmod_poly_t dinv, slong num)

    Initialize ``precond`` for computing  `ab \bmod d`.
    It is assumed that `a` is already reduced modulo `d`.
    The *method* parameter must be one of the following:

    * ``NMOD_POLY_MULMOD_PRECOND_NONE`` (no precomputation; multiplication will simply delegate to :func:`_nmod_poly_mulmod_preinv`)

    * ``NMOD_POLY_MULMOD_PRECOND_SHOUP`` (use Shoup multiplication)

    * ``NMOD_POLY_MULMOD_PRECOND_MATRIX`` (use the matrix algorithm)

    The *num* versions of these functions attempt to choose the optimal
    method automatically assuming that one intends to perform *num*
    multiplications.

    Shallow references to ``a``, ``d`` and ``dinv`` may be stored
    in ``precond``; the original objects must therefore be kept alive
    without modification as long as ``precond`` is used.
    The user must supply the precomputed inverse of ``d``, with the same
    meaning as in :func:`_nmod_poly_mulmod_preinv` and :func:`nmod_poly_mulmod_preinv`.

.. function:: void nmod_poly_mulmod_precond_clear(nmod_poly_mulmod_precond_t precond)

    Clears ``precond``, freeing any allocated memory.

.. function:: void _nmod_poly_mulmod_precond(nn_ptr res, const nmod_poly_mulmod_precond_t precond, nn_srcptr b, slong blen, nmod_t mod)
              void nmod_poly_mulmod_precond(nmod_poly_t res, const nmod_poly_mulmod_precond_t precond, const nmod_poly_t b)

    Compute `ab \bmod d` where both `a` and `d` are fixed and represented by
    the ``precond`` object. We require that `b` is already reduced modulo `d`.
    The underscore method requires nonzero lengths and does not allow aliasing
    between the output and any inputs (including ``a`` and ``d``).
    The non-underscore method allows aliasing between ``b`` and ``res``.


Powering
--------------------------------------------------------------------------------


.. function:: void _nmod_poly_pow_binexp(nn_ptr res, nn_srcptr poly, slong len, ulong e, nmod_t mod)

    Raises ``poly`` of length ``len`` to the power ``e`` and sets
    ``res`` to the result. We require that ``res`` has enough space
    for ``(len - 1)*e + 1`` coefficients. Assumes that ``len > 0``,
    ``e > 1``. Aliasing is not permitted. Uses the binary exponentiation
    method.

.. function:: void nmod_poly_pow_binexp(nmod_poly_t res, const nmod_poly_t poly, ulong e)

    Raises ``poly`` to the power ``e`` and sets ``res`` to the
    result. Uses the binary exponentiation method.

.. function:: void _nmod_poly_pow(nn_ptr res, nn_srcptr poly, slong len, ulong e, nmod_t mod)

    Raises ``poly`` of length ``len`` to the power ``e`` and sets
    ``res`` to the result. We require that ``res`` has enough space
    for ``(len - 1)*e + 1`` coefficients. Assumes that ``len > 0``,
    ``e > 1``. Aliasing is not permitted.

.. function:: void nmod_poly_pow(nmod_poly_t res, const nmod_poly_t poly, ulong e)

    Raises ``poly`` to the power ``e`` and sets ``res`` to the
    result.

.. function:: void _nmod_poly_pow_trunc_binexp(nn_ptr res, nn_srcptr poly, ulong e, slong trunc, nmod_t mod)

    Sets ``res`` to the low ``trunc`` coefficients of ``poly``
    (assumed to be zero padded if necessary to length ``trunc``) to
    the power ``e``. This is equivalent to doing a powering followed
    by a truncation. We require that ``res`` has enough space for
    ``trunc`` coefficients, that ``trunc > 0`` and that
    ``e > 1``. Aliasing is not permitted. Uses the binary
    exponentiation method.

.. function:: void nmod_poly_pow_trunc_binexp(nmod_poly_t res, const nmod_poly_t poly, ulong e, slong trunc)

    Sets ``res`` to the low ``trunc`` coefficients of ``poly``
    to the power ``e``. This is equivalent to doing a powering
    followed by a truncation. Uses the binary exponentiation method.

.. function:: void _nmod_poly_pow_trunc(nn_ptr res, nn_srcptr poly, ulong e, slong trunc, nmod_t mod)

    Sets ``res`` to the low ``trunc`` coefficients of ``poly``
    (assumed to be zero padded if necessary to length ``trunc``) to
    the power ``e``. This is equivalent to doing a powering followed
    by a truncation. We require that ``res`` has enough space for
    ``trunc`` coefficients, that ``trunc > 0`` and that
    ``e > 1``. Aliasing is not permitted.

.. function:: void nmod_poly_pow_trunc(nmod_poly_t res, const nmod_poly_t poly, ulong e, slong trunc)

    Sets ``res`` to the low ``trunc`` coefficients of ``poly``
    to the power ``e``. This is equivalent to doing a powering
    followed by a truncation.

.. function:: void _nmod_poly_powmod_ui_binexp(nn_ptr res, nn_srcptr poly, ulong e, nn_srcptr f, slong lenf, nmod_t mod)

    Sets ``res`` to ``poly`` raised to the power ``e``
    modulo ``f``, using binary exponentiation. We require ``e > 0``.

    We require ``lenf > 1``. It is assumed that ``poly`` is already
    reduced modulo ``f`` and zero-padded as necessary to have length
    exactly ``lenf - 1``. The output ``res`` must have room for
    ``lenf - 1`` coefficients.

.. function:: void nmod_poly_powmod_ui_binexp(nmod_poly_t res, const nmod_poly_t poly, ulong e, const nmod_poly_t f)

    Sets ``res`` to ``poly`` raised to the power ``e``
    modulo ``f``, using binary exponentiation. We require ``e >= 0``.

.. function:: void _nmod_poly_powmod_fmpz_binexp(nn_ptr res, nn_srcptr poly, fmpz_t e, nn_srcptr f, slong lenf, nmod_t mod)

    Sets ``res`` to ``poly`` raised to the power ``e``
    modulo ``f``, using binary exponentiation. We require ``e > 0``.

    We require ``lenf > 1``. It is assumed that ``poly`` is already
    reduced modulo ``f`` and zero-padded as necessary to have length
    exactly ``lenf - 1``. The output ``res`` must have room for ``lenf - 1`` coefficients.

.. function:: void nmod_poly_powmod_fmpz_binexp(nmod_poly_t res, const nmod_poly_t poly, fmpz_t e, const nmod_poly_t f)

    Sets ``res`` to ``poly`` raised to the power ``e``
    modulo ``f``, using binary exponentiation. We require ``e >= 0``.

.. function:: void _nmod_poly_powmod_ui_binexp_preinv (nn_ptr res, nn_srcptr poly, ulong e, nn_srcptr f, slong lenf, nn_srcptr finv, slong lenfinv, nmod_t mod)

    Sets ``res`` to ``poly`` raised to the power ``e``
    modulo ``f``, using binary exponentiation. We require ``e > 0``.
    We require ``finv`` to be the inverse of the reverse of ``f``.

    We require ``lenf > 1``. It is assumed that ``poly`` is already
    reduced modulo ``f`` and zero-padded as necessary to have length
    exactly ``lenf - 1``. The output ``res`` must have room for
    ``lenf - 1`` coefficients.

.. function:: void nmod_poly_powmod_ui_binexp_preinv(nmod_poly_t res, const nmod_poly_t poly, ulong e, const nmod_poly_t f, const nmod_poly_t finv)

    Sets ``res`` to ``poly`` raised to the power ``e``
    modulo ``f``, using binary exponentiation. We require ``e >= 0``.
    We require ``finv`` to be the inverse of the reverse of ``f``.

.. function:: void _nmod_poly_powmod_fmpz_binexp_preinv (nn_ptr res, nn_srcptr poly, fmpz_t e, nn_srcptr f, slong lenf, nn_srcptr finv, slong lenfinv, nmod_t mod)

    Sets ``res`` to ``poly`` raised to the power ``e``
    modulo ``f``, using binary exponentiation. We require ``e > 0``.
    We require ``finv`` to be the inverse of the reverse of ``f``.

    We require ``lenf > 1``. It is assumed that ``poly`` is already
    reduced modulo ``f`` and zero-padded as necessary to have length
    exactly ``lenf - 1``. The output ``res`` must have room for
    ``lenf - 1`` coefficients.

.. function:: void nmod_poly_powmod_fmpz_binexp_preinv(nmod_poly_t res, const nmod_poly_t poly, fmpz_t e, const nmod_poly_t f, const nmod_poly_t finv)

    Sets ``res`` to ``poly`` raised to the power ``e``
    modulo ``f``, using binary exponentiation. We require ``e >= 0``.
    We require ``finv`` to be the inverse of the reverse of ``f``.

.. function:: void _nmod_poly_powmod_x_ui_preinv (nn_ptr res, ulong e, nn_srcptr f, slong lenf, nn_srcptr finv, slong lenfinv, nmod_t mod)

    Sets ``res`` to ``x`` raised to the power ``e`` modulo ``f``,
    using sliding window exponentiation. We require ``e > 0``.
    We require ``finv`` to be the inverse of the reverse of ``f``.

    We require ``lenf > 2``. The output ``res`` must have room for
    ``lenf - 1`` coefficients.

.. function:: void nmod_poly_powmod_x_ui_preinv(nmod_poly_t res, ulong e, const nmod_poly_t f, const nmod_poly_t finv)

    Sets ``res`` to ``x`` raised to the power ``e``
    modulo ``f``, using sliding window exponentiation. We require
    ``e >= 0``. We require ``finv`` to be the inverse of the reverse of
    ``f``.

.. function:: void _nmod_poly_powmod_x_fmpz_preinv (nn_ptr res, fmpz_t e, nn_srcptr f, slong lenf, nn_srcptr finv, slong lenfinv, nmod_t mod)

    Sets ``res`` to ``x`` raised to the power ``e`` modulo ``f``,
    using sliding window exponentiation. We require ``e > 0``.
    We require ``finv`` to be the inverse of the reverse of ``f``.

    We require ``lenf > 2``. The output ``res`` must have room for
    ``lenf - 1`` coefficients.

.. function:: void nmod_poly_powmod_x_fmpz_preinv(nmod_poly_t res, fmpz_t e, const nmod_poly_t f, const nmod_poly_t finv)

    Sets ``res`` to ``x`` raised to the power ``e``
    modulo ``f``, using sliding window exponentiation. We require
    ``e >= 0``. We require ``finv`` to be the inverse of the reverse of
    ``f``.

.. function:: void _nmod_poly_powers_mod_preinv_naive(nn_ptr * res, nn_srcptr f, slong flen, slong n, nn_srcptr g, slong glen, nn_srcptr ginv, slong ginvlen, const nmod_t mod)

    Compute ``f^0, f^1, ..., f^(n-1) mod g``, where ``g`` has length ``glen``
    and ``f`` is reduced mod ``g`` and has length ``flen`` (possibly zero
    spaced). Assumes ``res`` is an array of ``n`` arrays each with space for
    at least ``glen - 1`` coefficients and that ``flen > 0``. We require that
    ``ginv`` of length ``ginvlen`` is set to the power series inverse of the
    reverse of ``g``.

.. function:: void nmod_poly_powers_mod_naive(nmod_poly_struct * res, const nmod_poly_t f, slong n, const nmod_poly_t g)

    Set the entries of the array ``res`` to ``f^0, f^1, ..., f^(n-1) mod g``.
    No aliasing is permitted between the entries of ``res`` and either of the
    inputs.

.. function:: void _nmod_poly_powers_mod_preinv_threaded_pool(nn_ptr * res, nn_srcptr f, slong flen, slong n, nn_srcptr g, slong glen, nn_srcptr ginv, slong ginvlen, const nmod_t mod, thread_pool_handle * threads, slong num_threads)

    Compute ``f^0, f^1, ..., f^(n-1) mod g``, where ``g`` has length ``glen``
    and ``f`` is reduced mod ``g`` and has length ``flen`` (possibly zero
    spaced). Assumes ``res`` is an array of ``n`` arrays each with space for
    at least ``glen - 1`` coefficients and that ``flen > 0``. We require that
    ``ginv`` of length ``ginvlen`` is set to the power series inverse of the
    reverse of ``g``.

.. function:: void _nmod_poly_powers_mod_preinv_threaded(nn_ptr * res, nn_srcptr f, slong flen, slong n, nn_srcptr g, slong glen, nn_srcptr ginv, slong ginvlen, const nmod_t mod)

    Compute ``f^0, f^1, ..., f^(n-1) mod g``, where ``g`` has length ``glen``
    and ``f`` is reduced mod ``g`` and has length ``flen`` (possibly zero
    spaced). Assumes ``res`` is an array of ``n`` arrays each with space for
    at least ``glen - 1`` coefficients and that ``flen > 0``. We require that
    ``ginv`` of length ``ginvlen`` is set to the power series inverse of the
    reverse of ``g``.

