File: padic.rst

package info (click to toggle)
flint 3.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 68,996 kB
  • sloc: ansic: 915,350; asm: 14,605; python: 5,340; sh: 4,512; lisp: 2,621; makefile: 787; cpp: 341
file content (627 lines) | stat: -rw-r--r-- 22,404 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
.. _padic:

**padic.h** -- p-adic numbers
===============================================================================


Introduction
--------------------------------------------------------------------------------

The ``padic_t`` data type represents elements of `\mathbf{Q}_p` to
precision `N`, stored in the form `x = p^v u` with `u, v \in \mathbf{Z}`.
Arithmetic operations can be carried out with respect to a context
containing the prime number `p` and various pieces of pre-computed data.

Independent of the context, we consider a `p`-adic number
`x = u p^v` to be in canonical form whenever either
`p \nmid u` or `u = v = 0`, and we say it is reduced
if, in addition, for non-zero `u`, `u \in (0, p^{N-v})`.

We briefly describe the interface:

The functions in this module expect arguments of type ``padic_t``,
and each variable carries its own precision.  The functions have an
interface that is similar to the MPFR functions.  In particular, they
have the same semantics, specified as follows:  Compute the requested
operation exactly and then reduce the result to the precision of the
output variable.

Data structures
--------------------------------------------------------------------------------

A `p`-adic number of type ``padic_t`` comprises a unit `u`, 
a valuation `v`, and a precision `N`.
We provide the following macros to access these fields, so that 
code can be developed somewhat independently from the underlying 
data layout.

.. function:: fmpz * padic_unit(const padic_t op)

    Returns the unit part of the `p`-adic number as a FLINT integer, which 
    can be used as an operand for the ``fmpz`` functions.

.. function:: slong padic_val(const padic_t op)

    Returns the valuation part of the `p`-adic number.

    Note that this function is implemented as a macro and that 
    the expression ``padic_val(op)`` can be used as both an 
    *lvalue* and an *rvalue*.

.. function:: slong padic_get_val(const padic_t op)

    Returns the valuation part of the `p`-adic number.

.. function:: slong padic_prec(const padic_t op)

    Returns the precision of the `p`-adic number.

    Note that this function is implemented as a macro and that 
    the expression ``padic_prec(op)`` can be used as both an 
    *lvalue* and an *rvalue*.

.. function:: slong padic_get_prec(const padic_t op)

    Returns the precision of the `p`-adic number.


Context
--------------------------------------------------------------------------------

A context object for `p`-adic arithmetic contains data pertinent to 
`p`-adic computations, but which we choose not to store with each 
element individually.
Currently, this includes the prime number `p`, its ``double`` 
inverse in case of word-sized primes, precomputed powers of `p` 
in the range given by ``min`` and ``max``, and the printing 
mode.

.. function:: void padic_ctx_init(padic_ctx_t ctx, const fmpz_t p, slong min, slong max, enum padic_print_mode mode)

    Initialises the context ``ctx`` with the given data.

    Assumes that `p` is a prime.  This is not verified but the subsequent 
    behaviour is undefined if `p` is a composite number.

    Assumes that ``min`` and ``max`` are non-negative and that 
    ``min`` is at most ``max``, raising an ``abort`` signal 
    otherwise.

    Assumes that the printing mode is one of ``PADIC_TERSE``, 
    ``PADIC_SERIES``, or ``PADIC_VAL_UNIT``.  Using the example 
    `x = 7^{-1} 12` in `\mathbf{Q}_7`, these behave as follows:

    In ``PADIC_TERSE`` mode, a `p`-adic number is printed 
    in the same way as a rational number, e.g. ``12/7``.

    In ``PADIC_SERIES`` mode, a `p`-adic number is printed 
    digit by digit, e.g. ``5*7^-1 + 1``.

    In ``PADIC_VAL_UNIT`` mode, a `p`-adic number is 
    printed showing the valuation and unit parts separately, 
    e.g. ``12*7^-1``.

.. function:: void padic_ctx_clear(padic_ctx_t ctx)

    Clears all memory that has been allocated as part of the context.

