1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
|
.. _padic-poly:
**padic_poly.h** -- polynomials over p-adic numbers
===============================================================================
Module documentation
--------------------------------------------------------------------------------
We represent a polynomial in `\mathbf{Q}_p[x]` as a
product `p^v f(x)`, where `p` is a prime number,
`v \in \mathbf{Z}` and `f(x) \in \mathbf{Z}[x]`.
As a data structure, we call this polynomial *normalised*
if the polynomial `f(x)` is *normalised*, that is, if the top
coefficient is non-zero.
We say this polynomial is in *canonical form* if one of the
coefficients of `f(x)` is a `p`-adic unit. If `f(x)` is the zero
polynomial, we require that `v = 0`.
We say this polynomial is *reduced* modulo `p^N` if it is
canonical form and if all coefficients lie in the range `[0, p^N)`.
Memory management
--------------------------------------------------------------------------------
.. function:: void padic_poly_init(padic_poly_t poly)
Initialises ``poly`` for use, setting its length to zero.
The precision of the polynomial is set to ``PADIC_DEFAULT_PREC``.
A corresponding call to :func:`padic_poly_clear` must be made
after finishing with the :type:`padic_poly_t` to free the memory
used by the polynomial.
.. function:: void padic_poly_init2(padic_poly_t poly, slong alloc, slong prec)
Initialises ``poly`` with space for at least ``alloc`` coefficients
and sets the length to zero. The allocated coefficients are all set to
zero. The precision is set to ``prec``.
.. function:: void padic_poly_realloc(padic_poly_t poly, slong alloc, const fmpz_t p)
Reallocates the given polynomial to have space for ``alloc``
coefficients. If ``alloc`` is zero the polynomial is cleared
and then reinitialised. If the current length is greater than
``alloc`` the polynomial is first truncated to length ``alloc``.
.. function:: void padic_poly_fit_length(padic_poly_t poly, slong len)
If ``len`` is greater than the number of coefficients currently
allocated, then the polynomial is reallocated to have space for at
least ``len`` coefficients. No data is lost when calling this
function.
The function efficiently deals with the case where ``fit_length`` is
called many times in small increments by at least doubling the number
of allocated coefficients when length is larger than the number of
coefficients currently allocated.
.. function:: void _padic_poly_set_length(padic_poly_t poly, slong len)
Demotes the coefficients of ``poly`` beyond ``len`` and sets
the length of ``poly`` to ``len``.
Note that if the current length is greater than ``len`` the
polynomial may no slonger be in canonical form.
.. function:: void padic_poly_clear(padic_poly_t poly)
Clears the given polynomial, releasing any memory used. It must
be reinitialised in order to be used again.
.. function:: void _padic_poly_normalise(padic_poly_t poly)
Sets the length of ``poly`` so that the top coefficient is non-zero.
If all coefficients are zero, the length is set to zero. This function
is mainly used internally, as all functions guarantee normalisation.
.. function:: void _padic_poly_canonicalise(fmpz * poly, slong * v, slong len, const fmpz_t p)
void padic_poly_canonicalise(padic_poly_t poly, const fmpz_t p)
Brings the polynomial ``poly`` into canonical form,
assuming that it is normalised already. Does *not*
carry out any reduction.
.. function:: void padic_poly_reduce(padic_poly_t poly, const padic_ctx_t ctx)
Reduces the polynomial ``poly`` modulo `p^N`, assuming
that it is in canonical form already.
.. function:: void padic_poly_truncate(padic_poly_t poly, slong n, const fmpz_t p)
Truncates the polynomial to length at most~`n`.
Polynomial parameters
--------------------------------------------------------------------------------
.. function:: slong padic_poly_degree(const padic_poly_t poly)
Returns the degree of the polynomial ``poly``.
.. function:: slong padic_poly_length(const padic_poly_t poly)
Returns the length of the polynomial ``poly``.
.. function:: slong padic_poly_val(const padic_poly_t poly)
Returns the valuation of the polynomial ``poly``,
which is defined to be the minimum valuation of all
its coefficients.
The valuation of the zero polynomial is~`0`.
Note that this is implemented as a macro and can be
used as either a ``lvalue`` or a ``rvalue``.
.. function:: slong padic_poly_prec(padic_poly_t poly)
Returns the precision of the polynomial ``poly``.