.. function:: void nmod_poly_powers_mod_bsgs(nmod_poly_struct * res, const nmod_poly_t f, slong n, const nmod_poly_t g)

    Set the entries of the array ``res`` to ``f^0, f^1, ..., f^(n-1) mod g``.
    No aliasing is permitted between the entries of ``res`` and either of the
    inputs.

Division
--------------------------------------------------------------------------------


.. function:: void _nmod_poly_divrem_basecase(nn_ptr Q, nn_ptr R, nn_srcptr A, slong A_len, nn_srcptr B, slong B_len, nmod_t mod)

    Finds `Q` and `R` such that `A = B Q + R` with `\operatorname{len}(R) < \operatorname{len}(B)`.
    If `\operatorname{len}(B) = 0` an exception is raised. We require that ``W``
    is temporary space of ``NMOD_DIVREM_BC_ITCH(A_len, B_len, mod)``
    coefficients.

.. function:: void nmod_poly_divrem_basecase(nmod_poly_t Q, nmod_poly_t R, const nmod_poly_t A, const nmod_poly_t B)

    Finds `Q` and `R` such that `A = B Q + R` with `\operatorname{len}(R) < \operatorname{len}(B)`.
    If `\operatorname{len}(B) = 0` an exception is raised.

.. function:: void _nmod_poly_divrem(nn_ptr Q, nn_ptr R, nn_srcptr A, slong lenA, nn_srcptr B, slong lenB, nmod_t mod)

    Computes `Q` and `R` such that `A = BQ + R` with `\operatorname{len}(R)` less than
    ``lenB``, where ``A`` is of length ``lenA`` and ``B`` is of
    length ``lenB``. We require that ``Q`` have space for
    ``lenA - lenB + 1`` coefficients.

.. function:: void nmod_poly_divrem(nmod_poly_t Q, nmod_poly_t R, const nmod_poly_t A, const nmod_poly_t B)

    Computes `Q` and `R` such that `A = BQ + R` with `\operatorname{len}(R) < \operatorname{len}(B)`.

.. function:: void _nmod_poly_div(nn_ptr Q, nn_srcptr A, slong lenA, nn_srcptr B, slong lenB, nmod_t mod)

    Notionally computes polynomials `Q` and `R` such that `A = BQ + R` with
    `\operatorname{len}(R)` less than ``lenB``, where ``A`` is of length ``lenA``
    and ``B`` is of length ``lenB``, but returns only ``Q``. We
    require that ``Q`` have space for ``lenA - lenB + 1`` coefficients.

.. function:: void nmod_poly_div(nmod_poly_t Q, const nmod_poly_t A, const nmod_poly_t B)

    Computes the quotient `Q` on polynomial division of `A` and `B`.

.. function:: void _nmod_poly_rem_q1(nn_ptr R, nn_srcptr A, slong lenA, nn_srcptr B, slong lenB, nmod_t mod)

.. function:: void _nmod_poly_rem(nn_ptr R, nn_srcptr A, slong lenA, nn_srcptr B, slong lenB, nmod_t mod)

    Computes the remainder `R` on polynomial division of `A` by `B`.

.. function:: void nmod_poly_rem(nmod_poly_t R, const nmod_poly_t A, const nmod_poly_t B)

    Computes the remainder `R` on polynomial division of `A` by `B`.

.. function:: void _nmod_poly_divexact(nn_ptr Q, nn_srcptr A, slong lenA, nn_srcptr B, slong lenB, nmod_t mod)
              void nmod_poly_divexact(nmod_poly_t Q, const nmod_poly_t A, const nmod_poly_t B)

    Computes the quotient `Q` of `A` and `B` assuming that the division
    is exact.

.. function:: void _nmod_poly_inv_series_basecase(nn_ptr Qinv, nn_srcptr Q, slong Qlen, slong n, nmod_t mod)

    Given ``Q`` of length ``Qlen`` whose leading coefficient is invertible
    modulo the given modulus, finds a polynomial ``Qinv`` of length ``n``
    such that the top ``n`` coefficients of the product ``Q * Qinv`` is
    `x^{n - 1}`. Requires that ``n > 0``. This function can be viewed as
    inverting a power series.

.. function:: void nmod_poly_inv_series_basecase(nmod_poly_t Qinv, const nmod_poly_t Q, slong n)

    Given ``Q`` of length at least ``n`` find ``Qinv`` of length
    ``n`` such that the top ``n`` coefficients of the product
    ``Q * Qinv`` is `x^{n - 1}`. An exception is raised if ``n = 0``
    or if the length of ``Q`` is less than ``n``. The leading
    coefficient of ``Q`` must be invertible modulo the modulus of
    ``Q``. This function can be viewed as inverting a power series.

.. function:: void _nmod_poly_inv_series_newton(nn_ptr Qinv, nn_srcptr Q, slong Qlen, slong n, nmod_t mod)

    Given ``Q`` of length ``Qlen`` whose constant coefficient is invertible
    modulo the given modulus, find a polynomial ``Qinv`` of length ``n``
    such that ``Q * Qinv`` is ``1`` modulo `x^n`. Requires ``n > 0``.
    This function can be viewed as inverting a power series via Newton
    iteration.

.. function:: void nmod_poly_inv_series_newton(nmod_poly_t Qinv, const nmod_poly_t Q, slong n)

    Given ``Q`` find ``Qinv`` such that ``Q * Qinv`` is ``1``
    modulo `x^n`. The constant coefficient of ``Q`` must be invertible
    modulo the modulus of ``Q``. An exception is raised if this is not
    the case or if ``n = 0``. This function can be viewed as inverting
    a power series via Newton iteration.

.. function:: void _nmod_poly_inv_series(nn_ptr Qinv, nn_srcptr Q, slong Qlen, slong n, nmod_t mod)

    Given ``Q`` of length ``Qlenn`` whose constant coefficient is invertible
    modulo the given modulus, find a polynomial ``Qinv`` of length ``n``
    such that ``Q * Qinv`` is ``1`` modulo `x^n`. Requires ``n > 0``.
    This function can be viewed as inverting a power series.

.. function:: void nmod_poly_inv_series(nmod_poly_t Qinv, const nmod_poly_t Q, slong n)

    Given ``Q`` find ``Qinv`` such that ``Q * Qinv`` is ``1``
    modulo `x^n`. The constant coefficient of ``Q`` must be invertible
    modulo the modulus of ``Q``. An exception is raised if this is not
    the case or if ``n = 0``. This function can be viewed as inverting
    a power series.

.. function:: void _nmod_poly_div_series_basecase(nn_ptr Q, nn_srcptr A, slong Alen, nn_srcptr B, slong Blen, slong n, nmod_t mod)

    Given polynomials ``A`` and ``B`` of length ``Alen`` and
    ``Blen``, finds the
    polynomial ``Q`` of length ``n`` such that ``Q * B = A``
    modulo `x^n`. We assume ``n > 0`` and that the constant coefficient
    of ``B`` is invertible modulo the given modulus. The polynomial
    ``Q`` must have space for ``n`` coefficients.

.. function:: void nmod_poly_div_series_basecase(nmod_poly_t Q, const nmod_poly_t A, const nmod_poly_t B, slong n)

    Given polynomials ``A`` and ``B`` considered modulo ``n``,
    finds the polynomial ``Q`` of length at most ``n`` such that
    ``Q * B = A`` modulo `x^n`. We assume ``n > 0`` and that the
    constant coefficient of ``B`` is invertible modulo the modulus.
    An exception is raised if ``n == 0`` or the constant coefficient
    of ``B`` is zero.

.. function:: void _nmod_poly_div_series(nn_ptr Q, nn_srcptr A, slong Alen, nn_srcptr B, slong Blen, slong n, nmod_t mod)

    Given polynomials ``A`` and ``B`` of length ``Alen`` and
    ``Blen``, finds the
    polynomial ``Q`` of length ``n`` such that ``Q * B = A``
    modulo `x^n`. We assume ``n > 0`` and that the constant coefficient
    of ``B`` is invertible modulo the given modulus. The polynomial
    ``Q`` must have space for ``n`` coefficients.

.. function:: void nmod_poly_div_series(nmod_poly_t Q, const nmod_poly_t A, const nmod_poly_t B, slong n)

    Given polynomials ``A`` and ``B`` considered modulo ``n``,
    finds the polynomial ``Q`` of length at most ``n`` such that
    ``Q * B = A`` modulo `x^n`. We assume ``n > 0`` and that the
    constant coefficient of ``B`` is invertible modulo the modulus.
    An exception is raised if ``n == 0`` or the constant coefficient
    of ``B`` is zero.

.. function:: void _nmod_poly_div_newton_n_preinv (nn_ptr Q, nn_srcptr A, slong lenA, nn_srcptr B, slong lenB, nn_srcptr Binv, slong lenBinv, nmod_t mod)

    Notionally computes polynomials `Q` and `R` such that `A = BQ + R` with
    `\operatorname{len}(R)` less than ``lenB``, where ``A`` is of length ``lenA``
    and ``B`` is of length ``lenB``, but return only `Q`.

    We require that `Q` have space for ``lenA - lenB + 1`` coefficients
    and assume that the leading coefficient of `B` is a unit. Furthermore, we
    assume that `Binv` is the inverse of the reverse of `B` mod `x^{\operatorname{len}(B)}`.

    The algorithm used is to reverse the polynomials and divide the
    resulting power series, then reverse the result.

.. function:: void nmod_poly_div_newton_n_preinv (nmod_poly_t Q, const nmod_poly_t A, const nmod_poly_t B, const nmod_poly_t Binv)

    Notionally computes `Q` and `R` such that `A = BQ + R` with
    `\operatorname{len}(R) < \operatorname{len}(B)`, but returns only `Q`.

    We assume that the leading coefficient of `B` is a unit and that `Binv` is
    the inverse of the reverse of `B` mod `x^{\operatorname{len}(B)}`.

    It is required that the length of `A` is less than or equal to
    2*the length of `B` - 2.

    The algorithm used is to reverse the polynomials and divide the
    resulting power series, then reverse the result.

.. function:: void _nmod_poly_divrem_newton_n_preinv (nn_ptr Q, nn_ptr R, nn_srcptr A, slong lenA, nn_srcptr B, slong lenB, nn_srcptr Binv, slong lenBinv, nmod_t mod)

    Computes `Q` and `R` such that `A = BQ + R` with `\operatorname{len}(R)` less than
    ``lenB``, where `A` is of length ``lenA`` and `B` is of length
    ``lenB``. We require that `Q` have space for ``lenA - lenB + 1``
    coefficients. Furthermore, we assume that `Binv` is the inverse of the
    reverse of `B` mod `x^{\operatorname{len}(B)}`. The algorithm used is to call
    :func:`div_newton_n_preinv` and then multiply out and compute
    the remainder.

.. function:: void nmod_poly_divrem_newton_n_preinv(nmod_poly_t Q, nmod_poly_t R, const nmod_poly_t A, const nmod_poly_t B, const nmod_poly_t Binv)

    Computes `Q` and `R` such that `A = BQ + R` with `\operatorname{len}(R) < \operatorname{len}(B)`.
    We assume `Binv` is the inverse of the reverse of `B` mod `x^{\operatorname{len}(B)}`.

    It is required that the length of `A` is less than or equal to
    2*the length of `B` - 2.

    The algorithm used is to call :func:`div_newton_n` and then multiply out
    and compute the remainder.

.. function:: ulong _nmod_poly_div_root(nn_ptr Q, nn_srcptr A, slong len, ulong c, nmod_t mod)

    Sets ``(Q, len-1)`` to the quotient of ``(A, len)`` on division
    by `(x - c)`, and returns the remainder, equal to the value of `A`
    evaluated at `c`. `A` and `Q` are allowed to be the same, but may
    not overlap partially in any other way.

.. function:: ulong nmod_poly_div_root(nmod_poly_t Q, const nmod_poly_t A, ulong c)

    Sets `Q` to the quotient of `A` on division by `(x - c)`, and returns
    the remainder, equal to the value of `A` evaluated at `c`.


Divisibility testing
--------------------------------------------------------------------------------


.. function:: int _nmod_poly_divides_classical(nn_ptr Q, nn_srcptr A, slong lenA, nn_srcptr B, slong lenB, nmod_t mod)

    Returns `1` if `(B, lenB)` divides `(A, lenA)` and sets
    `(Q, lenA - lenB + 1)` to the quotient. Otherwise, returns `0` and sets
    `(Q, lenA - lenB + 1)` to zero. We require that `lenA >= lenB > 0`.