.. function:: int _padic_ctx_pow_ui(fmpz_t rop, ulong e, const padic_ctx_t ctx)

    Sets ``rop`` to `p^e` as efficiently as possible, where 
    ``rop`` is expected to be an uninitialised ``fmpz_t``.

    If the return value is non-zero, it is the responsibility of 
    the caller to clear the returned integer.


Memory management
--------------------------------------------------------------------------------


.. function:: void padic_init(padic_t rop)

    Initialises the `p`-adic number with the precision set to 
    ``PADIC_DEFAULT_PREC``, which is defined as `20`.

.. function:: void padic_init2(padic_t rop, slong N)

    Initialises the `p`-adic number ``rop`` with precision `N`.

.. function:: void padic_clear(padic_t rop)

    Clears all memory used by the `p`-adic number ``rop``.

.. function:: void _padic_canonicalise(padic_t rop, const padic_ctx_t ctx)

    Brings the `p`-adic number ``rop`` into canonical form.

    That is to say, ensures that either `u = v = 0` or 
    `p \nmid u`.  There is no reduction modulo a power 
    of `p`.

.. function:: void _padic_reduce(padic_t rop, const padic_ctx_t ctx)

    Given a `p`-adic number ``rop`` in canonical form, 
    reduces it modulo `p^N`.

.. function:: void padic_reduce(padic_t rop, const padic_ctx_t ctx)

    Ensures that the `p`-adic number ``rop`` is reduced.


Randomisation
--------------------------------------------------------------------------------


.. function:: void padic_randtest(padic_t rop, flint_rand_t state, const padic_ctx_t ctx)

    Sets ``rop`` to a random `p`-adic number modulo `p^N` with valuation 
    in the range `[- \lceil N/10\rceil, N)`, `[N - \lceil -N/10\rceil, N)`, or `[-10, 0)` 
    as `N` is positive, negative or zero, whenever ``rop`` is non-zero.

.. function:: void padic_randtest_not_zero(padic_t rop, flint_rand_t state, const padic_ctx_t ctx)

    Sets ``rop`` to a random non-zero `p`-adic number modulo `p^N`, 
    where the range of the valuation is as for the function 
    :func:`padic_randtest`.

.. function:: void padic_randtest_int(padic_t rop, flint_rand_t state, const padic_ctx_t ctx)

    Sets ``rop`` to a random `p`-adic integer modulo `p^N`.

    Note that whenever `N \leq 0`, ``rop`` is set to zero.


Assignments and conversions
--------------------------------------------------------------------------------

All assignment functions set the value of ``rop`` from ``op``, 
reduced to the precision of ``rop``.

.. function:: void padic_set(padic_t rop, const padic_t op, const padic_ctx_t ctx)

    Sets ``rop`` to the `p`-adic number ``op``.

.. function:: void padic_set_si(padic_t rop, slong op, const padic_ctx_t ctx)

    Sets the `p`-adic number ``rop`` to the 
    ``slong`` integer ``op``.

.. function:: void padic_set_ui(padic_t rop, ulong op, const padic_ctx_t ctx)

    Sets the `p`-adic number ``rop`` to the ``ulong`` 
    integer ``op``.

.. function:: void padic_set_fmpz(padic_t rop, const fmpz_t op, const padic_ctx_t ctx)

    Sets the `p`-adic number ``rop`` to the integer ``op``.

.. function:: void padic_set_fmpq(padic_t rop, const fmpq_t op, const padic_ctx_t ctx)

    Sets ``rop`` to the rational ``op``.

.. function:: void padic_set_mpz(padic_t rop, const mpz_t op, const padic_ctx_t ctx)

    Sets the `p`-adic number ``rop`` to the GMP integer ``op``.

    **Note:** Requires that ``gmp.h`` has been included before any FLINT
    header is included.

.. function:: void padic_set_mpq(padic_t rop, const mpq_t op, const padic_ctx_t ctx)

    Sets ``rop`` to the GMP rational ``op``.

    **Note:** Requires that ``gmp.h`` has been included before any FLINT
    header is included.

.. function:: void padic_get_fmpz(fmpz_t rop, const padic_t op, const padic_ctx_t ctx)

    Sets the integer ``rop`` to the exact `p`-adic integer ``op``.

