File: qadic.rst

package info (click to toggle)
flint 3.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 68,996 kB
  • sloc: ansic: 915,350; asm: 14,605; python: 5,340; sh: 4,512; lisp: 2,621; makefile: 787; cpp: 341
file content (603 lines) | stat: -rw-r--r-- 21,323 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
.. _qadic:

**qadic.h** -- unramified extensions over p-adic numbers
===============================================================================

Data structures
--------------------------------------------------------------------------------

We represent an element of the extension 
`\mathbf{Q}_q \cong \mathbf{Q}_p[X] / (f(X))` as 
a polynomial in `\mathbf{Q}_p[X]` of degree less 
than `\deg(f)`.
As such, ``qadic_struct`` and ``qadic_t`` are 
typedef'ed as ``padic_poly_struct`` and ``padic_poly_t``.


Context
--------------------------------------------------------------------------------

We represent an unramified extension of `\mathbf{Q}_p` 
via `\mathbf{Q}_q \cong \mathbf{Q}_p[X] / (f(X))`, 
where `f \in \mathbf{Q}_p[X]` is a monic, irreducible 
polynomial which we assume to actually be in `\mathbf{Z}[X]`.
The first field in the context structure is a `p`-adic 
context struct ``pctx``, which contains data about 
the prime `p`, precomputed powers, the printing mode etc.
The polynomial `f` is represented as a sparse polynomial 
using two arrays `j` and `a` of length ``len``, where 
`f(X) = \sum_{i} a_{i} X^{j_{i}}`.  We also assume that 
the array `j` is sorted in ascending order.
We choose this data structure to improve reduction 
modulo `f(X)` in `\mathbf{Q}_p[X]`, assuming a sparse 
polynomial `f(X)` is chosen.
The field ``var`` contains the name of a generator 
of the extension, which is used when printing the 
elements.

.. function:: void qadic_ctx_init(qadic_ctx_t ctx, const fmpz_t p, slong d, slong min, slong max, const char * var, enum padic_print_mode mode)

    Initialises the context ``ctx`` with prime `p`, extension degree `d`, 
    variable name ``var`` and printing mode ``mode``. The defining polynomial
    is chosen as a Conway polynomial if possible and otherwise as a random
    sparse polynomial.

    Stores powers of `p` with exponents between ``min`` (inclusive) and 
    ``max`` exclusive.  Assumes that ``min`` is at most ``max``. 

    Assumes that `p` is a prime.

    Assumes that the string ``var`` is a null-terminated string 
    of length at least one.

    Assumes that the printing mode is one of ``PADIC_TERSE``, 
    ``PADIC_SERIES``, or ``PADIC_VAL_UNIT``.

    This function also carries out some relevant precomputation for 
    arithmetic in `\mathbf{Q}_p / (p^N)` such as powers of `p` close 
    to `p^N`.


.. function:: void qadic_ctx_init_conway(qadic_ctx_t ctx, const fmpz_t p, slong d, slong min, slong max, const char * var, enum padic_print_mode mode)

    Initialises the context ``ctx`` with prime `p`, extension degree `d`, 
    variable name ``var`` and printing mode ``mode``. The defining polynomial
    is chosen as a Conway polynomial, hence has restrictions on the
    prime and the degree.

    Stores powers of `p` with exponents between ``min`` (inclusive) and 
    ``max`` exclusive.  Assumes that ``min`` is at most ``max``. 

    Assumes that `p` is a prime.

    Assumes that the string ``var`` is a null-terminated string 
    of length at least one.

    Assumes that the printing mode is one of ``PADIC_TERSE``, 
    ``PADIC_SERIES``, or ``PADIC_VAL_UNIT``.

    This function also carries out some relevant precomputation for 
    arithmetic in `\mathbf{Q}_p / (p^N)` such as powers of `p` close 
    to `p^N`.

.. function:: void qadic_ctx_clear(qadic_ctx_t ctx)

    Clears all memory that has been allocated as part of the context.

.. function:: slong qadic_ctx_degree(const qadic_ctx_t ctx)

    Returns the extension degree.

.. function:: void qadic_ctx_print(const qadic_ctx_t ctx)

    Prints the data from the given context.


Memory management
--------------------------------------------------------------------------------


.. function:: void qadic_init(qadic_t rop)

    Initialises the element ``rop``, setting its value to `0`.