.. function:: int nmod_poly_divides_classical(nmod_poly_t Q, const nmod_poly_t A, const nmod_poly_t B)

    Returns `1` if `B` divides `A` and sets `Q` to the quotient. Otherwise
    returns `0` and sets `Q` to zero.

.. function:: int _nmod_poly_divides(nn_ptr Q, nn_srcptr A, slong lenA, nn_srcptr B, slong lenB, nmod_t mod)

    Returns `1` if `(B, lenB)` divides `(A, lenA)` and sets
    `(Q, lenA - lenB + 1)` to the quotient. Otherwise, returns `0` and sets
    `(Q, lenA - lenB + 1)` to zero. We require that `lenA >= lenB > 0`.

.. function:: int nmod_poly_divides(nmod_poly_t Q, const nmod_poly_t A, const nmod_poly_t B)

    Returns `1` if `B` divides `A` and sets `Q` to the quotient. Otherwise
    returns `0` and sets `Q` to zero.

.. function:: ulong nmod_poly_remove(nmod_poly_t f, const nmod_poly_t p)

    Removes the highest possible power of ``p`` from ``f`` and
    returns the exponent.


Derivative and integral
--------------------------------------------------------------------------------


.. function:: void _nmod_poly_derivative(nn_ptr x_prime, nn_srcptr x, slong len, nmod_t mod)

    Sets the first ``len - 1`` coefficients of ``x_prime`` to the
    derivative of ``x`` which is assumed to be of length ``len``.
    It is assumed that ``len > 0``.

.. function:: void nmod_poly_derivative(nmod_poly_t x_prime, const nmod_poly_t x)

    Sets ``x_prime`` to the derivative of ``x``.

.. function:: void _nmod_poly_integral(nn_ptr x_int, nn_srcptr x, slong len, nmod_t mod)

    Set the first ``len`` coefficients of ``x_int`` to the
    integral of ``x`` which is assumed to be of length ``len - 1``.
    The constant term of ``x_int`` is set to zero.
    It is assumed that ``len > 0``. The result is only well-defined
    if the modulus is a prime number strictly larger than the degree of
    ``x``. Supports aliasing between the two polynomials.

.. function:: void nmod_poly_integral(nmod_poly_t x_int, const nmod_poly_t x)

    Set ``x_int`` to the indefinite integral of ``x`` with constant
    term zero. The result is only well-defined if the modulus
    is a prime number strictly larger than the degree of ``x``.



Evaluation
--------------------------------------------------------------------------------


.. function:: ulong _nmod_poly_evaluate_nmod_precomp(nn_srcptr poly, slong len, ulong c, ulong c_precomp, ulong n)

    Evaluates ``poly`` at the value ``c`` and reduces modulo the given modulus
    ``modn``. The value ``c`` should be reduced modulo the modulus, and the
    modulus must be less than `2^{\mathtt{FLINT\_BITS} - 1}`. The algorithm
    used is Horner's method, with multiplications done via
    :func:`n_mulmod_shoup` using the precomputed ``c_precomp`` obtained via
    :func:`n_mulmod_precomp_shoup`.

.. function:: ulong _nmod_poly_evaluate_nmod_precomp_lazy(nn_srcptr poly, slong len, ulong c, ulong c_precomp, ulong n)

    Evaluates ``poly`` at the value ``c`` modulo ``n``, with lazy reductions
    modulo `n`. Precisely, if all coefficients of ``poly`` are less than `m`,
    the input requirement is `m \le 2^{\mathtt{FLINT\_BITS}} - 2n + 1`, and the
    output value is in `[0, m+2n-1)` and equal to the sought evaluation modulo
    `n`. In particular the coefficients of ``poly`` need not be reduced modulo
    ``n``, and the output may not be either. However, the value ``c`` should be
    reduced modulo `n`.

    In the case where `m = n` (coefficients of ``poly`` are reduced modulo
    `n`), then the above leads to the requirement `3n-1 \le
    2^{\mathtt{FLINT\_BITS}}` (this is `n \le 6148914691236517205` for 64 bits,
    and `n \le 1431655765` for 32 bits), and reducing the output just amounts
    to subtracting `n` or `2n`. The algorithm used is Horner's method, with
    multiplications done as in :func:`n_mulmod_shoup` using the precomputed
    ``c_precomp`` obtained via :func:`n_mulmod_precomp_shoup`.

.. function:: ulong _nmod_poly_evaluate_nmod(nn_srcptr poly, slong len, ulong c, nmod_t mod)

    Evaluates ``poly`` at the value ``c`` and reduces modulo the given modulus
    of ``poly``. The value ``c`` should be reduced modulo the modulus. The
    algorithm used is Horner's method, with multiplications done via
    :func:`nmod_mul`.

.. function:: ulong nmod_poly_evaluate_nmod(const nmod_poly_t poly, ulong c)

    Evaluates ``poly`` at the value ``c`` and reduces modulo the modulus of
    ``poly``. The value ``c`` should be reduced modulo the modulus. The
    algorithm used is Horner's method, with multiplications and additions done
    differently depending on the modulus ``poly->mod`` and on the degree (calls
    one of :func:`_nmod_poly_evaluate_nmod`,
    :func:`_nmod_poly_evaluate_nmod_precomp`,
    :func:`_nmod_poly_evaluate_nmod_precomp_lazy`).

.. function:: void nmod_poly_evaluate_mat_horner(nmod_mat_t dest, const nmod_poly_t poly, const nmod_mat_t c)

    Evaluates ``poly`` with matrix as an argument at the value ``c``
    and stores the result in ``dest``. The dimension and modulus of
    ``dest`` is assumed to be same as that of ``c``. ``dest`` and
    ``c`` may be aliased. Horner's Method is used to compute the result.

.. function:: void nmod_poly_evaluate_mat_paterson_stockmeyer(nmod_mat_t dest, const nmod_poly_t poly, const nmod_mat_t c)

    Evaluates ``poly`` with matrix as an argument at the value ``c``
    and stores the result in ``dest``. The dimension and modulus of
    ``dest`` is assumed to be same as that of ``c``. ``dest`` and
    ``c`` may be aliased. Paterson-Stockmeyer algorithm is used to compute
    the result. The algorithm is described in [Paterson1973]_.

.. function:: void nmod_poly_evaluate_mat(nmod_mat_t dest, const nmod_poly_t poly, const nmod_mat_t c)

    Evaluates ``poly`` with matrix as an argument at the value ``c``
    and stores the result in ``dest``. The dimension and modulus of
    ``dest`` is assumed to be same as that of ``c``. ``dest`` and
    ``c`` may be aliased. This function automatically switches between
    Horner's method and the Paterson-Stockmeyer algorithm.


Multipoint evaluation
--------------------------------------------------------------------------------


.. function:: void _nmod_poly_evaluate_nmod_vec_iter(nn_ptr ys, nn_srcptr poly, slong len, nn_srcptr xs, slong n, nmod_t mod)

    Evaluates (``coeffs``, ``len``) at the ``n`` values
    given in the vector ``xs``, writing the output values
    to ``ys``. The values in ``xs`` should be reduced
    modulo the modulus.

    Uses Horner's method iteratively.

.. function:: void nmod_poly_evaluate_nmod_vec_iter(nn_ptr ys, const nmod_poly_t poly, nn_srcptr xs, slong n)

    Evaluates ``poly`` at the ``n`` values given in the vector
    ``xs``, writing the output values to ``ys``. The values in
    ``xs`` should be reduced modulo the modulus.

    Uses Horner's method iteratively.

.. function:: void _nmod_poly_evaluate_nmod_vec_fast_precomp(nn_ptr vs, nn_srcptr poly, slong plen, const nn_ptr * tree, slong len, nmod_t mod)

    Evaluates (``poly``, ``plen``) at the ``len`` values given
    by the precomputed subproduct tree ``tree``.

.. function:: void _nmod_poly_evaluate_nmod_vec_fast(nn_ptr ys, nn_srcptr poly, slong len, nn_srcptr xs, slong n, nmod_t mod)

    Evaluates (``coeffs``, ``len``) at the ``n`` values
    given in the vector ``xs``, writing the output values
    to ``ys``. The values in ``xs`` should be reduced
    modulo the modulus.

    Uses fast multipoint evaluation, building a temporary subproduct tree.

.. function:: void nmod_poly_evaluate_nmod_vec_fast(nn_ptr ys, const nmod_poly_t poly, nn_srcptr xs, slong n)

    Evaluates ``poly`` at the ``n`` values given in the vector
    ``xs``, writing the output values to ``ys``. The values in
    ``xs`` should be reduced modulo the modulus.

    Uses fast multipoint evaluation, building a temporary subproduct tree.

.. function:: void _nmod_poly_evaluate_nmod_vec(nn_ptr ys, nn_srcptr poly, slong len, nn_srcptr xs, slong n, nmod_t mod)

    Evaluates (``poly``, ``len``) at the ``n`` values
    given in the vector ``xs``, writing the output values
    to ``ys``. The values in ``xs`` should be reduced
    modulo the modulus.

.. function:: void nmod_poly_evaluate_nmod_vec(nn_ptr ys, const nmod_poly_t poly, nn_srcptr xs, slong n)

    Evaluates ``poly`` at the ``n`` values given in the vector
    ``xs``, writing the output values to ``ys``. The values in
    ``xs`` should be reduced modulo the modulus.

.. function:: void _nmod_poly_evaluate_geometric_nmod_vec_iter(nn_ptr ys, nn_srcptr coeffs, slong len, ulong r, slong n, nmod_t mod)

    Evaluates (``coeffs``, ``len``) at the first ``n`` powers
    of the square of ``r``, writing the output values
    to ``ys``. The value of ``r`` should be reduced
    modulo the modulus.

    Uses Horner's method iteratively.

.. function:: void nmod_poly_evaluate_geometric_nmod_vec_iter(nn_ptr ys, const nmod_poly_t poly, ulong r, slong n)

    Evaluates ``poly`` at the first ``n`` powers
    of the square of ``r``, writing the output values
    to ``ys``. The value of ``r`` should be reduced
    modulo the modulus.

    Uses Horner's method iteratively.

.. function:: void _nmod_poly_evaluate_geometric_nmod_vec_fast_precomp(nn_ptr vs, nn_srcptr poly, slong plen, const nmod_geometric_progression_t G, slong len)

    Evaluates (``poly``, ``plen``) at the ``len`` values given
    by the precomputed geometric progression ``G``. The value of
    ``len`` should be less than or equal to the precomputation size parameter ``G->len``.

.. function:: void _nmod_poly_evaluate_geometric_nmod_vec_fast(nn_ptr ys, nn_srcptr coeffs, slong len, ulong r, slong n, nmod_t mod)

    Evaluates (``coeffs``, ``len``) at the first ``n`` powers
    of the square of ``r``, writing the output values to ``ys``. 
    The value of ``r`` should be reduced modulo the modulus ``mod``
    and of sufficient multiplicative order such that none of 
    the first `n` powers of `r^2` is one.

    Uses fast geometric multipoint evaluation, building a temporary geometric progression precomputation.

.. function:: void nmod_poly_evaluate_geometric_nmod_vec_fast(nn_ptr ys, const nmod_poly_t poly, ulong r, slong n)

    Evaluates ``poly``  at the first ``n`` powers
    of the square of ``r``, writing the output values to ``ys``. 
    The value of ``r`` should be reduced modulo the modulus of the polynomial
    and of sufficient multiplicative order such that none of 
    the first `n` powers of `r^2` is one.

    Uses fast geometric multipoint evaluation, building a temporary geometric progression precomputation.

Interpolation
--------------------------------------------------------------------------------


.. function:: void _nmod_poly_interpolate_nmod_vec(nn_ptr poly, nn_srcptr xs, nn_srcptr ys, slong n, nmod_t mod)

    Sets ``poly`` to the unique polynomial of length at most ``n``
    that interpolates the ``n`` given evaluation points ``xs`` and
    values ``ys``. If the interpolating polynomial is shorter than
    length ``n``, the leading coefficients are set to zero.

    The values in ``xs`` and ``ys`` should be reduced modulo the
    modulus, and all ``xs`` must be distinct. Aliasing between
    ``poly`` and ``xs`` or ``ys`` is not allowed.

.. function:: void nmod_poly_interpolate_nmod_vec(nmod_poly_t poly, nn_srcptr xs, nn_srcptr ys, slong n)

    Sets ``poly`` to the unique polynomial of length ``n`` that
    interpolates the ``n`` given evaluation points ``xs`` and
    values ``ys``. The values in ``xs`` and ``ys`` should be
    reduced modulo the modulus, and all ``xs`` must be distinct.