Note that this is implemented as a macro and can be
used as either a ``lvalue`` or a ``rvalue``.
Note that increasing the precision might require
a call to :func:`padic_poly_reduce`.
Randomisation
--------------------------------------------------------------------------------
.. function:: void padic_poly_randtest(padic_poly_t f, flint_rand_t state, slong len, const padic_ctx_t ctx)
Sets `f` to a random polynomial of length at most ``len``
with entries reduced modulo `p^N`.
.. function:: void padic_poly_randtest_not_zero(padic_poly_t f, flint_rand_t state, slong len, const padic_ctx_t ctx)
Sets `f` to a non-zero random polynomial of length at most ``len``
with entries reduced modulo `p^N`.
.. function:: void padic_poly_randtest_val(padic_poly_t f, flint_rand_t state, slong val, slong len, const padic_ctx_t ctx)
Sets `f` to a random polynomial of length at most ``len``
with at most the prescribed valuation ``val`` and entries
reduced modulo `p^N`.
Specifically, we aim to set the valuation to be exactly equal
to ``val``, but do not check for additional cancellation
when creating the coefficients.
Assignment and basic manipulation
--------------------------------------------------------------------------------
.. function:: void padic_poly_set_padic(padic_poly_t poly, const padic_t x, const padic_ctx_t ctx)
Sets the polynomial ``poly`` to the `p`-adic number `x`,
reduced to the precision of the polynomial.
.. function:: void padic_poly_set(padic_poly_t poly1, const padic_poly_t poly2, const padic_ctx_t ctx)
Sets the polynomial ``poly1`` to the polynomial ``poly2``,
reduced to the precision of ``poly1``.
.. function:: void padic_poly_set_si(padic_poly_t poly, slong x, const padic_ctx_t ctx)
Sets the polynomial ``poly`` to the ``signed slong``
integer `x` reduced to the precision of the polynomial.
.. function:: void padic_poly_set_ui(padic_poly_t poly, ulong x, const padic_ctx_t ctx)
Sets the polynomial ``poly`` to the ``unsigned slong``
integer `x` reduced to the precision of the polynomial.
.. function:: void padic_poly_set_fmpz(padic_poly_t poly, const fmpz_t x, const padic_ctx_t ctx)
Sets the polynomial ``poly`` to the integer `x`
reduced to the precision of the polynomial.
.. function:: void padic_poly_set_fmpq(padic_poly_t poly, const fmpq_t x, const padic_ctx_t ctx)
Sets the polynomial ``poly`` to the value of the rational `x`,
reduced to the precision of the polynomial.
.. function:: void padic_poly_set_fmpz_poly(padic_poly_t rop, const fmpz_poly_t op, const padic_ctx_t ctx)
Sets the polynomial ``rop`` to the integer polynomial ``op``
reduced to the precision of the polynomial.
.. function:: void padic_poly_set_fmpq_poly(padic_poly_t rop, const fmpq_poly_t op, const padic_ctx_t ctx)
Sets the polynomial ``rop`` to the value of the rational
polynomial ``op``, reduced to the precision of the polynomial.
.. function:: int padic_poly_get_fmpz_poly(fmpz_poly_t rop, const padic_poly_t op, const padic_ctx_t ctx)
Sets the integer polynomial ``rop`` to the value of the `p`-adic
polynomial ``op`` and returns `1` if the polynomial is `p`-adically
integral. Otherwise, returns `0`.
.. function:: void padic_poly_get_fmpq_poly(fmpq_poly_t rop, const padic_poly_t op, const padic_ctx_t ctx)
Sets ``rop`` to the rational polynomial corresponding to
the `p`-adic polynomial ``op``.
.. function:: void padic_poly_zero(padic_poly_t poly)
Sets ``poly`` to the zero polynomial.
.. function:: void padic_poly_one(padic_poly_t poly)
Sets ``poly`` to the constant polynomial `1`,
reduced to the precision of the polynomial.
.. function:: void padic_poly_swap(padic_poly_t poly1, padic_poly_t poly2)
Swaps the two polynomials ``poly1`` and ``poly2``,
including their precisions.
This is done efficiently by swapping pointers.