    If ``op`` is not a `p`-adic integer, raises an ``abort`` signal.

.. function:: void padic_get_fmpq(fmpq_t rop, const padic_t op, const padic_ctx_t ctx)

    Sets the rational ``rop`` to the `p`-adic number ``op``.

.. function:: void padic_get_mpz(mpz_t rop, const padic_t op, const padic_ctx_t ctx)

    Sets the GMP integer ``rop`` to the `p`-adic integer ``op``.

    If ``op`` is not a `p`-adic integer, raises an ``abort`` signal.

    **Note:** Requires that ``gmp.h`` has been included before any FLINT
    header is included.

.. function:: void padic_get_mpq(mpq_t rop, const padic_t op, const padic_ctx_t ctx)

    Sets the GMP rational ``rop`` to the value of ``op``.

    **Note:** Requires that ``gmp.h`` has been included before any FLINT
    header is included.

.. function:: void padic_swap(padic_t op1, padic_t op2)

    Swaps the two `p`-adic numbers ``op1`` and ``op2``.

    Note that this includes swapping the precisions.  In particular, this 
    operation is not equivalent to swapping ``op1`` and ``op2`` 
    using :func:`padic_set` and an auxiliary variable whenever the 
    precisions of the two elements are different.

.. function:: void padic_zero(padic_t rop)

    Sets the `p`-adic number ``rop`` to zero.

.. function:: void padic_one(padic_t rop)

    Sets the `p`-adic number ``rop`` to one, reduced modulo the 
    precision of ``rop``.


Comparison
--------------------------------------------------------------------------------


.. function:: int padic_is_zero(const padic_t op)

    Returns whether ``op`` is equal to zero.

.. function:: int padic_is_one(const padic_t op)

    Returns whether ``op`` is equal to one, that is, whether 
    `u = 1` and `v = 0`.

.. function:: int padic_equal(const padic_t op1, const padic_t op2)

    Returns whether ``op1`` and ``op2`` are equal, that is, 
    whether `u_1 = u_2` and `v_1 = v_2`.


Arithmetic operations
--------------------------------------------------------------------------------


.. function:: slong * _padic_lifts_exps(slong * n, slong N)

    Given a positive integer `N` define the sequence 
    `a_0 = N, a_1 = \lceil a_0/2\rceil, \dotsc, a_{n-1} = \lceil a_{n-2}/2\rceil = 1`.
    Then `n = \lceil\log_2 N\rceil + 1`.

    This function sets `n` and allocates and returns the array `a`.

.. function:: void _padic_lifts_pows(fmpz * pow, const slong * a, slong n, const fmpz_t p)

    Given an array `a` as computed above, this function 
    computes the corresponding powers of `p`, that is, 
    ``pow[i]`` is equal to `p^{a_i}`.

.. function:: void padic_add(padic_t rop, const padic_t op1, const padic_t op2, const padic_ctx_t ctx)

    Sets ``rop`` to the sum of ``op1`` and ``op2``.

.. function:: void padic_sub(padic_t rop, const padic_t op1, const padic_t op2, const padic_ctx_t ctx)

    Sets ``rop`` to the difference of ``op1`` and ``op2``.

.. function:: void padic_neg(padic_t rop, const padic_t op, const padic_ctx_t ctx)

    Sets ``rop`` to the additive inverse of ``op``.

.. function:: void padic_mul(padic_t rop, const padic_t op1, const padic_t op2, const padic_ctx_t ctx)

    Sets ``rop`` to the product of ``op1`` and ``op2``.

.. function:: void padic_shift(padic_t rop, const padic_t op, slong v, const padic_ctx_t ctx)

    Sets ``rop`` to the product of ``op`` and `p^v`.

.. function:: void padic_div(padic_t rop, const padic_t op1, const padic_t op2, const padic_ctx_t ctx)

    Sets ``rop`` to the quotient of ``op1`` and ``op2``.

.. function:: void _padic_inv_precompute(padic_inv_t S, const fmpz_t p, slong N)

    Pre-computes some data and allocates temporary space for 
    `p`-adic inversion using Hensel lifting.