.. function:: void qadic_init2(qadic_t rop, slong prec)

    Initialises the element ``rop`` with the given output precision, 
    setting the value to `0`.

.. function:: void qadic_clear(qadic_t rop)

    Clears the element ``rop``.

.. function:: void _fmpz_poly_reduce(fmpz * R, slong lenR, const fmpz * a, const slong * j, slong len)

    Reduces a polynomial ``(R, lenR)`` modulo a sparse monic 
    polynomial `f(X) = \sum_{i} a_{i} X^{j_{i}}` of degree at 
    least `2`.

    Assumes that the array `j` of positive length ``len`` is 
    sorted in ascending order.

    Allows zero-padding in ``(R, lenR)``.

.. function:: void _fmpz_mod_poly_reduce(fmpz * R, slong lenR, const fmpz * a, const slong * j, slong len, const fmpz_t p)

    Reduces a polynomial ``(R, lenR)`` modulo a sparse monic 
    polynomial `f(X) = \sum_{i} a_{i} X^{j_{i}}` of degree at 
    least `2` in `\mathbf{Z}/(p)`, where `p` is typically a prime 
    power.

    Assumes that the array `j` of positive length ``len`` is 
    sorted in ascending order.

    Allows zero-padding in ``(R, lenR)``.

.. function:: void qadic_reduce(qadic_t rop, const qadic_ctx_t ctx)

    Reduces ``rop`` modulo `f(X)` and `p^N`.


Properties
--------------------------------------------------------------------------------


.. function:: slong qadic_val(const qadic_t op)

    Returns the valuation of ``op``.

.. function:: slong qadic_prec(const qadic_t op)

    Returns the precision of ``op``.


Randomisation
--------------------------------------------------------------------------------


.. function:: void qadic_randtest(qadic_t rop, flint_rand_t state, const qadic_ctx_t ctx)

    Generates a random element of `\mathbf{Q}_q`.

.. function:: void qadic_randtest_not_zero(qadic_t rop, flint_rand_t state, const qadic_ctx_t ctx)

    Generates a random non-zero element of `\mathbf{Q}_q`.

.. function:: void qadic_randtest_val(qadic_t rop, flint_rand_t state, slong v, const qadic_ctx_t ctx)

    Generates a random element of `\mathbf{Q}_q` with prescribed 
    valuation ``val``.

    Note that if `v \geq N` then the element is necessarily zero.

.. function:: void qadic_randtest_int(qadic_t rop, flint_rand_t state, const qadic_ctx_t ctx)

    Generates a random element of `\mathbf{Q}_q` with non-negative valuation.


Assignments and conversions
--------------------------------------------------------------------------------


.. function:: void qadic_set(qadic_t rop, const qadic_t op, const qadic_ctx_t ctx)

    Sets ``rop`` to ``op``.

.. function:: void qadic_zero(qadic_t rop)

    Sets ``rop`` to zero.

.. function:: void qadic_one(qadic_t rop)

    Sets ``rop`` to one, reduced in the given context.

    Note that if the precision `N` is non-positive then ``rop`` 
    is actually set to zero.

.. function:: void qadic_gen(qadic_t rop, const qadic_ctx_t ctx)

    Sets ``rop`` to the generator `X` for the extension 
    when `N > 0`, and zero otherwise.  If the extension degree 
    is one, raises an abort signal.

.. function:: void qadic_set_ui(qadic_t rop, ulong op, const qadic_ctx_t ctx)

    Sets ``rop`` to the integer ``op``, reduced in the 
    context.

.. function:: int qadic_get_padic(padic_t rop, const qadic_t op, const qadic_ctx_t ctx)

    If the element ``op`` lies in `\mathbf{Q}_p`, sets ``rop`` 
    to its value and returns `1`;  otherwise, returns `0`.


Comparison
--------------------------------------------------------------------------------


.. function:: int qadic_is_zero(const qadic_t op)

    Returns whether ``op`` is equal to zero.

.. function:: int qadic_is_one(const qadic_t op)

    Returns whether ``op`` is equal to one in the given 
    context.

.. function:: int qadic_equal(const qadic_t op1, const qadic_t op2)

    Returns whether ``op1`` and ``op2`` are equal.