Getting and setting coefficients
--------------------------------------------------------------------------------
.. function:: void padic_poly_get_coeff_padic(padic_t c, const padic_poly_t poly, slong n, const padic_ctx_t ctx)
Sets `c` to the coefficient of `x^n` in the polynomial,
reduced modulo the precision of `c`.
.. function:: void padic_poly_set_coeff_padic(padic_poly_t f, slong n, const padic_t c, const padic_ctx_t ctx)
Sets the coefficient of `x^n` in the polynomial `f` to `c`,
reduced to the precision of the polynomial `f`.
Note that this operation can take linear time in the length
of the polynomial.
Comparison
--------------------------------------------------------------------------------
.. function:: int padic_poly_equal(const padic_poly_t poly1, const padic_poly_t poly2)
Returns whether the two polynomials ``poly1`` and ``poly2``
are equal.
.. function:: int padic_poly_is_zero(const padic_poly_t poly)
Returns whether the polynomial ``poly`` is the zero polynomial.
.. function:: int padic_poly_is_one(const padic_poly_t poly)
Returns whether the polynomial ``poly`` is equal
to the constant polynomial~`1`, taking the precision
of the polynomial into account.
Addition and subtraction
--------------------------------------------------------------------------------
.. function:: void _padic_poly_add(fmpz * rop, slong * rval, slong N, const fmpz * op1, slong val1, slong len1, slong N1, const fmpz * op2, slong val2, slong len2, slong N2, const padic_ctx_t ctx)
Sets ``(rop, *val, FLINT_MAX(len1, len2)`` to the sum of
``(op1, val1, len1)`` and ``(op2, val2, len2)``.
Assumes that the input is reduced and guarantees that this is
also the case for the output.
Assumes that `\min\{v_1, v_2\} < N`.
Supports aliasing between the output and input arguments.
.. function:: void padic_poly_add(padic_poly_t f, const padic_poly_t g, const padic_poly_t h, const padic_ctx_t ctx)
Sets `f` to the sum `g + h`.
.. function:: void _padic_poly_sub(fmpz * rop, slong * rval, slong N, const fmpz * op1, slong val1, slong len1, slong N1, const fmpz * op2, slong val2, slong len2, slong N2, const padic_ctx_t ctx)
Sets ``(rop, *val, FLINT_MAX(len1, len2)`` to the difference of
``(op1, val1, len1)`` and ``(op2, val2, len2)``.
Assumes that the input is reduced and guarantees that this is
also the case for the output.
Assumes that `\min\{v_1, v_2\} < N`.
Support aliasing between the output and input arguments.
.. function:: void padic_poly_sub(padic_poly_t f, const padic_poly_t g, const padic_poly_t h, const padic_ctx_t ctx)
Sets `f` to the difference `g - h`.
.. function:: void padic_poly_neg(padic_poly_t f, const padic_poly_t g, const padic_ctx_t ctx)
Sets `f` to `-g`.
Scalar multiplication
--------------------------------------------------------------------------------
.. function:: void _padic_poly_scalar_mul_padic(fmpz * rop, slong * rval, slong N, const fmpz * op, slong val, slong len, const padic_t c, const padic_ctx_t ctx)
Sets ``(rop, *rval, len)`` to ``(op, val, len)`` multiplied
by the scalar `c`.
The result will only be correctly reduced if the polynomial
is non-zero. Otherwise, the array ``(rop, len)`` will be
set to zero but the valuation ``*rval`` might be wrong.
.. function:: void padic_poly_scalar_mul_padic(padic_poly_t rop, const padic_poly_t op, const padic_t c, const padic_ctx_t ctx)
Sets the polynomial ``rop`` to the product of the
polynomial ``op`` and the `p`-adic number `c`,
reducing the result modulo `p^N`.
Multiplication
--------------------------------------------------------------------------------
.. function:: void _padic_poly_mul(fmpz * rop, slong * rval, slong N, const fmpz * op1, slong val1, slong len1, const fmpz * op2, slong val2, slong len2, const padic_ctx_t ctx)
Sets ``(rop, *rval, len1 + len2 - 1)`` to the product of
``(op1, val1, len1)`` and ``(op2, val2, len2)``.
Assumes that the resulting valuation ``*rval``, which is
the sum of the valuations ``val1`` and ``val2``, is less
than the precision~`N` of the context.
Assumes that ``len1 >= len2 > 0``.
