1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
.. _nmod-vec:
**nmod_vec.h** -- vectors over integers mod n (word-size n)
===============================================================================
Memory management
--------------------------------------------------------------------------------
.. function:: nn_ptr _nmod_vec_init(slong len)
Returns a vector of the given length. The entries are not necessarily
zero.
.. function:: void _nmod_vec_clear(nn_ptr vec)
Frees the memory used by the given vector.
Random functions
--------------------------------------------------------------------------------
.. function:: void _nmod_vec_randtest(nn_ptr vec, flint_rand_t state, slong len, nmod_t mod)
Sets ``vec`` to a random vector of the given length with entries
reduced modulo ``mod.n``.
.. function:: void _nmod_vec_rand(nn_ptr vec, flint_rand_t state, slong len, nmod_t mod)
Sets ``vec`` to a vector of the given length with entries picked uniformly
at random in ``[0, mod.n)``.
Basic manipulation and comparison
--------------------------------------------------------------------------------
.. function:: void _nmod_vec_set(nn_ptr res, nn_srcptr vec, slong len)
Copies ``len`` entries from the vector ``vec`` to ``res``.
.. function:: void _nmod_vec_zero(nn_ptr vec, slong len)
Zeros the given vector of the given length.
.. function:: void _nmod_vec_swap(nn_ptr a, nn_ptr b, slong length)
Swaps the vectors ``a`` and ``b`` of length `n` by actually
swapping the entries.
.. function:: void _nmod_vec_reduce(nn_ptr res, nn_srcptr vec, slong len, nmod_t mod)
Reduces the entries of ``(vec, len)`` modulo ``mod.n`` and set
``res`` to the result.
.. function:: flint_bitcnt_t _nmod_vec_max_bits(nn_srcptr vec, slong len)
Returns the maximum number of bits of any entry in the vector.
.. function:: int _nmod_vec_equal(nn_srcptr vec, nn_srcptr vec2, slong len)
Returns `1` if ``(vec, len)`` is equal to ``(vec2, len)``,
otherwise returns `0`.
Printing
--------------------------------------------------------------------------------
.. function:: void _nmod_vec_print_pretty(nn_srcptr vec, slong len, nmod_t mod)
Pretty-prints ``vec`` to ``stdout``. A header is printed followed by the
vector enclosed in brackets. Each entry is right-aligned to the width of
the modulus written in decimal, and the entries are separated by spaces.
For example::
<length-12 integer vector mod 197>
[ 33 181 107 61 32 11 80 138 34 171 86 156]
.. function:: int _nmod_vec_fprint_pretty(FILE * file, nn_srcptr vec, slong len, nmod_t mod)
Same as ``_nmod_vec_print_pretty`` but printing to ``file``.
.. function:: int _nmod_vec_print(nn_srcptr vec, slong len, nmod_t mod)
Currently, same as ``_nmod_vec_print_pretty``.
.. function:: int _nmod_vec_fprint(FILE * f, nn_srcptr vec, slong len, nmod_t mod)
Currently, same as ``_nmod_vec_fprint_pretty``.
Arithmetic operations
--------------------------------------------------------------------------------
.. function:: void _nmod_vec_add(nn_ptr res, nn_srcptr vec1, nn_srcptr vec2, slong len, nmod_t mod)
Sets ``(res, len)`` to the sum of ``(vec1, len)``
and ``(vec2, len)``.
.. function:: void _nmod_vec_sub(nn_ptr res, nn_srcptr vec1, nn_srcptr vec2, slong len, nmod_t mod)
Sets ``(res, len)`` to the difference of ``(vec1, len)``
and ``(vec2, len)``.
.. function:: void _nmod_vec_neg(nn_ptr res, nn_srcptr vec, slong len, nmod_t mod)
Sets ``(res, len)`` to the negation of ``(vec, len)``.
.. function:: void _nmod_vec_invert(nn_ptr res, nn_srcptr vec, slong len, nmod_t mod)
Sets each entry of ``(res, len)`` to the modular inverse of the
corresponding entry in ``(vec, len)``. Assumes all entries in
``vec`` are invertible modulo `mod.n`. Aliasing of ``res`` and ``vec`` is
allowed.
.. function:: void _nmod_vec_scalar_mul_nmod(nn_ptr res, nn_srcptr vec, slong len, ulong c, nmod_t mod)
Sets ``(res, len)`` to ``(vec, len)`` multiplied by `c`. The element
`c` and all elements of ``vec`` are assumed to be less than ``mod.n``.
.. function:: void _nmod_vec_scalar_mul_nmod_shoup(nn_ptr res, nn_srcptr vec, slong len, ulong c, nmod_t mod)
Sets ``(res, len)`` to ``(vec, len)`` multiplied by `c` using
:func:`n_mulmod_shoup`. ``mod.n`` should be less than
`2^{\mathtt{FLINT\_BITS} - 1}`, and `c` should be less than ``mod.n``.