.. function:: void _nmod_poly_interpolation_weights(nn_ptr w, const nn_ptr * tree, slong len, nmod_t mod)

    Sets ``w`` to the barycentric interpolation weights for fast
    Lagrange interpolation with respect to a given subproduct tree.

.. function:: void _nmod_poly_interpolate_nmod_vec_fast_precomp(nn_ptr poly, nn_srcptr ys, const nn_ptr * tree, nn_srcptr weights, slong len, nmod_t mod)

    Performs interpolation using the fast Lagrange interpolation
    algorithm, generating a temporary subproduct tree.

    The function values are given as ``ys``. The function takes
    a precomputed subproduct tree ``tree`` and barycentric
    interpolation weights ``weights`` corresponding to the
    roots.

.. function:: void _nmod_poly_interpolate_nmod_vec_fast(nn_ptr poly, nn_srcptr xs, nn_srcptr ys, slong n, nmod_t mod)

    Performs interpolation using the fast Lagrange interpolation
    algorithm, generating a temporary subproduct tree.

.. function:: void nmod_poly_interpolate_nmod_vec_fast(nmod_poly_t poly, nn_srcptr xs, nn_srcptr ys, slong n)

    Performs interpolation using the fast Lagrange interpolation algorithm,
    generating a temporary subproduct tree.

.. function:: void _nmod_poly_interpolate_nmod_vec_newton(nn_ptr poly, nn_srcptr xs, nn_srcptr ys, slong n, nmod_t mod)

    Forms the interpolating polynomial in the Newton basis using
    the method of divided differences and then converts it to
    monomial form.

.. function:: void nmod_poly_interpolate_nmod_vec_newton(nmod_poly_t poly, nn_srcptr xs, nn_srcptr ys, slong n)

    Forms the interpolating polynomial in the Newton basis using
    the method of divided differences and then converts it to
    monomial form.

.. function:: void _nmod_poly_interpolate_nmod_vec_barycentric(nn_ptr poly, nn_srcptr xs, nn_srcptr ys, slong n, nmod_t mod)

    Forms the interpolating polynomial using a naive implementation
    of the barycentric form of Lagrange interpolation.

.. function:: void nmod_poly_interpolate_nmod_vec_barycentric(nmod_poly_t poly, nn_srcptr xs, nn_srcptr ys, slong n)

    Forms the interpolating polynomial using a naive implementation
    of the barycentric form of Lagrange interpolation.

.. function:: void _nmod_poly_interpolate_geometric_nmod_vec_fast_precomp(nn_ptr poly, nn_srcptr v, const nmod_geometric_progression_t G, slong len, nmod_t mod)
              void nmod_poly_interpolate_geometric_nmod_vec_fast_precomp(nmod_poly_t poly, nn_srcptr v, const nmod_geometric_progression_t G, slong len)

    Performs interpolation using the geometric progression precomputation ``G``.

    Sets ``poly`` to the unique polynomial of length at most ``len``
    that interpolates according to the parameter set of ``G``.
    The value of ``len`` should be equal to the precomputation size parameter ``G->len``.

    Uses fast geometric multipoint interpolation using a supplied geometric progression precomputation.

.. function:: void nmod_poly_interpolate_geometric_nmod_vec_fast(nmod_poly_t poly, ulong r, nn_srcptr ys, slong n)

    Sets ``poly`` to the unique polynomial of length at most ``n``
    that interpolates the first ``n`` powers of ``r`` and
    values ``ys``.

    The values ``ys`` and ``r`` should be reduced modulo the
    modulus, and all ``r`` should be of sufficient order such that
    none of the first `n` powers of `r^2` is one. Aliasing between
    ``poly`` and ``ys`` is not allowed.

    Uses fast geometric multipoint interpolation, building a temporary geometric progression precomputation.

    
Composition
--------------------------------------------------------------------------------


.. function:: void _nmod_poly_compose_horner(nn_ptr res, nn_srcptr poly1, slong len1, nn_srcptr poly2, slong len2, nmod_t mod)

    Composes ``poly1`` of length ``len1`` with ``poly2`` of length
    ``len2`` and sets ``res`` to the result, i.e. evaluates
    ``poly1`` at ``poly2``. The algorithm used is Horner's algorithm.
    We require that ``res`` have space for ``(len1 - 1)*(len2 - 1) + 1``
    coefficients. It is assumed that ``len1 > 0`` and ``len2 > 0``.

.. function:: void nmod_poly_compose_horner(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2)

    Composes ``poly1`` with ``poly2`` and sets ``res`` to the result,
    i.e. evaluates ``poly1`` at ``poly2``. The algorithm used is
    Horner's algorithm.

.. function:: void _nmod_poly_compose_divconquer(nn_ptr res, nn_srcptr poly1, slong len1, nn_srcptr poly2, slong len2, nmod_t mod)

    Composes ``poly1`` of length ``len1`` with ``poly2`` of length
    ``len2`` and sets ``res`` to the result, i.e. evaluates
    ``poly1`` at ``poly2``. The algorithm used is the divide and
    conquer algorithm. We require that ``res`` have space for
    ``(len1 - 1)*(len2 - 1) + 1`` coefficients. It is assumed that
    ``len1 > 0`` and ``len2 > 0``.

.. function:: void nmod_poly_compose_divconquer(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2)

    Composes ``poly1`` with ``poly2`` and sets ``res`` to the result,
    i.e. evaluates ``poly1`` at ``poly2``. The algorithm used is
    the divide and conquer algorithm.

.. function:: void _nmod_poly_compose(nn_ptr res, nn_srcptr poly1, slong len1, nn_srcptr poly2, slong len2, nmod_t mod)

    Composes ``poly1`` of length ``len1`` with ``poly2`` of length
    ``len2`` and sets ``res`` to the result, i.e. evaluates ``poly1``
    at ``poly2``. We require that ``res`` have space for
    ``(len1 - 1)*(len2 - 1) + 1`` coefficients. It is assumed that
    ``len1 > 0`` and ``len2 > 0``.

.. function:: void nmod_poly_compose(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2)

    Composes ``poly1`` with ``poly2`` and sets ``res`` to the result,
    that is, evaluates ``poly1`` at ``poly2``.


Taylor shift
--------------------------------------------------------------------------------


.. function:: void _nmod_poly_taylor_shift_horner(nn_ptr poly, ulong c, slong len, nmod_t mod)

    Performs the Taylor shift composing ``poly`` by `x+c` in-place.
    Uses an efficient version Horner's rule.

.. function:: void nmod_poly_taylor_shift_horner(nmod_poly_t g, const nmod_poly_t f, ulong c)

    Performs the Taylor shift composing ``f`` by `x+c`.

.. function:: void _nmod_poly_taylor_shift_convolution(nn_ptr poly, ulong c, slong len, nmod_t mod)

    Performs the Taylor shift composing ``poly`` by `x+c` in-place.
    Writes the composition as a single convolution with cost `O(M(n))`.
    We require that the modulus is a prime at least as large as the length.

.. function:: void nmod_poly_taylor_shift_convolution(nmod_poly_t g, const nmod_poly_t f, ulong c)

    Performs the Taylor shift composing ``f`` by `x+c`.
    Writes the composition as a single convolution with cost `O(M(n))`.
    We require that the modulus is a prime at least as large as the length.

.. function:: void _nmod_poly_taylor_shift(nn_ptr poly, ulong c, slong len, nmod_t mod)

    Performs the Taylor shift composing ``poly`` by `x+c` in-place.
    We require that the modulus is a prime.

.. function:: void nmod_poly_taylor_shift(nmod_poly_t g, const nmod_poly_t f, ulong c)

    Performs the Taylor shift composing ``f`` by `x+c`.
    We require that the modulus is a prime.


Modular composition
--------------------------------------------------------------------------------


.. function:: void _nmod_poly_compose_mod_horner(nn_ptr res, nn_srcptr f, slong lenf, nn_srcptr g, nn_srcptr h, slong lenh, nmod_t mod)

    Sets ``res`` to the composition `f(g)` modulo `h`. We require that
    `h` is nonzero and that the length of `g` is one less than the
    length of `h` (possibly with zero padding). The output is not allowed
    to be aliased with any of the inputs.

    The algorithm used is Horner's rule.

.. function:: void nmod_poly_compose_mod_horner(nmod_poly_t res, const nmod_poly_t f, const nmod_poly_t g, const nmod_poly_t h)

    Sets ``res`` to the composition `f(g)` modulo `h`. We require that
    `h` is nonzero. The algorithm used is Horner's rule.

.. function:: void _nmod_poly_compose_mod_brent_kung(nn_ptr res, nn_srcptr f, slong lenf, nn_srcptr g, nn_srcptr h, slong lenh, nmod_t mod)

    Sets ``res`` to the composition `f(g)` modulo `h`. We require that
    `h` is nonzero and that the length of `g` is one less than the
    length of `h` (possibly with zero padding). We also require that
    the length of `f` is less than the length of `h`. The output is not allowed
    to be aliased with any of the inputs.

    The algorithm used is the Brent-Kung matrix algorithm.

.. function:: void nmod_poly_compose_mod_brent_kung(nmod_poly_t res, const nmod_poly_t f, const nmod_poly_t g, const nmod_poly_t h)

    Sets ``res`` to the composition `f(g)` modulo `h`. We require that
    `h` is nonzero and that `f` has smaller degree than `h`.
    The algorithm used is the Brent-Kung matrix algorithm.

.. function:: void _nmod_poly_compose_mod_brent_kung_preinv(nn_ptr res, nn_srcptr f, slong lenf, nn_srcptr g, nn_srcptr h, slong lenh, nn_srcptr hinv, slong lenhinv, nmod_t mod)

    Sets ``res`` to the composition `f(g)` modulo `h`. We require that
    `h` is nonzero and that the length of `g` is one less than the
    length of `h` (possibly with zero padding). We also require that
    the length of `f` is less than the length of `h`. Furthermore, we require
    ``hinv`` to be the inverse of the reverse of ``h``.
    The output is not allowed to be aliased with any of the inputs.

    The algorithm used is the Brent-Kung matrix algorithm.

.. function:: void nmod_poly_compose_mod_brent_kung_preinv(nmod_poly_t res, const nmod_poly_t f, const nmod_poly_t g, const nmod_poly_t h, const nmod_poly_t hinv)

    Sets ``res`` to the composition `f(g)` modulo `h`. We require that
    `h` is nonzero and that `f` has smaller degree than `h`. Furthermore,
    we require ``hinv`` to be the inverse of the reverse of ``h``.
    The algorithm used is the Brent-Kung matrix algorithm.

.. function:: void _nmod_poly_mod_matrix_rows_evaluate(nn_ptr res, const nmod_mat_t A, nn_srcptr h, slong n, nn_srcptr poly3, slong len3, nn_srcptr poly3inv, slong len3inv, nmod_t mod)

    Set ``res`` to the polynomial `\sum_{i=0}^{d-1} A_i h^i` modulo ``poly3`` where `A_i`
    denotes the `i`-th row of the `d \times n` matrix ``A``
    and ``res`` and ``h`` have length ``n``. The length of ``poly3`` must
    be equal to ``n + 1``.

.. function:: void _nmod_poly_reduce_matrix_mod_poly (nmod_mat_t A, const nmod_mat_t B, const nmod_poly_t f)

    Sets the ith row of ``A`` to the reduction of the ith row of `B` modulo
    `f` for `i=1,\ldots,\sqrt{\deg(f)}`. We require `B` to be at least
    a `\sqrt{\deg(f)}\times \deg(f)` matrix and `f` to be nonzero.

.. function:: void _nmod_poly_precompute_matrix_worker (void * arg_ptr)

    Worker function version of ``_nmod_poly_precompute_matrix``.
    Input/output is stored in ``nmod_poly_matrix_precompute_arg_t``.

.. function:: void _nmod_poly_precompute_matrix (nmod_mat_t A, nn_srcptr f, nn_srcptr g, slong leng, nn_srcptr ginv, slong lenginv, nmod_t mod)

    Sets the ith row of ``A`` to `f^i` modulo `g` for
    `i=1,\ldots,\sqrt{\deg(g)}`. We require `A` to be
    a `\sqrt{\deg(g)}\times \deg(g)` matrix. We require
    ``ginv`` to be the inverse of the reverse of ``g`` and `g` to be
    nonzero. ``f`` has to be reduced modulo ``g`` and of length one less
    than ``leng`` (possibly with zero padding).