.. function:: void _padic_inv_clear(padic_inv_t S)

    Frees the memory used by `S`.

.. function:: void _padic_inv_precomp(fmpz_t rop, const fmpz_t op, const padic_inv_t S)

    Sets ``rop`` to the inverse of ``op`` modulo `p^N`, 
    assuming that ``op`` is a unit and `N \geq 1`.

    In the current implementation, allows aliasing, but this might 
    change in future versions.

    Uses some data `S` precomputed by calling the function 
    :func:`_padic_inv_precompute`.  Note that this object 
    is not declared ``const`` and in fact it carries a field 
    providing temporary work space.  This allows repeated calls of 
    this function to avoid repeated memory allocations, as used 
    e.g. by the function :func:`padic_log`.

.. function:: void _padic_inv(fmpz_t rop, const fmpz_t op, const fmpz_t p, slong N)

    Sets ``rop`` to the inverse of ``op`` modulo `p^N`, 
    assuming that ``op`` is a unit and `N \geq 1`.

    In the current implementation, allows aliasing, but this might 
    change in future versions.

.. function:: void padic_inv(padic_t rop, const padic_t op, const padic_ctx_t ctx)

    Computes the inverse of ``op`` modulo `p^N`.

    Suppose that ``op`` is given as `x = u p^v`. 
    Raises an ``abort`` signal if `v < -N`.  Otherwise, 
    computes the inverse of `u` modulo `p^{N+v}`.

    This function employs Hensel lifting of an inverse modulo `p`.

.. function:: int padic_sqrt(padic_t rop, const padic_t op, const padic_ctx_t ctx)

    Returns whether ``op`` is a `p`-adic square.  If this is 
    the case, sets ``rop`` to one of the square roots;  otherwise, 
    the value of ``rop`` is undefined.

    We have the following theorem:

    Let `u \in \mathbf{Z}^{\times}`.  Then `u` is a 
    square if and only if `u \bmod p` is a square in 
    `\mathbf{Z} / p \mathbf{Z}`, for `p > 2`, or if 
    `u \bmod 8` is a square in `\mathbf{Z} / 8 \mathbf{Z}`, 
    for `p = 2`.

.. function:: void padic_pow_si(padic_t rop, const padic_t op, slong e, const padic_ctx_t ctx)

    Sets ``rop`` to ``op`` raised to the power `e`, 
    which is defined as one whenever `e = 0`.

    Assumes that some computations involving `e` and the 
    valuation of ``op`` do not overflow in the ``slong`` 
    range.

    Note that if the input `x = p^v u` is defined modulo `p^N` 
    then `x^e = p^{ev} u^e` is defined modulo `p^{N + (e - 1) v}`, 
    which is a precision loss in case `v < 0`.


Exponential
--------------------------------------------------------------------------------


.. function:: slong _padic_exp_bound(slong v, slong N, const fmpz_t p)

    Returns an integer `i` such that for all `j \geq i` we have 
    `\operatorname{ord}_p(x^j / j!) \geq N`, where `\operatorname{ord}_p(x) = v`.

    When `p` is a word-sized prime, 
    returns `\left\lceil \frac{(p-1)N - 1}{(p-1)v - 1}\right\rceil`.
    Otherwise, returns `\lceil N/v\rceil`.

    Assumes that `v < N`.  Moreover, `v` has to be at least `2` or `1`, 
    depending on whether `p` is `2` or odd.

.. function:: void _padic_exp_rectangular(fmpz_t rop, const fmpz_t u, slong v, const fmpz_t p, slong N)
              void _padic_exp_balanced(fmpz_t rop, const fmpz_t u, slong v, const fmpz_t p, slong N)
              void _padic_exp(fmpz_t rop, const fmpz_t u, slong v, const fmpz_t p, slong N)

    Sets ``rop`` to the `p`-exponential function evaluated at 
    `x = p^v u`, reduced modulo `p^N`.

    Assumes that `x \neq 0`, that `\operatorname{ord}_p(x) < N` and that 
    `\exp(x)` converges, that is, that `\operatorname{ord}_p(x)` is at least 
    `2` or `1` depending on whether the prime `p` is `2` or odd.