.. function:: void padic_poly_mul(padic_poly_t res, const padic_poly_t poly1, const padic_poly_t poly2, const padic_ctx_t ctx)
Sets the polynomial ``res`` to the product of the two polynomials
``poly1`` and ``poly2``, reduced modulo `p^N`.
Powering
--------------------------------------------------------------------------------
.. function:: void _padic_poly_pow(fmpz * rop, slong * rval, slong N, const fmpz * op, slong val, slong len, ulong e, const padic_ctx_t ctx)
Sets the polynomial ``(rop, *rval, e (len - 1) + 1)`` to the
polynomial ``(op, val, len)`` raised to the power~`e`.
Assumes that `e > 1` and ``len > 0``.
Does not support aliasing between the input and output arguments.
.. function:: void padic_poly_pow(padic_poly_t rop, const padic_poly_t op, ulong e, const padic_ctx_t ctx)
Sets the polynomial ``rop`` to the polynomial ``op`` raised
to the power~`e`, reduced to the precision in ``rop``.
In the special case `e = 0`, sets ``rop`` to the constant
polynomial one reduced to the precision of ``rop``.
Also note that when `e = 1`, this operation sets ``rop`` to
``op`` and then reduces ``rop``.
When the valuation of the input polynomial is negative,
this results in a loss of `p`-adic precision. Suppose
that the input polynomial is given to precision~`N` and
has valuation~`v < 0`. The result then has valuation
`e v < 0` but is only correct to precision `N + (e - 1) v`.
Series inversion
--------------------------------------------------------------------------------
.. function:: void padic_poly_inv_series(padic_poly_t g, const padic_poly_t f, slong n, const padic_ctx_t ctx)
Computes the power series inverse `g` of `f` modulo `X^n`,
where `n \geq 1`.
Given the polynomial `f \in \mathbf{Q}[X] \subset \mathbf{Q}_p[X]`,
there exists a unique polynomial `f^{-1} \in \mathbf{Q}[X]` such that
`f f^{-1} = 1` modulo `X^n`. This function sets `g` to `f^{-1}`
reduced modulo `p^N`.
Assumes that the constant coefficient of `f` is non-zero.
Moreover, assumes that the valuation of the constant coefficient
of `f` is minimal among the coefficients of `f`.
Note that the result `g` is zero if and only if `- \operatorname{ord}_p(f) \geq N`.
Derivative
--------------------------------------------------------------------------------
.. function:: void _padic_poly_derivative(fmpz * rop, slong * rval, slong N, const fmpz * op, slong val, slong len, const padic_ctx_t ctx)
Sets ``(rop, rval)`` to the derivative of ``(op, val)`` reduced
modulo `p^N`.
Supports aliasing of the input and the output parameters.
.. function:: void padic_poly_derivative(padic_poly_t rop, const padic_poly_t op, const padic_ctx_t ctx)
Sets ``rop`` to the derivative of ``op``, reducing the
result modulo the precision of ``rop``.
Shifting
--------------------------------------------------------------------------------
.. function:: void padic_poly_shift_left(padic_poly_t rop, const padic_poly_t op, slong n, const padic_ctx_t ctx)
Notationally, sets the polynomial ``rop`` to the polynomial ``op``
multiplied by `x^n`, where `n \geq 0`, and reduces the result.
.. function:: void padic_poly_shift_right(padic_poly_t rop, const padic_poly_t op, slong n, const padic_ctx_t ctx)
Notationally, sets the polynomial ``rop`` to the polynomial
``op`` after floor division by `x^n`, where `n \geq 0`, ensuring
the result is reduced.
Evaluation
--------------------------------------------------------------------------------
.. function:: void _padic_poly_evaluate_padic(fmpz_t u, slong * v, slong N, const fmpz * poly, slong val, slong len, const fmpz_t a, slong b, const padic_ctx_t ctx)
void padic_poly_evaluate_padic(padic_t y, const padic_poly_t poly, const padic_t a, const padic_ctx_t ctx)
Sets the `p`-adic number ``y`` to ``poly`` evaluated at `a`,
reduced in the given context.