Basic arithmetic
--------------------------------------------------------------------------------


.. function:: void qadic_add(qadic_t rop, const qadic_t op1, const qadic_t op2, const qadic_ctx_t ctx)

    Sets ``rop`` to the sum of ``op1`` and ``op2``.

    Assumes that both ``op1`` and ``op2`` are reduced in the 
    given context and ensures that ``rop`` is, too.

.. function:: void qadic_sub(qadic_t rop, const qadic_t op1, const qadic_t op2, const qadic_ctx_t ctx)

    Sets ``rop`` to the difference of ``op1`` and ``op2``.

    Assumes that both ``op1`` and ``op2`` are reduced in the 
    given context and ensures that ``rop`` is, too.

.. function:: void qadic_neg(qadic_t rop, const qadic_t op, const qadic_ctx_t ctx)

    Sets ``rop`` to the negative of ``op``.

    Assumes that ``op`` is reduced in the given context and 
    ensures that ``rop`` is, too.

.. function:: void qadic_mul(qadic_t rop, const qadic_t op1, const qadic_t op2, const qadic_ctx_t ctx)

    Sets ``rop`` to the product of ``op1`` and ``op2``, 
    reducing the output in the given context.

.. function:: void _qadic_inv(fmpz * rop, const fmpz * op, slong len, const fmpz * a, const slong * j, slong lena, const fmpz_t p, slong N)

    Sets ``(rop, d)`` to the inverse of ``(op, len)`` 
    modulo `f(X)` given by ``(a,j,lena)`` and `p^N`.

    Assumes that ``(op,len)`` has valuation `0`, that is, 
    that it represents a `p`-adic unit.

    Assumes that ``len`` is at most `d`.

    Does not support aliasing.

.. function:: void qadic_inv(qadic_t rop, const qadic_t op, const qadic_ctx_t ctx)

    Sets ``rop`` to the inverse of ``op``, reduced in the given context.

.. function:: void _qadic_pow(fmpz * rop, const fmpz * op, slong len, const fmpz_t e, const fmpz * a, const slong * j, slong lena, const fmpz_t p)

    Sets ``(rop, 2*d-1)`` to ``(op,len)`` raised to the power `e`, 
    reduced modulo `f(X)` given by ``(a, j, lena)`` and `p`, which 
    is expected to be a prime power.

    Assumes that `e \geq 0` and that ``len`` is positive and at most `d`.

    Although we require that ``rop`` provides space for 
    `2d - 1` coefficients, the output will be reduced modulo 
    `f(X)`, which is a polynomial of degree `d`.

    Does not support aliasing.

.. function:: void qadic_pow(qadic_t rop, const qadic_t op, const fmpz_t e, const qadic_ctx_t ctx)

    Sets ``rop`` the ``op`` raised to the power `e`.

    Currently assumes that `e \geq 0`.

    Note that for any input ``op``, ``rop`` is set to one in the 
    given context whenever `e = 0`.


Square root
--------------------------------------------------------------------------------


.. function:: int qadic_sqrt(qadic_t rop, const qadic_t op, const qadic_ctx_t ctx)

    Return ``1`` if the input is a square (to input precision). If so, set
    ``rop`` to a square root (truncated to output precision).


Special functions
--------------------------------------------------------------------------------


.. function:: void _qadic_exp_rectangular(fmpz * rop, const fmpz * op, slong v, slong len, const fmpz * a, const slong * j, slong lena, const fmpz_t p, slong N, const fmpz_t pN)

    Sets ``(rop, 2*d - 1)`` to the exponential of ``(op, v, len)`` 
    reduced modulo `p^N`, assuming that the series converges.

    Assumes that ``(op, v, len)`` is non-zero.

    Does not support aliasing.

.. function:: int qadic_exp_rectangular(qadic_t rop, const qadic_t op, const qadic_ctx_t ctx)

    Returns whether the exponential series converges at ``op`` 
    and sets ``rop`` to its value reduced modulo in the given 
    context.

.. function:: void _qadic_exp_balanced(fmpz * rop, const fmpz * x, slong v, slong len, const fmpz * a, const slong * j, slong lena, const fmpz_t p, slong N, const fmpz_t pN)

    Sets ``(rop, d)`` to the exponential of ``(op, v, len)`` 
    reduced modulo `p^N`, assuming that the series converges.