    Supports aliasing between ``rop`` and `u`.

.. function:: int padic_exp(padic_t y, const padic_t x, const padic_ctx_t ctx)

    Returns whether the `p`-adic exponential function converges at 
    the `p`-adic number `x`, and if so sets `y` to its value.

    The `p`-adic exponential function is defined by the usual series 

    .. math::


        \exp_p(x) = \sum_{i = 0}^{\infty} \frac{x^i}{i!}


    but this only converges only when `\operatorname{ord}_p(x) > 1 / (p - 1)`.  For 
    elements `x \in \mathbf{Q}_p`, this means that `\operatorname{ord}_p(x) \geq 1` 
    when `p \geq 3` and `\operatorname{ord}_2(x) \geq 2` when `p = 2`.

.. function:: int padic_exp_rectangular(padic_t y, const padic_t x, const padic_ctx_t ctx)

    Returns whether the `p`-adic exponential function converges at 
    the `p`-adic number `x`, and if so sets `y` to its value.

    Uses a rectangular splitting algorithm to evaluate the series 
    expression of `\exp(x) \bmod{p^N}`.

.. function:: int padic_exp_balanced(padic_t y, const padic_t x, const padic_ctx_t ctx)

    Returns whether the `p`-adic exponential function converges at 
    the `p`-adic number `x`, and if so sets `y` to its value.

    Uses a balanced approach, balancing the size of chunks of `x` 
    with the valuation and hence the rate of convergence, which 
    results in a quasi-linear algorithm in `N`, for fixed `p`.


Logarithm
--------------------------------------------------------------------------------


.. function:: slong _padic_log_bound(slong v, slong N, const fmpz_t p)

    Returns `b` such that for all `i \geq b` we have 

    .. math::


        i v - \operatorname{ord}_p(i) \geq N


    where `v \geq 1`.

    Assumes that `1 \leq v < N` or `2 \leq v < N` when `p` is 
    odd or `p = 2`, respectively, and also that `N < 2^{f-2}` 
    where `f` is ``FLINT_BITS``.

.. function:: void _padic_log(fmpz_t z, const fmpz_t y, slong v, const fmpz_t p, slong N)
              void _padic_log_rectangular(fmpz_t z, const fmpz_t y, slong v, const fmpz_t p, slong N)
              void _padic_log_satoh(fmpz_t z, const fmpz_t y, slong v, const fmpz_t p, slong N)
              void _padic_log_balanced(fmpz_t z, const fmpz_t y, slong v, const fmpz_t p, slong N)

    Computes 

    .. math::

        z = - \sum_{i = 1}^{\infty} \frac{y^i}{i} \pmod{p^N},

    reduced modulo `p^N`.

    Note that this can be used to compute the `p`-adic logarithm 
    via the equation 

    .. math::

        \log(x) & = \sum_{i=1}^{\infty} (-1)^{i-1} \frac{(x-1)^i}{i} \\
                & = - \sum_{i=1}^{\infty} \frac{(1-x)^i}{i}.

    Assumes that `y = 1 - x` is non-zero and that `v = \operatorname{ord}_p(y)` 
    is at least `1` when `p` is odd and at least `2` when `p = 2` 
    so that the series converges.

    Assumes that `v < N`, and hence in particular `N \geq 2`.

    Does not support aliasing between `y` and `z`.

.. function:: int padic_log(padic_t rop, const padic_t op, const padic_ctx_t ctx)

    Returns whether the `p`-adic logarithm function converges at 
    the `p`-adic number ``op``, and if so sets ``rop`` to its 
    value.

    The `p`-adic logarithm function is defined by the usual series 

    .. math::

        \log_p(x) = \sum_{i=1}^{\infty} (-1)^{i-1} \frac{(x-1)^i}{i}

    but this only converges when `\operatorname{ord}_p(x - 1)` is at least `2`
    or `1` when `p = 2` or `p > 2`, respectively.