.. function:: void nmod_poly_precompute_matrix (nmod_mat_t A, const nmod_poly_t f, const nmod_poly_t g, const nmod_poly_t ginv)

    Sets the ith row of ``A`` to `f^i` modulo `g` for
    `i=1,\ldots,\sqrt{\deg(g)}`. We require `A` to be
    a `\sqrt{\deg(g)}\times \deg(g)` matrix. We require
    ``ginv`` to be the inverse of the reverse of ``g``.

.. function:: void _nmod_poly_compose_mod_brent_kung_precomp_preinv_worker(void * arg_ptr)

    Worker function version of
    ``_nmod_poly_compose_mod_brent_kung_precomp_preinv``.
    Input/output is stored in
    ``nmod_poly_compose_mod_precomp_preinv_arg_t``.

.. function:: void _nmod_poly_compose_mod_brent_kung_precomp_preinv(nn_ptr res, nn_srcptr f, slong lenf, const nmod_mat_t A, nn_srcptr h, slong lenh, nn_srcptr hinv, slong lenhinv, nmod_t mod)

    Sets ``res`` to the composition `f(g)` modulo `h`. We require that
    `h` is nonzero. We require that the ith row of `A` contains `g^i` for
    `i=1,\ldots,\sqrt{\deg(h)}`, i.e. `A` is a
    `\sqrt{\deg(h)}\times \deg(h)` matrix. We also require that
    the length of `f` is less than the length of `h`. Furthermore, we require
    ``hinv`` to be the inverse of the reverse of ``h``.
    The output is not allowed to be aliased with any of the inputs.

    The algorithm used is the Brent-Kung matrix algorithm.

.. function:: void nmod_poly_compose_mod_brent_kung_precomp_preinv(nmod_poly_t res, const nmod_poly_t f, const nmod_mat_t A, const nmod_poly_t h, const nmod_poly_t hinv)

    Sets ``res`` to the composition `f(g)` modulo `h`. We require that the
    ith row of `A` contains `g^i` for `i=1,\ldots,\sqrt{\deg(h)}`, i.e. `A` is a
    `\sqrt{\deg(h)}\times \deg(h)` matrix. We require that `h` is nonzero and
    that `f` has smaller degree than `h`. Furthermore, we require ``hinv`` to
    be the inverse of the reverse of ``h``. This version of Brent-Kung
    modular composition is particularly useful if one has to perform several
    modular composition of the form `f(g)` modulo `h` for fixed `g` and `h`.

.. function:: void _nmod_poly_compose_mod_brent_kung_vec_preinv(nmod_poly_struct * res, const nmod_poly_struct * polys, slong len1, slong l, nn_srcptr g, slong leng, nn_srcptr h, slong lenh, nn_srcptr hinv, slong lenhinv, nmod_t mod)

    Sets ``res`` to the composition `f_i(g)` modulo `h` for `1\leq i \leq l`,
    where `f_i` are the first ``l`` elements of ``polys``. We require that `h`
    is nonzero and that the length of `g` is less than the length of `h`. We
    also require that the length of `f_i` is less than the length of `h`. We
    require ``res`` to have enough memory allocated to hold ``l``
    ``nmod_poly_struct``'s. The entries of ``res`` need to be initialised and
    ``l`` needs to be less than ``len1`` Furthermore, we require ``hinv`` to
    be the inverse of the reverse of ``h``. The output is not allowed to be
    aliased with any of the inputs.

    The algorithm used is the Brent-Kung matrix algorithm.

.. function:: void nmod_poly_compose_mod_brent_kung_vec_preinv(nmod_poly_struct * res, const nmod_poly_struct * polys, slong len1, slong n, const nmod_poly_t g, const nmod_poly_t h, const nmod_poly_t hinv)

    Sets ``res`` to the composition `f_i(g)` modulo `h` for `1\leq i \leq n`
    where `f_i` are the first ``n`` elements of ``polys``. We require ``res``
    to have enough memory allocated to hold ``n`` ``nmod_poly_struct``. The
    entries of ``res`` need to be initialised and ``n`` needs to be less than
    ``len1``. We require that `h` is nonzero and that `f_i` and `g` have
    smaller degree than `h`. Furthermore, we require ``hinv`` to be the inverse
    of the reverse of ``h``. No aliasing of ``res`` and ``polys`` is allowed.
    The algorithm used is the Brent-Kung matrix algorithm.

.. function:: void _nmod_poly_compose_mod_brent_kung_vec_preinv_threaded_pool(nmod_poly_struct * res, const nmod_poly_struct * polys, slong lenpolys, slong l, nn_srcptr g, slong glen, nn_srcptr poly, slong len, nn_srcptr polyinv, slong leninv, nmod_t mod, thread_pool_handle * threads, slong num_threads)

    Multithreaded version of
    :func:`_nmod_poly_compose_mod_brent_kung_vec_preinv`. Distributing the
    Horner evaluations across :func:`flint_get_num_threads` threads.

.. function:: void nmod_poly_compose_mod_brent_kung_vec_preinv_threaded_pool(nmod_poly_struct * res, const nmod_poly_struct * polys, slong len1, slong n, const nmod_poly_t g, const nmod_poly_t poly, const nmod_poly_t polyinv, thread_pool_handle * threads, slong num_threads)

    Multithreaded version of
    :func:`nmod_poly_compose_mod_brent_kung_vec_preinv`. Distributing the
    Horner evaluations across :func:`flint_get_num_threads` threads.

.. function:: void nmod_poly_compose_mod_brent_kung_vec_preinv_threaded(nmod_poly_struct * res, const nmod_poly_struct * polys, slong len1, slong n, const nmod_poly_t g, const nmod_poly_t poly, const nmod_poly_t polyinv)

    Multithreaded version of
    :func:`nmod_poly_compose_mod_brent_kung_vec_preinv`. Distributing the
    Horner evaluations across :func:`flint_get_num_threads` threads.

.. function:: void _nmod_poly_compose_mod(nn_ptr res, nn_srcptr f, slong lenf, nn_srcptr g, nn_srcptr h, slong lenh, nmod_t mod)

    Sets ``res`` to the composition `f(g)` modulo `h`. We require that
    `h` is nonzero and that the length of `g` is one less than the
    length of `h` (possibly with zero padding). The output is not allowed
    to be aliased with any of the inputs.

.. function:: void nmod_poly_compose_mod(nmod_poly_t res, const nmod_poly_t f, const nmod_poly_t g, const nmod_poly_t h)

    Sets ``res`` to the composition `f(g)` modulo `h`. We require that
    `h` is nonzero.



Greatest common divisor
--------------------------------------------------------------------------------


.. function:: slong _nmod_poly_gcd_euclidean(nn_ptr G, nn_srcptr A, slong lenA, nn_srcptr B, slong lenB, nmod_t mod)

    Computes the GCD of `A` of length ``lenA`` and `B` of length
    ``lenB``, where ``lenA >= lenB > 0``. The length of the GCD `G`
    is returned by the function. No attempt is made to make the GCD monic. It
    is required that `G` have space for ``lenB`` coefficients.

.. function:: void nmod_poly_gcd_euclidean(nmod_poly_t G, const nmod_poly_t A, const nmod_poly_t B)

    Computes the GCD of `A` and `B`. The GCD of zero polynomials is
    defined to be zero, whereas the GCD of the zero polynomial and some other
    polynomial `P` is defined to be `P`. Except in the case where
    the GCD is zero, the GCD `G` is made monic.

.. function:: slong _nmod_poly_hgcd(nn_ptr * M, slong * lenM, nn_ptr A, slong * lenA, nn_ptr B, slong * lenB, nn_srcptr a, slong lena, nn_srcptr b, slong lenb, nmod_t mod)

    Computes the HGCD of `a` and `b`, that is, a matrix `M`, a sign `\sigma`
    and two polynomials `A` and `B` such that

    .. math::


        (A,B)^t = M^{-1} (a,b)^t, \sigma = \det(M),


    and `A` and `B` are consecutive remainders in the Euclidean remainder
    sequence for the division of `a` by `b` satisfying \deg(A) \ge \frac{\deg(a)}{2} > \deg(B).
    Furthermore, `M` will be the product of ``[[q 1][1 0]]`` for the quotients ``q`` generated by such a remainder sequence.
    Assumes that `\operatorname{len}(a) > \operatorname{len}(b) > 0`, i.e. `\deg(a) > `deg(b) > 1`.

    Assumes that `A` and `B` have space of size at least `\operatorname{len}(a)`
    and `\operatorname{len}(b)`, respectively.  On exit, ``*lenA`` and ``*lenB``
    will contain the correct lengths of `A` and `B`.

    Assumes that ``M[0]``, ``M[1]``, ``M[2]``, and ``M[3]``
    each point to a vector of size at least `\operatorname{len}(a)`.

.. function:: slong _nmod_poly_gcd_hgcd(nn_ptr G, nn_srcptr A, slong lenA, nn_srcptr B, slong lenB, nmod_t mod)

    Computes the monic GCD of `A` and `B`, assuming that
    `\operatorname{len}(A) \geq \operatorname{len}(B) > 0`.

    Assumes that `G` has space for `\operatorname{len}(B)` coefficients and
    returns the length of `G` on output.

.. function:: void nmod_poly_gcd_hgcd(nmod_poly_t G, const nmod_poly_t A, const nmod_poly_t B)

    Computes the monic GCD of `A` and `B` using the HGCD algorithm.

    As a special case, the GCD of two zero polynomials is defined to be
    the zero polynomial.

    The time complexity of the algorithm is `\mathcal{O}(n \log^2 n)`.
    For further details, see [ThullYap1990]_.

.. function:: slong _nmod_poly_gcd(nn_ptr G, nn_srcptr A, slong lenA, nn_srcptr B, slong lenB, nmod_t mod)

    Computes the GCD of `A` of length ``lenA`` and `B` of length
    ``lenB``, where ``lenA >= lenB > 0``. The length of the GCD `G`
    is returned by the function. No attempt is made to make the GCD monic. It
    is required that `G` have space for ``lenB`` coefficients.

.. function:: void nmod_poly_gcd(nmod_poly_t G, const nmod_poly_t A, const nmod_poly_t B)

    Computes the GCD of `A` and `B`. The GCD of zero polynomials is
    defined to be zero, whereas the GCD of the zero polynomial and some other
    polynomial `P` is defined to be `P`. Except in the case where
    the GCD is zero, the GCD `G` is made monic.

.. function:: slong _nmod_poly_xgcd_euclidean(nn_ptr G, nn_ptr S, nn_ptr T, nn_srcptr A, slong A_len, nn_srcptr B, slong B_len, nmod_t mod)

    Computes the GCD of `A` and `B` together with cofactors `S` and `T`
    such that `S A + T B = G`.  Returns the length of `G`.

    Assumes that `\operatorname{len}(A) \geq \operatorname{len}(B) \geq 1` and
    `(\operatorname{len}(A),\operatorname{len}(B)) \neq (1,1)`.

    No attempt is made to make the GCD monic.

    Requires that `G` have space for `\operatorname{len}(B)` coefficients.  Writes
    `\operatorname{len}(B)-1` and `\operatorname{len}(A)-1` coefficients to `S` and `T`, respectively.
    Note that, in fact, `\operatorname{len}(S) \leq \max(\operatorname{len}(B) - \operatorname{len}(G), 1)` and
    `\operatorname{len}(T) \leq \max(\operatorname{len}(A) - \operatorname{len}(G), 1)`.

    No aliasing of input and output operands is permitted.

.. function:: void nmod_poly_xgcd_euclidean(nmod_poly_t G, nmod_poly_t S, nmod_poly_t T, const nmod_poly_t A, const nmod_poly_t B)

    Computes the GCD of `A` and `B`. The GCD of zero polynomials is
    defined to be zero, whereas the GCD of the zero polynomial and some other
    polynomial `P` is defined to be `P`. Except in the case where
    the GCD is zero, the GCD `G` is made monic.

    Polynomials ``S`` and ``T`` are computed such that
    ``S*A + T*B = G``. The length of ``S`` will be at most
    ``lenB`` and the length of ``T`` will be at most ``lenA``.

.. function:: slong _nmod_poly_xgcd_hgcd(nn_ptr G, nn_ptr S, nn_ptr T, nn_srcptr A, slong A_len, nn_srcptr B, slong B_len, nmod_t mod)

    Computes the GCD of `A` and `B`, where `\operatorname{len}(A) \geq \operatorname{len}(B) > 0`,
    together with cofactors `S` and `T` such that `S A + T B = G`. Returns
    the length of `G`.

    No attempt is made to make the GCD monic.