    Assumes that ``len`` is in `[1,d)` but supports zero padding, 
    including the special case when ``(op, len)`` is zero.

    Supports aliasing between ``rop`` and ``op``.

.. function:: int qadic_exp_balanced(qadic_t rop, const qadic_t op, const qadic_ctx_t ctx)

    Returns whether the exponential series converges at ``op`` 
    and sets ``rop`` to its value reduced modulo in the given 
    context.

.. function:: void _qadic_exp(fmpz * rop, const fmpz * op, slong v, slong len, const fmpz * a, const slong * j, slong lena, const fmpz_t p, slong N, const fmpz_t pN)

    Sets ``(rop, 2*d - 1)`` to the exponential of ``(op, v, len)`` 
    reduced modulo `p^N`, assuming that the series converges.

    Assumes that ``(op, v, len)`` is non-zero.

    Does not support aliasing.

.. function:: int qadic_exp(qadic_t rop, const qadic_t op, const qadic_ctx_t ctx)

    Returns whether the exponential series converges at ``op`` 
    and sets ``rop`` to its value reduced modulo in the given 
    context.

    The exponential series converges if the valuation of ``op`` 
    is at least `2` or `1` when `p` is even or odd, respectively.

.. function:: void _qadic_log_rectangular(fmpz * z, const fmpz * y, slong v, slong len, const fmpz * a, const slong * j, slong lena, const fmpz_t p, slong N, const fmpz_t pN)

    Computes 

    .. math::

        z = - \sum_{i = 1}^{\infty} \frac{y^i}{i} \pmod{p^N}.



    Note that this can be used to compute the `p`-adic logarithm 
    via the equation 

    .. math::

        \log(x) & = \sum_{i=1}^{\infty} (-1)^{i-1} \frac{(x-1)^i}{i} \\
                & = - \sum_{i=1}^{\infty} \frac{(1-x)^i}{i}.

    Assumes that `y = 1 - x` is non-zero and that `v = \operatorname{ord}_p(y)` 
    is at least `1` when `p` is odd and at least `2` when `p = 2` 
    so that the series converges.

    Assumes that `y` is reduced modulo `p^N`.

    Assumes that `v < N`, and in particular `N \geq 2`.

    Supports aliasing between `y` and `z`.

.. function:: int qadic_log_rectangular(qadic_t rop, const qadic_t op, const qadic_ctx_t ctx)

    Returns whether the `p`-adic logarithm function converges at 
    ``op``, and if so sets ``rop`` to its value.

.. function:: void _qadic_log_balanced(fmpz * z, const fmpz * y, slong len, const fmpz * a, const slong * j, slong lena, const fmpz_t p, slong N, const fmpz_t pN)

    Computes `(z, d)` as 

    .. math::


        z = - \sum_{i = 1}^{\infty} \frac{y^i}{i} \pmod{p^N}.



    Assumes that `v = \operatorname{ord}_p(y)` is at least `1` when `p` is odd and 
    at least `2` when `p = 2` so that the series converges.

    Supports aliasing between `z` and `y`.

.. function:: int qadic_log_balanced(qadic_t rop, const qadic_t op, const qadic_ctx_t ctx)

    Returns whether the `p`-adic logarithm function converges at 
    ``op``, and if so sets ``rop`` to its value.

.. function:: void _qadic_log(fmpz * z, const fmpz * y, slong v, slong len, const fmpz * a, const slong * j, slong lena, const fmpz_t p, slong N, const fmpz_t pN)

    Computes `(z, d)` as 

    .. math::

        z = - \sum_{i = 1}^{\infty} \frac{y^i}{i} \pmod{p^N}.


    Note that this can be used to compute the `p`-adic logarithm 
    via the equation 

    .. math::

        \log(x) & = \sum_{i=1}^{\infty} (-1)^{i-1} \frac{(x-1)^i}{i} \\
                & = - \sum_{i=1}^{\infty} \frac{(1-x)^i}{i}.

    Assumes that `y = 1 - x` is non-zero and that `v = \operatorname{ord}_p(y)` 
    is at least `1` when `p` is odd and at least `2` when `p = 2` 
    so that the series converges.

    Assumes that `(y, d)` is reduced modulo `p^N`.