.. function:: int padic_log_rectangular(padic_t rop, const padic_t op, const padic_ctx_t ctx)

    Returns whether the `p`-adic logarithm function converges at 
    the `p`-adic number ``op``, and if so sets ``rop`` to its 
    value.

    Uses a rectangular splitting algorithm to evaluate the series 
    expression of `\log(x) \bmod{p^N}`.

.. function:: int padic_log_satoh(padic_t rop, const padic_t op, const padic_ctx_t ctx)

    Returns whether the `p`-adic logarithm function converges at 
    the `p`-adic number ``op``, and if so sets ``rop`` to its 
    value.

    Uses an algorithm based on a result of Satoh, Skjernaa and Taguchi 
    that `\operatorname{ord}_p\bigl(a^{p^k} - 1\bigr) > k`, which implies that 

    .. math::

        \log(a) \equiv p^{-k} \Bigl( \log\bigl(a^{p^k}\bigr) \pmod{p^{N+k}} 
                                                          \Bigr) \pmod{p^N}.


.. function:: int padic_log_balanced(padic_t rop, const padic_t op, const padic_ctx_t ctx)

    Returns whether the `p`-adic logarithm function converges at 
    the `p`-adic number ``op``, and if so sets ``rop`` to its 
    value.


Special functions
--------------------------------------------------------------------------------


.. function:: void _padic_teichmuller(fmpz_t rop, const fmpz_t op, const fmpz_t p, slong N)

    Computes the Teichm\"uller lift of the `p`-adic unit ``op``, 
    assuming that `N \geq 1`.

    Supports aliasing between ``rop`` and ``op``.

.. function:: void padic_teichmuller(padic_t rop, const padic_t op, const padic_ctx_t ctx)

    Computes the Teichm\"uller lift of the `p`-adic unit ``op``.

    If ``op`` is a `p`-adic integer divisible by `p`, sets ``rop`` 
    to zero, which satisfies `t^p - t = 0`, although it is clearly not 
    a `(p-1)`-st root of unity.

    If ``op`` has negative valuation, raises an ``abort`` signal.

.. function:: ulong padic_val_fac_ui_2(ulong n)

    Computes the `2`-adic valuation of `n!`.

    Note that since `n` fits into an ``ulong``, so does 
    `\operatorname{ord}_2(n!)` since `\operatorname{ord}_2(n!) \leq (n - 1) / (p - 1) = n - 1`.

.. function:: ulong padic_val_fac_ui(ulong n, const fmpz_t p)

    Computes the `p`-adic valuation of `n!`.

    Note that since `n` fits into an ``ulong``, so does 
    `\operatorname{ord}_p(n!)` since `\operatorname{ord}_p(n!) \leq (n - 1) / (p - 1)`.

.. function:: void padic_val_fac(fmpz_t rop, const fmpz_t op, const fmpz_t p)

    Sets ``rop`` to the `p`-adic valuation of the factorial 
    of ``op``, assuming that ``op`` is non-negative.


Input and output
--------------------------------------------------------------------------------


.. function:: char * padic_get_str(char * str, const padic_t op, const padic_ctx_t ctx)

    Returns the string representation of the `p`-adic number ``op``
    according to the printing mode set in the context.

    If ``str`` is ``NULL`` then a new block of memory is allocated 
    and a pointer to this is returned.  Otherwise, it is assumed that 
    the string ``str`` is large enough to hold the representation and 
    it is also the return value.

.. function:: int _padic_fprint(FILE * file, const fmpz_t u, slong v, const padic_ctx_t ctx)
              int padic_fprint(FILE * file, const padic_t op, const padic_ctx_t ctx)

    Prints the string representation of the `p`-adic number ``op`` 
    to the stream ``file``.

    In the current implementation, always returns `1`.

.. function:: int _padic_print(const fmpz_t u, slong v, const padic_ctx_t ctx)
              int padic_print(const padic_t op, const padic_ctx_t ctx)

    Prints the string representation of the `p`-adic number ``op`` 
    to the stream ``stdout``.

    In the current implementation, always returns `1`.

.. function:: void padic_debug(const padic_t op)

    Prints debug information about ``op`` to the stream ``stdout``, 
    in the format ``"(u v N)"``.