    Requires that `G` have space for `\operatorname{len}(B)` coefficients.  Writes
    `\operatorname{len}(B) - 1` and `\operatorname{len}(A) - 1` coefficients to `S` and `T`,
    respectively.  Note that, in fact, `\operatorname{len}(S) \leq \operatorname{len}(B) - \operatorname{len}(G)`
    and `\operatorname{len}(T) \leq \operatorname{len}(A) - \operatorname{len}(G)`.

    Both `S` and `T` must have space for at least `2` coefficients.

    No aliasing of input and output operands is permitted.

.. function:: void nmod_poly_xgcd_hgcd(nmod_poly_t G, nmod_poly_t S, nmod_poly_t T, const nmod_poly_t A, const nmod_poly_t B)

    Computes the GCD of `A` and `B`. The GCD of zero polynomials is
    defined to be zero, whereas the GCD of the zero polynomial and some other
    polynomial `P` is defined to be `P`. Except in the case where
    the GCD is zero, the GCD `G` is made monic.

    Polynomials ``S`` and ``T`` are computed such that
    ``S*A + T*B = G``. The length of ``S`` will be at most
    ``lenB`` and the length of ``T`` will be at most ``lenA``.

.. function:: slong _nmod_poly_xgcd(nn_ptr G, nn_ptr S, nn_ptr T, nn_srcptr A, slong lenA, nn_srcptr B, slong lenB, nmod_t mod)

    Computes the GCD of `A` and `B`, where `\operatorname{len}(A) \geq \operatorname{len}(B) > 0`,
    together with cofactors `S` and `T` such that `S A + T B = G`. Returns
    the length of `G`.

    No attempt is made to make the GCD monic.

    Requires that `G` have space for `\operatorname{len}(B)` coefficients.  Writes
    `\operatorname{len}(B) - 1` and `\operatorname{len}(A) - 1` coefficients to `S` and `T`,
    respectively.  Note that, in fact, `\operatorname{len}(S) \leq \operatorname{len}(B) - \operatorname{len}(G)`
    and `\operatorname{len}(T) \leq \operatorname{len}(A) - \operatorname{len}(G)`.

    No aliasing of input and output operands is permitted.

.. function:: void nmod_poly_xgcd(nmod_poly_t G, nmod_poly_t S, nmod_poly_t T, const nmod_poly_t A, const nmod_poly_t B)

    Computes the GCD of `A` and `B`. The GCD of zero polynomials is
    defined to be zero, whereas the GCD of the zero polynomial and some other
    polynomial `P` is defined to be `P`. Except in the case where
    the GCD is zero, the GCD `G` is made monic.

    The polynomials ``S`` and ``T`` are set such that
    ``S*A + T*B = G``. The length of ``S`` will be at most
    ``lenB`` and the length of ``T`` will be at most ``lenA``.

.. function:: ulong _nmod_poly_resultant_euclidean(nn_srcptr poly1, slong len1, nn_srcptr poly2, slong len2, nmod_t mod)

    Returns the resultant of ``(poly1, len1)`` and
    ``(poly2, len2)`` using the Euclidean algorithm.

    Assumes that ``len1 >= len2 > 0``.

    Assumes that the modulus is prime.

.. function:: ulong nmod_poly_resultant_euclidean(const nmod_poly_t f, const nmod_poly_t g)

    Computes the resultant of `f` and `g` using the Euclidean algorithm.

    For two non-zero polynomials `f(x) = a_m x^m + \dotsb + a_0` and
    `g(x) = b_n x^n + \dotsb + b_0` of degrees `m` and `n`, the resultant
    is defined to be

    .. math::
            a_m^n b_n^m \prod_{(x, y) : f(x) = g(y) = 0} (x - y).


    For convenience, we define the resultant to be equal to zero if either
    of the two polynomials is zero.

.. function:: ulong _nmod_poly_resultant_hgcd(nn_srcptr poly1, slong len1, nn_srcptr poly2, slong len2, nmod_t mod)

    Returns the resultant of ``(poly1, len1)`` and
    ``(poly2, len2)`` using the half-gcd algorithm.

    This algorithm computes the half-gcd as per :func:`_nmod_poly_gcd_hgcd`
    but additionally updates the resultant every time a division occurs. The
    half-gcd algorithm computes the GCD recursively. Given inputs `a` and `b`
    it lets ``m = len(a)/2`` and (recursively) performs all quotients in
    the Euclidean algorithm which do not require the low `m` coefficients of
    `a` and `b`.

    This performs quotients in exactly the same order as the ordinary
    Euclidean algorithm except that the low `m` coefficients of the polynomials
    in the remainder sequence are not computed. A correction step after hgcd
    has been called computes these low `m` coefficients (by matrix
    multiplication by a transformation matrix also computed by hgcd).

    This means that from the point of view of the resultant, all but the last
    quotient performed by a recursive call to hgcd is an ordinary quotient as
    per the usual Euclidean algorithm. However, the final quotient may give
    a remainder of less than `m + 1` coefficients, which won't be corrected
    until the hgcd correction step is performed afterwards.

    To compute the adjustments to the resultant coming from this corrected
    quotient, we save the relevant information in an :type:`nmod_poly_res_t`
    struct at the time the quotient is performed so that when the correction
    step is performed later, the adjustments to the resultant can be computed
    at that time also.

    The only time an adjustment to the resultant is not required after a
    call to hgcd is if hgcd does nothing (the remainder may already have had
    less than `m + 1` coefficients when hgcd was called).

    Assumes that ``len1 >= len2 > 0``.

    Assumes that the modulus is prime.

.. function:: ulong nmod_poly_resultant_hgcd(const nmod_poly_t f, const nmod_poly_t g)

    Computes the resultant of `f` and `g` using the half-gcd algorithm.

    For two non-zero polynomials `f(x) = a_m x^m + \dotsb + a_0` and
    `g(x) = b_n x^n + \dotsb + b_0` of degrees `m` and `n`, the resultant
    is defined to be

    .. math::


            a_m^n b_n^m \prod_{(x, y) : f(x) = g(y) = 0} (x - y).


    For convenience, we define the resultant to be equal to zero if either
    of the two polynomials is zero.

.. function:: ulong _nmod_poly_resultant(nn_srcptr poly1, slong len1, nn_srcptr poly2, slong len2, nmod_t mod)

    Returns the resultant of ``(poly1, len1)`` and
    ``(poly2, len2)``.

    Assumes that ``len1 >= len2 > 0``.

    Assumes that the modulus is prime.

.. function:: ulong nmod_poly_resultant(const nmod_poly_t f, const nmod_poly_t g)

    Computes the resultant of `f` and `g`.

    For two non-zero polynomials `f(x) = a_m x^m + \dotsb + a_0` and
    `g(x) = b_n x^n + \dotsb + b_0` of degrees `m` and `n`, the resultant
    is defined to be

    .. math::


            a_m^n b_n^m \prod_{(x, y) : f(x) = g(y) = 0} (x - y).


    For convenience, we define the resultant to be equal to zero if either
    of the two polynomials is zero.

.. function:: slong _nmod_poly_gcdinv(ulong * G, ulong * S, const ulong * A, slong lenA, const ulong * B, slong lenB, const nmod_t mod)

    Computes ``(G, lenA)``, ``(S, lenB-1)`` such that
    `G \cong S A \pmod{B}`, returning the actual length of `G`.

    Assumes that `0 < \operatorname{len}(A) < \operatorname{len}(B)`.

.. function:: void nmod_poly_gcdinv(nmod_poly_t G, nmod_poly_t S, const nmod_poly_t A, const nmod_poly_t B)

    Computes polynomials `G` and `S`, both reduced modulo `B`,
    such that `G \cong S A \pmod{B}`, where `B` is assumed to
    have `\operatorname{len}(B) \geq 2`.

    In the case that `A = 0 \pmod{B}`, returns `G = S = 0`.

.. function:: int _nmod_poly_invmod(ulong * A, const ulong * B, slong lenB, const ulong * P, slong lenP, const nmod_t mod)

    Attempts to set ``(A, lenP-1)`` to the inverse of ``(B, lenB)``
    modulo the polynomial ``(P, lenP)``.  Returns `1` if ``(B, lenB)``
    is invertible and `0` otherwise.

    Assumes that `0 < \operatorname{len}(B) < \operatorname{len}(P)`, and hence also `\operatorname{len}(P) \geq 2`,
    but supports zero-padding in ``(B, lenB)``.

    Does not support aliasing.

    Assumes that `mod` is a prime number.

.. function:: int nmod_poly_invmod(nmod_poly_t A, const nmod_poly_t B, const nmod_poly_t P)

    Attempts to set `A` to the inverse of `B` modulo `P` in the polynomial
    ring `(\mathbf{Z}/p\mathbf{Z})[X]`, where we assume that `p` is a prime
    number.

    If `\operatorname{len}(P) < 2`, raises an exception.

    If the greatest common divisor of `B` and `P` is `1`, returns `1` and
    sets `A` to the inverse of `B`.  Otherwise, returns `0` and the value
    of `A` on exit is undefined.



Discriminant
--------------------------------------------------------------------------------


.. function:: ulong _nmod_poly_discriminant(nn_srcptr poly, slong len, nmod_t mod)

    Return the discriminant of ``(poly, len)``. Assumes ``len > 1``.

.. function:: ulong nmod_poly_discriminant(const nmod_poly_t f)

    Return the discriminant of `f`.
    We normalise the discriminant so that
    `\operatorname{disc}(f) = (-1)^{n(n-1)/2} \operatorname{res}(f, f') /
    \operatorname{lc}(f)^{n - m - 2}`, where ``n = len(f)`` and
    ``m = len(f')``. Thus `\operatorname{disc}(f) =
    \operatorname{lc}(f)^{2n - 2} \prod_{i < j} (r_i - r_j)^2`, where
    `\operatorname{lc}(f)` is the leading coefficient of `f` and `r_i` are the
    roots of `f`.



Power series composition
--------------------------------------------------------------------------------

.. function:: void _nmod_poly_compose_series(nn_ptr res, nn_srcptr poly1, slong len1, nn_srcptr poly2, slong len2, slong n, nmod_t mod)

    Sets ``res`` to the composition of ``poly1`` and ``poly2``
    modulo `x^n`, where the constant term of ``poly2`` is required
    to be zero.

    Assumes that ``len1, len2, n > 0``, that ``len1, len2 <= n``,
    and that ``(len1-1) * (len2-1) + 1 <= n``, and that ``res`` has
    space for ``n`` coefficients. Does not support aliasing between any
    of the inputs and the output.

    Wraps :func:`_gr_poly_compose_series` which chooses automatically
    between various algorithms.

.. function:: void nmod_poly_compose_series(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2, slong n)

    Sets ``res`` to the composition of ``poly1`` and ``poly2``
    modulo `x^n`, where the constant term of ``poly2`` is required
    to be zero.


Power series reversion
--------------------------------------------------------------------------------

.. function:: void _nmod_poly_revert_series(nn_ptr Qinv, nn_srcptr Q, slong Qlen, slong n, nmod_t mod)
              void nmod_poly_revert_series(nmod_poly_t Qinv, const nmod_poly_t Q, slong n)

    Sets ``Qinv`` to the compositional inverse or reversion of ``Q``
    as a power series, i.e. computes `Q^{-1}` such that
    `Q(Q^{-1}(x)) = Q^{-1}(Q(x)) = x \bmod x^n`.

    It is required that `Q_0 = 0` and that `Q_1` as well as the integers
    `1, 2, \ldots, n-1` are invertible modulo the modulus.

    Wraps :func:`_gr_poly_revert_series` which chooses automatically
    between various algorithms.

Square roots
--------------------------------------------------------------------------------

The series expansions for `\sqrt{h}` and `1/\sqrt{h}` are defined
by means of the generalised binomial theorem
``h^r = (1+y)^r =
\sum_{k=0}^{\infty} {r \choose k} y^k.``
It is assumed that `h` has constant term `1` and that the coefficients
`2^{-k}` exist in the coefficient ring (i.e. `2` must be invertible).

.. function:: void _nmod_poly_invsqrt_series(nn_ptr g, nn_srcptr h, slong hlen, slong n, nmod_t mod)

    Set the first `n` terms of `g` to the series expansion of `1/\sqrt{h}`.
    It is assumed that `n > 0`, that `h` has constant term 1. Aliasing is not permitted.

.. function:: void nmod_poly_invsqrt_series(nmod_poly_t g, const nmod_poly_t h, slong n)

    Set `g` to the series expansion of `1/\sqrt{h}` to order `O(x^n)`.
    It is assumed that `h` has constant term 1.