There is no constraint on elements of ``vec``.
.. function:: void _nmod_vec_scalar_addmul_nmod(nn_ptr res, nn_srcptr vec, slong len, ulong c, nmod_t mod)
Adds ``(vec, len)`` times `c` to the vector ``(res, len)``. The element
`c` and all elements of ``vec`` are assumed to be less than ``mod.n``.
Dot products
--------------------------------------------------------------------------------
Dot products functions and macros rely on several implementations, depending on
the length of this dot product and on the underlying modulus. What
implementations will be called is determined via ``_nmod_vec_dot_params``,
which returns a ``dot_params_t`` element which can then be used as input to the
dot product routines.
The efficiency of the different approaches range roughly as follows, from
faster to slower, on 64 bit machines. In all cases, modular reduction is only
performed at the very end of the computation.
- moduli up to `1515531528` (about `2^{30.5}`): implemented via single limb
integer multiplication, using explicit vectorization if supported (current
support is for AVX2);
- moduli that are a power of `2` up to `2^{32}`: same efficiency as the above
case;
- moduli that are a power of `2` between `2^{33}` and `2^{63}`: efficiency
between that of the above case and that of the below one (depending on the
machine and on automatic vectorization);
- other moduli up to `2^{32}`: implemented via single limb integer
multiplication combined with accumulation in two limbs;
- moduli more than `2^{32}`, unreduced dot product fits in two limbs:
implemented via two limbs integer multiplication, with a final modular
reduction;
- unreduced dot product fits in three limbs, moduli up to about `2^{62.5}`:
implemented via two limbs integer multiplication, with intermediate
accumulation of sub-products in two limbs, and overall accumulation in three
limbs;
- unreduced dot product fits in three limbs, other moduli: implemented via two
limbs integer multiplication, with accumulation in three limbs.
.. type:: dot_params_t
.. function:: dot_params_t _nmod_vec_dot_params(slong len, nmod_t mod)
Returns a ``dot_params_t`` element. This element can be used as input for
the dot product macros and functions that require it, for any dot product
of vector with entries reduced modulo ``mod.n`` and whose length is less
than or equal to ``len``.
Internals, subject to change: its field ``method`` indicates the method that
will be used to compute a dot product of this length ``len`` when working
with the given ``mod``. Its field ``pow2_precomp`` is set to ``2**DOT_SPLIT_BITS
% mod.n`` if ``method == _DOT2_SPLIT``, and to `0` otherwise.
.. function:: ulong _nmod_vec_dot(nn_srcptr vec1, nn_srcptr vec2, slong len, nmod_t mod, dot_params_t params)
Returns the dot product of (``vec1``, ``len``) and (``vec2``, ``len``). The
input ``params`` has type ``dot_params_t`` and must have been computed via
``_nmod_vec_dot_params`` with the specified ``mod`` and with a length
greater than or equal to ``len``.
.. function:: ulong _nmod_vec_dot_rev(nn_srcptr vec1, nn_srcptr vec2, slong len, nmod_t mod, dot_params_t params)
The same as ``_nmod_vec_dot``, but reverses ``vec2``.
.. function:: ulong _nmod_vec_dot_ptr(nn_srcptr vec1, const nn_ptr * vec2, slong offset, slong len, nmod_t mod, dot_params_t params)
Returns the dot product of (``vec1``, ``len``) and the values at
``vec2[i][offset]``. The input ``params`` has type ``dot_params_t`` and
must have been computed via ``_nmod_vec_dot_params`` with the specified
``mod`` and with a length greater than or equal to ``len``.
.. macro:: NMOD_VEC_DOT(res, i, len, expr1, expr2, mod, params)
Effectively performs the computation::
res = 0;
for (i = 0; i < len; i++)
res += (expr1) * (expr2);
but with the arithmetic performed modulo ``mod``. The input ``params`` has
type ``dot_params_t`` and must have been computed via
``_nmod_vec_dot_params`` with the specified ``mod`` and with a length
greater than or equal to ``len``.
``nmod.h`` has to be included in order for this macro to work (order of
inclusions does not matter).
.. function:: int _nmod_vec_dot_bound_limbs(slong len, nmod_t mod)
Returns the number of limbs (0, 1, 2 or 3) needed to represent the
unreduced dot product of two vectors of length ``len`` having entries
modulo ``mod.n``, assuming that ``len`` is nonnegative and that
``mod.n`` is nonzero. The computed bound is tight. In other words,
this function returns the precise limb size of ``len`` times
``(mod.n - 1)**2``.
.. function:: int _nmod_vec_dot_bound_limbs_from_params(slong len, nmod_t mod, dot_params_t params)
Same specification as ``_nmod_vec_dot_bound_limbs``, but uses the additional
input ``params`` to reduce the amount of computations; for correctness
``params`` must have been computed for the specified ``len`` and ``mod``.
|