Suppose that the polynomial can be written as `F(X) = p^w f(X)`
with `\operatorname{ord}_p(f) = 1`, that `\operatorname{ord}_p(a) = b` and that both are
defined to precision~`N`. Then `f` is defined to precision
`N-w` and so `f(a)` is defined to precision `N-w` when `a` is
integral and `N-w+(n-1)b` when `b < 0`, where `n = \deg(f)`. Thus,
`y = F(a)` is defined to precision `N` when `a` is integral and
`N+(n-1)b` when `b < 0`.
Composition
--------------------------------------------------------------------------------
.. function:: void _padic_poly_compose(fmpz * rop, slong * rval, slong N, const fmpz * op1, slong val1, slong len1, const fmpz * op2, slong val2, slong len2, const padic_ctx_t ctx)
Sets ``(rop, *rval, (len1-1)*(len2-1)+1)`` to the composition
of the two input polynomials, reducing the result modulo `p^N`.
Assumes that ``len1`` is non-zero.
Does not support aliasing.
.. function:: void padic_poly_compose(padic_poly_t rop, const padic_poly_t op1, const padic_poly_t op2, const padic_ctx_t ctx)
Sets ``rop`` to the composition of ``op1`` and ``op2``,
reducing the result in the given context.
To be clear about the order of composition, let `f(X)` and `g(X)`
denote the polynomials ``op1`` and ``op2``, respectively.
Then ``rop`` is set to `f(g(X))`.
.. function:: void _padic_poly_compose_pow(fmpz * rop, slong * rval, slong N, const fmpz * op, slong val, slong len, slong k, const padic_ctx_t ctx)
Sets ``(rop, *rval, (len - 1)*k + 1)`` to the composition of
``(op, val, len)`` and the monomial `x^k`, where `k \geq 1`.
Assumes that ``len`` is positive.
Supports aliasing between the input and output polynomials.
.. function:: void padic_poly_compose_pow(padic_poly_t rop, const padic_poly_t op, slong k, const padic_ctx_t ctx)
Sets ``rop`` to the composition of ``op`` and the monomial `x^k`,
where `k \geq 1`.
Note that no reduction takes place.
Input and output
--------------------------------------------------------------------------------
.. function:: int padic_poly_debug(const padic_poly_t poly)
Prints the data defining the `p`-adic polynomial ``poly``
in a simple format useful for debugging purposes.
In the current implementation, always returns `1`.
.. function:: int _padic_poly_fprint(FILE * file, const fmpz * poly, slong val, slong len, const padic_ctx_t ctx)
int padic_poly_fprint(FILE * file, const padic_poly_t poly, const padic_ctx_t ctx)
Prints a simple representation of the polynomial ``poly``
to the stream ``file``.
A non-zero polynomial is represented by the number of coefficients,
two spaces, followed by a list of the coefficients, which are printed
in a way depending on the print mode,
In the ``PADIC_TERSE`` mode, the coefficients are printed as
rational numbers.
The ``PADIC_SERIES`` mode is currently not supported and will
raise an abort signal.
In the ``PADIC_VAL_UNIT`` mode, the coefficients are printed
in the form `p^v u`.
The zero polynomial is represented by ``"0"``.
In the current implementation, always returns `1`.
.. function:: int _padic_poly_print(const fmpz * poly, slong val, slong len, const padic_ctx_t ctx)
int padic_poly_print(const padic_poly_t poly, const padic_ctx_t ctx)
Prints a simple representation of the polynomial ``poly``
to ``stdout``.
In the current implementation, always returns `1`.
.. function:: int _padic_poly_fprint_pretty(FILE * file, const fmpz * poly, slong val, slong len, const char * var, const padic_ctx_t ctx)
int padic_poly_fprint_pretty(FILE * file, const padic_poly_t poly, const char * var, const padic_ctx_t ctx)
int _padic_poly_print_pretty(const fmpz * poly, slong val, slong len, const char * var, const padic_ctx_t ctx)
int padic_poly_print_pretty(const padic_poly_t poly, const char * var, const padic_ctx_t ctx)
Testing
--------------------------------------------------------------------------------
.. function:: int _padic_poly_is_canonical(const fmpz * op, slong val, slong len, const padic_ctx_t ctx)
int padic_poly_is_canonical(const padic_poly_t op, const padic_ctx_t ctx)
int _padic_poly_is_reduced(const fmpz * op, slong val, slong len, slong N, const padic_ctx_t ctx)
int padic_poly_is_reduced(const padic_poly_t op, const padic_ctx_t ctx)
|