.. function:: void _nmod_poly_sqrt_series(nn_ptr g, nn_srcptr h, slong hlen, slong n, nmod_t mod)

    Set the first `n` terms of `g` to the series expansion of `\sqrt{h}`.
    It is assumed that `n > 0`, that `h` has constant term 1. Aliasing is not permitted.

.. function:: void nmod_poly_sqrt_series(nmod_poly_t g, const nmod_poly_t h, slong n)

    Set `g` to the series expansion of `\sqrt{h}` to order `O(x^n)`.
    It is assumed that `h` has constant term 1.

.. function:: int _nmod_poly_sqrt(nn_ptr s, nn_srcptr p, slong n, nmod_t mod)

    If ``(p, n)`` is a perfect square, sets ``(s, n / 2 + 1)``
    to a square root of `p` and returns 1. Otherwise returns 0.

.. function:: int nmod_poly_sqrt(nmod_poly_t s, const nmod_poly_t p)

    If `p` is a perfect square, sets `s` to a square root of `p`
    and returns 1. Otherwise returns 0.


Power sums
--------------------------------------------------------------------------------


.. function:: void _nmod_poly_power_sums_naive(nn_ptr res, nn_srcptr poly, slong len, slong n, nmod_t mod)

    Compute the (truncated) power sums series of the polynomial
    ``(poly,len)`` up to length `n` using Newton identities.

.. function:: void nmod_poly_power_sums_naive(nmod_poly_t res, const nmod_poly_t poly, slong n)

    Compute the (truncated) power sum series of the polynomial
    ``poly`` up to length `n` using Newton identities.

.. function:: void _nmod_poly_power_sums_schoenhage(nn_ptr res, nn_srcptr poly, slong len, slong n, nmod_t mod)

    Compute the (truncated) power sums series of the polynomial
    ``(poly,len)`` up to length `n` using a series expansion
    (a formula due to Schoenhage).

.. function:: void nmod_poly_power_sums_schoenhage(nmod_poly_t res, const nmod_poly_t poly, slong n)

    Compute the (truncated) power sums series of the polynomial
    ``poly`` up to length `n` using a series expansion
    (a formula due to Schoenhage).

.. function:: void _nmod_poly_power_sums(nn_ptr res, nn_srcptr poly, slong len, slong n, nmod_t mod)

    Compute the (truncated) power sums series of the polynomial
    ``(poly,len)`` up to length `n`.

.. function:: void nmod_poly_power_sums(nmod_poly_t res, const nmod_poly_t poly, slong n)

    Compute the (truncated) power sums series of the polynomial
    ``poly`` up to length `n`.

.. function:: void _nmod_poly_power_sums_to_poly_naive(nn_ptr res, nn_srcptr poly, slong len, nmod_t mod)

    Compute the (monic) polynomial given by its power sums series
    ``(poly,len)`` using Newton identities.

.. function:: void nmod_poly_power_sums_to_poly_naive(nmod_poly_t res, const nmod_poly_t Q)

    Compute the (monic) polynomial given by its power sums series
    ``Q`` using Newton identities.

.. function:: void _nmod_poly_power_sums_to_poly_schoenhage(nn_ptr res, nn_srcptr poly, slong len, nmod_t mod)

    Compute the (monic) polynomial given by its power sums series
    ``(poly,len)`` using series expansion (a formula due to Schoenhage).

.. function:: void nmod_poly_power_sums_to_poly_schoenhage(nmod_poly_t res, const nmod_poly_t Q)

    Compute the (monic) polynomial given by its power sums series
    ``Q`` using series expansion (a formula due to Schoenhage).

.. function:: void _nmod_poly_power_sums_to_poly(nn_ptr res, nn_srcptr poly, slong len, nmod_t mod)

    Compute the (monic) polynomial given by its power sums series
    ``(poly,len)``.

.. function:: void nmod_poly_power_sums_to_poly(nmod_poly_t res, const nmod_poly_t Q)

     Compute the (monic) polynomial given by its power sums series ``Q``.


Transcendental functions
--------------------------------------------------------------------------------

The elementary transcendental functions of a formal power series `h`
are defined as

`\exp(h(x)) = \sum_{k=0}^{\infty} \frac{(h(x))^k}{k!}`

`\log(h(x)) = \int_0^x \frac{h'(t)}{h(t)} dt`

`\operatorname{atan}(h(x)) = \int_0^x\frac{h'(t)}{1+(h(t))^2} dt`

`\operatorname{atanh}(h(x)) = \int_0^x\frac{h'(t)}{1-(h(t))^2} dt`

`\operatorname{asin}(h(x)) = \int_0^x\frac{h'(t)}{\sqrt{1-(h(t))^2}} dt`

`\operatorname{asinh}(h(x)) = \int_0^x\frac{h'(t)}{\sqrt{1+(h(t))^2}} dt`

The functions sin, cos, tan, etc. are defined using standard inverse
or functional relations.
The logarithm function assumes that `h` has constant term `1`. All
other functions assume that `h` has constant term `0`.
All functions assume that the coefficient `1/k` or `1/k!` exists
for all indices `k`. When computing to order `O(x^n)`, the modulus `p`
must therefore be a prime satisfying `p \ge n`. Further, we always
require that `p > 2` in order to be able to multiply by `1/2` for
internal purposes.
If the input does not satisfy all these conditions, results are undefined.
Except where otherwise noted, functions are implemented with optimal
(up to constants) complexity `O(M(n))`, where `M(n)` is the cost
of polynomial multiplication.

.. function:: void _nmod_poly_log_series(nn_ptr g, nn_srcptr h, slong hlen, slong n, nmod_t mod)

    Set `g = \log(h) + O(x^n)`. Assumes `n > 0` and ``hlen > 0``.
    Aliasing of `g` and `h` is allowed.

.. function:: void nmod_poly_log_series(nmod_poly_t g, const nmod_poly_t h, slong n)

    Set `g = \log(h) + O(x^n)`. The case `h = 1+cx^r` is automatically
    detected and handled efficiently.

.. function:: void _nmod_poly_exp_series(nn_ptr f, nn_srcptr h, slong hlen, slong n, nmod_t mod)

    Set `f = \exp(h) + O(x^n)` where ``h`` is a polynomial. Assume
    `n > 0`. Aliasing of `g` and `h` is not allowed.

    Uses Newton iteration (an improved version of the
    algorithm in [HanZim2004]_).
    For small `n`, falls back to the basecase algorithm.

.. function:: void  _nmod_poly_exp_expinv_series(nn_ptr f, nn_ptr g, nn_srcptr h, slong hlen, slong n, nmod_t mod)

    Set `f = \exp(h) + O(x^n)` and `g = \exp(-h) + O(x^n)`, more efficiently
    for large `n` than performing a separate inversion to obtain `g`.
    Assumes `n > 0` and that `h` is zero-padded
    as necessary to length `n`. Aliasing is not allowed.

    Uses Newton iteration (the version given in [HanZim2004]_).
    For small `n`, falls back to the basecase algorithm.

.. function:: void nmod_poly_exp_series(nmod_poly_t g, const nmod_poly_t h, slong n)

    Set `g = \exp(h) + O(x^n)`. The case `h = cx^r` is automatically
    detected and handled efficiently. Otherwise this function automatically
    uses the basecase algorithm for small `n` and Newton iteration otherwise.

.. function:: void _nmod_poly_atan_series(nn_ptr g, nn_srcptr h, slong hlen, slong n, nmod_t mod)

    Set `g = \operatorname{atan}(h) + O(x^n)`. Assumes `n > 0`.
    Aliasing of `g` and `h` is allowed.

.. function:: void nmod_poly_atan_series(nmod_poly_t g, const nmod_poly_t h, slong n)

    Set `g = \operatorname{atan}(h) + O(x^n)`.

.. function:: void _nmod_poly_atanh_series(nn_ptr g, nn_srcptr h, slong hlen, slong n, nmod_t mod)

    Set `g = \operatorname{atanh}(h) + O(x^n)`. Assumes `n > 0`.
    Aliasing of `g` and `h` is allowed.

.. function:: void nmod_poly_atanh_series(nmod_poly_t g, const nmod_poly_t h, slong n)

    Set `g = \operatorname{atanh}(h) + O(x^n)`.

.. function:: void _nmod_poly_asin_series(nn_ptr g, nn_srcptr h, slong hlen, slong n, nmod_t mod)

    Set `g = \operatorname{asin}(h) + O(x^n)`. Assumes `n > 0`.
    Aliasing of `g` and `h` is allowed.

.. function:: void nmod_poly_asin_series(nmod_poly_t g, const nmod_poly_t h, slong n)

    Set `g = \operatorname{asin}(h) + O(x^n)`.

.. function:: void _nmod_poly_asinh_series(nn_ptr g, nn_srcptr h, slong hlen, slong n, nmod_t mod)

    Set `g = \operatorname{asinh}(h) + O(x^n)`. Assumes `n > 0`.
    Aliasing of `g` and `h` is allowed.

.. function:: void nmod_poly_asinh_series(nmod_poly_t g, const nmod_poly_t h, slong n)

    Set `g = \operatorname{asinh}(h) + O(x^n)`.

.. function:: void _nmod_poly_sin_series(nn_ptr g, nn_srcptr h, slong n, nmod_t mod)

    Set `g = \operatorname{sin}(h) + O(x^n)`. Assumes `n > 0` and that `h`
    is zero-padded as necessary to length `n`. Aliasing of `g` and `h` is
    allowed. The value is computed using the identity
    `\sin(x) = 2 \tan(x/2)) / (1 + \tan^2(x/2)).`

.. function:: void nmod_poly_sin_series(nmod_poly_t g, const nmod_poly_t h, slong n)

    Set `g = \operatorname{sin}(h) + O(x^n)`.

.. function:: void _nmod_poly_cos_series(nn_ptr g, nn_srcptr h, slong n, nmod_t mod)

    Set `g = \operatorname{cos}(h) + O(x^n)`. Assumes `n > 0` and that `h`
    is zero-padded as necessary to length `n`. Aliasing of `g` and `h` is
    allowed. The value is computed using the identity
    `\cos(x) = (1-\tan^2(x/2)) / (1 + \tan^2(x/2)).`

.. function:: void nmod_poly_cos_series(nmod_poly_t g, const nmod_poly_t h, slong n)

    Set `g = \operatorname{cos}(h) + O(x^n)`.

.. function:: void _nmod_poly_tan_series(nn_ptr g, nn_srcptr h, slong hlen, slong n, nmod_t mod)

    Set `g = \operatorname{tan}(h) + O(x^n)`. Assumes `n > 0` and that `h`
    is zero-padded as necessary to length `n`. Aliasing of `g` and `h` is
    not allowed. Uses Newton iteration to invert the atan function.

.. function:: void nmod_poly_tan_series(nmod_poly_t g, const nmod_poly_t h, slong n)

    Set `g = \operatorname{tan}(h) + O(x^n)`.

.. function:: void _nmod_poly_sinh_series(nn_ptr g, nn_srcptr h, slong n, nmod_t mod)

    Set `g = \operatorname{sinh}(h) + O(x^n)`. Assumes `n > 0` and that `h`
    is zero-padded as necessary to length `n`. Aliasing of `g` and `h` is
    not allowed. Uses the identity `\sinh(x) = (e^x - e^{-x})/2`.

.. function:: void nmod_poly_sinh_series(nmod_poly_t g, const nmod_poly_t h, slong n)

    Set `g = \operatorname{sinh}(h) + O(x^n)`.

.. function:: void _nmod_poly_cosh_series(nn_ptr g, nn_srcptr h, slong n, nmod_t mod)

    Set `g = \operatorname{cos}(h) + O(x^n)`. Assumes `n > 0` and that `h`
    is zero-padded as necessary to length `n`. Aliasing of `g` and `h` is
    not allowed.
    Uses the identity `\cosh(x) = (e^x + e^{-x})/2`.

.. function:: void nmod_poly_cosh_series(nmod_poly_t g, const nmod_poly_t h, slong n)

    Set `g = \operatorname{cosh}(h) + O(x^n)`.

.. function:: void _nmod_poly_tanh_series(nn_ptr g, nn_srcptr h, slong n, nmod_t mod)

    Set `g = \operatorname{tanh}(h) + O(x^n)`. Assumes `n > 0` and that `h`
    is zero-padded as necessary to length `n`. Uses the identity
    `\tanh(x) = (e^{2x}-1)/(e^{2x}+1)`.

.. function:: void nmod_poly_tanh_series(nmod_poly_t g, const nmod_poly_t h, slong n)

    Set `g = \operatorname{tanh}(h) + O(x^n)`.


Special polynomials
--------------------------------------------------------------------------------

.. function:: int _nmod_poly_conway(nn_ptr op, ulong prime, slong deg)

    Sets ``op`` to the coefficients to the Conway polynomial `C_{p, d}`, where
    `p` is ``prime`` and `d` is ``deg``. This is done by checking against Frank
    Lübeck's database [Lüb2004]_, which has been compressed in FLINT. Returns
    `1` in case of success and returns `0` in case of failure.

.. function:: ulong _nmod_poly_conway_rand(slong * degree, flint_rand_t state, int type)

    Returns a pseudorandom prime and sets ``degree`` that when put into
    :func:`_nmod_poly_conway` will always succeed.

    Here, ``type`` can be the following values:

    * ``0`` for which there is a bijection between the image of this function
      and the database of Conway polynomials,
    * ``1`` returns a random prime found in the database and sets ``degree`` to
      some degree less than `15` along with some prime found in the database,
    * ``2`` returns a random prime less than `2^{10}` and sets ``degree`` to
      some random degree found in the database,
    * ``3`` returns a random prime less than `2^{10}` and sets ``degree`` to
      some random degree less than `15`.


Products
--------------------------------------------------------------------------------


.. function:: void _nmod_poly_product_roots_nmod_vec(nn_ptr poly, nn_srcptr xs, slong n, nmod_t mod)

    Sets ``(poly, n + 1)`` to the monic polynomial which is the product
    of `(x - x_0)(x - x_1) \cdots (x - x_{n-1})`, the roots `x_i` being
    given by ``xs``.

    Aliasing of the input and output is not allowed.

.. function:: void nmod_poly_product_roots_nmod_vec(nmod_poly_t poly, nn_srcptr xs, slong n)

    Sets ``poly`` to the monic polynomial which is the product
    of `(x - x_0)(x - x_1) \cdots (x - x_{n-1})`, the roots `x_i` being
    given by ``xs``.

.. function:: int nmod_poly_find_distinct_nonzero_roots(ulong * roots, const nmod_poly_t A)

    If ``A`` has `\deg(A)` distinct nonzero roots in `\mathbb{F}_p`, write these roots out to ``roots[0]`` to ``roots[deg(A) - 1]`` and return ``1``.
    Otherwise, return ``0``. It is assumed that ``A`` is nonzero and that the modulus of ``A`` is prime.
    This function uses Rabin's probabilistic method via gcd's with `(x + \delta)^{\frac{p-1}{2}} - 1`.


Subproduct trees
--------------------------------------------------------------------------------


.. function:: nn_ptr * _nmod_poly_tree_alloc(slong len)

    Allocates space for a subproduct tree of the given length, having
    linear factors at the lowest level.

    Entry `i` in the tree is a pointer to a single array of limbs,
    capable of storing `\lfloor n / 2^i \rfloor` subproducts of
    degree `2^i` adjacently, plus a trailing entry if `n / 2^i` is
    not an integer.

    For example, a tree of length 7 built from monic linear factors has
    the following structure, where spaces have been inserted
    for illustrative purposes::

        X1 X1 X1 X1 X1 X1 X1
        XX1   XX1   XX1   X1
        XXXX1       XX1   X1
        XXXXXXX1

.. function:: void _nmod_poly_tree_free(nn_ptr * tree, slong len)

    Free the allocated space for the subproduct.

.. function:: void _nmod_poly_tree_build(nn_ptr * tree, nn_srcptr roots, slong len, nmod_t mod)

    Builds a subproduct tree in the preallocated space from
    the ``len`` monic linear factors `(x-r_i)`. The top level
    product is not computed.



Geometric progression
--------------------------------------------------------------------------------


.. function:: void nmod_geometric_progression_init(nmod_geometric_progression_t G, ulong r, slong len, nmod_t mod)

    Builds a geometric progression multipoint evaluation / interpolation structure.

    The set of points used will be `1, r^2, r^4, \ldots, r^{2(len-1)}`.

    The value of ``r`` should be reduced modulo the modulus ``mod``
    and of sufficient multiplicative order such that none of
    the powers `r^2, r^4, \ldots, r^{2(len-1)}` is one.

    The value of ``len`` should be both greater than or equal to the number of evaluation points to be
    considered, and greater than or equal to the length of the polynomials to be evaluated / interpolated.
    This allocates vectors and polynomials for a total space of `8 len - 1` coefficients.

    If the modulus is not prime, this function will work under the additional
    assumption that all the used points `r^{2k}` as well as the axuiliary
    values `r^{2k} - 1` are invertible.

.. function:: void nmod_geometric_progression_clear(nmod_geometric_progression_t G)

    Clears the allocated polynomials and vectors used in the geometric progression precomputation ``G``.


Inflation and deflation
--------------------------------------------------------------------------------


.. function:: void nmod_poly_inflate(nmod_poly_t result, const nmod_poly_t input, slong inflation)

    Sets ``result`` to the inflated polynomial `p(x^n)` where
    `p` is given by ``input`` and `n` is given by ``deflation``.

.. function:: void nmod_poly_deflate(nmod_poly_t result, const nmod_poly_t input, slong deflation)

    Sets ``result`` to the deflated polynomial `p(x^{1/n})` where
    `p` is given by ``input`` and `n` is given by ``deflation``.
    Requires `n > 0`.

.. function:: slong nmod_poly_deflation(const nmod_poly_t input)

    Returns the largest integer by which ``input`` can be deflated.
    As special cases, returns 0 if ``input`` is the zero polynomial
    and 1 of ``input`` is a constant polynomial.


Chinese Remaindering
--------------------------------------------------------------------------------

    In all of these functions the moduli (mod.n) of all of the ``nmod_poly``'s involved is assumed to match and be prime.

.. function:: void nmod_poly_multi_crt_init(nmod_poly_multi_crt_t CRT)

    Initialize ``CRT`` for Chinese remaindering.

.. function:: int nmod_poly_multi_crt_precompute(nmod_poly_multi_crt_t CRT, const nmod_poly_struct * moduli, slong len)
              int nmod_poly_multi_crt_precompute_p(nmod_poly_multi_crt_t CRT, const nmod_poly_struct * const * moduli, slong len)

    Configure ``CRT`` for repeated Chinese remaindering of ``moduli``. The number of moduli, ``len``, should be positive.
    A return of ``0`` indicates that the compilation failed and future calls to :func:`nmod_poly_multi_crt_precomp` will leave the output undefined.
    A return of ``1`` indicates that the compilation was successful, which occurs if and only if either (1) ``len == 1`` and ``modulus + 0`` is nonzero, or (2) all of the moduli have positive degree and are pairwise relatively prime.

.. function:: void nmod_poly_multi_crt_precomp(nmod_poly_t output, const nmod_poly_multi_crt_t CRT, const nmod_poly_struct * values)
              void nmod_poly_multi_crt_precomp_p(nmod_poly_t output, const nmod_poly_multi_crt_t CRT, const nmod_poly_struct * const * values)

    Set ``output`` to the polynomial of lowest possible degree that is congruent to ``values + i`` modulo the ``moduli + i`` in :func:`nmod_poly_multi_crt_precompute`.
    The inputs ``values + 0, ..., values + len - 1`` where ``len`` was used in :func:`nmod_poly_multi_crt_precompute` are expected to be valid and have modulus matching the modulus of the moduli used in :func:`nmod_poly_multi_crt_precompute`.

.. function:: int nmod_poly_multi_crt(nmod_poly_t output, const nmod_poly_struct * moduli, const nmod_poly_struct * values, slong len)

    Perform the same operation as :func:`nmod_poly_multi_crt_precomp` while internally constructing and destroying the precomputed data.
    All of the remarks in :func:`nmod_poly_multi_crt_precompute` apply.

.. function:: void nmod_poly_multi_crt_clear(nmod_poly_multi_crt_t CRT)

    Free all space used by ``CRT``.

.. function:: slong _nmod_poly_multi_crt_local_size(const nmod_poly_multi_crt_t CRT)

    Return the required length of the output for :func:`_nmod_poly_multi_crt_run`.

.. function:: void _nmod_poly_multi_crt_run(nmod_poly_struct * outputs, const nmod_poly_multi_crt_t CRT, const nmod_poly_struct * inputs)
              void _nmod_poly_multi_crt_run_p(nmod_poly_struct * outputs, const nmod_poly_multi_crt_t CRT, const nmod_poly_struct * const * inputs)

    Perform the same operation as :func:`nmod_poly_multi_crt_precomp` using supplied temporary space.
    The actual output is placed in ``outputs + 0``, and ``outputs`` should contain space for all temporaries and should be at least as long as ``_nmod_poly_multi_crt_local_size(CRT)``.
    Of course the moduli of these temporaries should match the modulus of the inputs.


Berlekamp-Massey Algorithm
--------------------------------------------------------------------------------

    The nmod_berlekamp_massey_t manages an unlimited stream of points `a_1, a_2, \dots.`
    At any point in time, after, say, `n` points have been added, a call to :func:`nmod_berlekamp_massey_reduce` will
    calculate the polynomials `U`, `V` and `R` in the extended euclidean remainder sequence with

    .. math::

        U x^n + V (a_1 x^{n-1} + a_{n-1} x + \cdots + a_n) = R, \quad \deg(U) < \deg(V) \le n/2, \quad \deg(R) < n/2.

    The polynomials `V` and `R` may be obtained with :func:`nmod_berlekamp_massey_V_poly` and :func:`nmod_berlekamp_massey_R_poly`.
    This class differs from :func:`fmpz_mod_poly_minpoly` in the following respect. Let `v_i` denote the coefficient of `x^i` in `V`.
    :func:`fmpz_mod_poly_minpoly` will return a polynomial `V` of lowest degree that annihilates the whole sequence `a_1, \dots, a_n` as

    .. math::

        \sum_{i} v_i a_{j + i} = 0, \quad 1 \le j \le n - \deg(V).

    The cost is that a polynomial of degree `n-1` might be returned and the return is not generally uniquely determined by the input sequence.
    For the nmod_berlekamp_massey_t we have

    .. math::

        \sum_{i,j} v_i a_{j+i} x^{-j} = -U + \frac{R}{x^n}\text{,}

    and it can be seen that `\sum_{i} v_i a_{j + i}` is zero for `1 \le j < n - \deg(R)`. Thus whether or not `V` has annihilated the whole sequence may be checked by comparing the degrees of `V` and `R`.

.. function:: void nmod_berlekamp_massey_init(nmod_berlekamp_massey_t B, ulong p)

    Initialize ``B`` in characteristic ``p`` with an empty stream.

.. function:: void nmod_berlekamp_massey_clear(nmod_berlekamp_massey_t B)

    Free any space used by ``B``.

.. function:: void nmod_berlekamp_massey_start_over(nmod_berlekamp_massey_t B)

    Empty the stream of points in ``B``.

.. function:: void nmod_berlekamp_massey_set_prime(nmod_berlekamp_massey_t B, ulong p)

    Set the characteristic of the field and empty the stream of points in ``B``.

.. function:: void nmod_berlekamp_massey_add_points(nmod_berlekamp_massey_t B, const ulong * a, slong count)
              void nmod_berlekamp_massey_add_zeros(nmod_berlekamp_massey_t B, slong count)
              void nmod_berlekamp_massey_add_point(nmod_berlekamp_massey_t B, ulong a)

    Add point(s) to the stream processed by ``B``. The addition of any number of points will not update the `V` and `R` polynomial.

.. function:: int nmod_berlekamp_massey_reduce(nmod_berlekamp_massey_t B)

    Ensure that the polynomials `V` and `R` are up to date. The return value is ``1`` if this function changed `V` and ``0`` otherwise.
    For example, if this function is called twice in a row without adding any points in between, the return of the second call should be ``0``.
    As another example, suppose the object is emptied, the points `1, 1, 2, 3` are added, then reduce is called. This reduce should return ``1`` with `\deg(R) < \deg(V) = 2` because the Fibonacci sequence has been recognized. The further addition of the two points `5, 8` and a reduce will result in a return value of ``0``.

.. function:: slong nmod_berlekamp_massey_point_count(const nmod_berlekamp_massey_t B)

    Return the number of points stored in ``B``.

.. function:: const ulong * nmod_berlekamp_massey_points(const nmod_berlekamp_massey_t B)

    Return a pointer to the array of points stored in ``B``. This may be ``NULL`` if :func:`nmod_berlekamp_massey_point_count` returns ``0``.

.. function:: const nmod_poly_struct * nmod_berlekamp_massey_V_poly(const nmod_berlekamp_massey_t B)

    Return the polynomial `V` in ``B``.

.. function:: const nmod_poly_struct * nmod_berlekamp_massey_R_poly(const nmod_berlekamp_massey_t B)

    Return the polynomial `R` in ``B``.