    Assumes that `v < N`, and hence in particular `N \geq 2`.

    Supports aliasing between `z` and `y`.

.. function:: int qadic_log(qadic_t rop, const qadic_t op, const qadic_ctx_t ctx)

    Returns whether the `p`-adic logarithm function converges at 
    ``op``, and if so sets ``rop`` to its value.

    The `p`-adic logarithm function is defined by the usual series 

    .. math::


        \log_p(x) = \sum_{i=1}^{\infty} (-1)^{i-1} \frac{(x-1)^i}{i}


    but this only converges when `\operatorname{ord}_p(x)` is at least `2` or `1` 
    when `p = 2` or `p > 2`, respectively.

.. function:: void _qadic_frobenius_a(fmpz * rop, slong e, const fmpz * a, const slong * j, slong lena, const fmpz_t p, slong N)

    Computes `\sigma^e(X) \bmod{p^N}` where `X` is such that 
    `\mathbf{Q}_q \cong \mathbf{Q}_p[X]/(f(X))`.

    Assumes that the precision `N` is at least `2` and that the 
    extension is non-trivial, i.e. `d \geq 2`.

    Assumes that `0 < e < d`.

    Sets ``(rop, 2*d-1)``, although the actual length of the 
    output will be at most `d`.

.. function:: void _qadic_frobenius(fmpz * rop, const fmpz * op, slong len, slong e, const fmpz * a, const slong * j, slong lena, const fmpz_t p, slong N)

    Sets ``(rop, 2*d-1)`` to `\Sigma` evaluated at ``(op, len)``.

    Assumes that ``len`` is positive but at most `d`.

    Assumes that `0 < e < d`.

    Does not support aliasing.

.. function:: void qadic_frobenius(qadic_t rop, const qadic_t op, slong e, const qadic_ctx_t ctx)

    Evaluates the homomorphism `\Sigma^e` at ``op``.

    Recall that `\mathbf{Q}_q / \mathbf{Q}_p` is Galois with Galois group 
    `\langle \Sigma \rangle \cong \langle \sigma \rangle`, which is also 
    isomorphic to `\mathbf{Z}/d\mathbf{Z}`, where 
    `\sigma \in \operatorname{Gal}(\mathbf{F}_q/\mathbf{F}_p)` is the Frobenius element 
    `\sigma \colon x \mapsto x^p` and `\Sigma` is its lift to 
    `\operatorname{Gal}(\mathbf{Q}_q/\mathbf{Q}_p)`.

    This functionality is implemented as ``GaloisImage()`` in Magma.

.. function:: void _qadic_teichmuller(fmpz * rop, const fmpz * op, slong len, const fmpz * a, const slong * j, slong lena, const fmpz_t p, slong N)

    Sets ``(rop, d)`` to the Teichmüller lift of ``(op, len)`` 
    modulo `p^N`.

    Does not support aliasing.

.. function:: void qadic_teichmuller(qadic_t rop, const qadic_t op, const qadic_ctx_t ctx)

    Sets ``rop`` to the Teichmüller lift of ``op`` to the 
    precision given in the context.

    For a unit ``op``, this is the unique `(q-1)`\th root of unity 
    which is congruent to ``op`` modulo `p`.

    Sets ``rop`` to zero if ``op`` is zero in the given context.

    Raises an exception if the valuation of ``op`` is negative.

.. function:: void _qadic_trace(fmpz_t rop, const fmpz * op, slong len, const fmpz * a, const slong * j, slong lena, const fmpz_t pN)
              void qadic_trace(padic_t rop, const qadic_t op, const qadic_ctx_t ctx)

    Sets ``rop`` to the trace of ``op``.

    For an element `a \in \mathbf{Q}_q`, multiplication by `a` defines 
    a `\mathbf{Q}_p`-linear map on `\mathbf{Q}_q`.  We define the trace 
    of `a` as the trace of this map.  Equivalently, if `\Sigma` generates 
    `\operatorname{Gal}(\mathbf{Q}_q / \mathbf{Q}_p)` then the trace of `a` is equal to 
    `\sum_{i=0}^{d-1} \Sigma^i (a)`.

.. function:: void _qadic_norm(fmpz_t rop, const fmpz * op, slong len, const fmpz * a, const slong * j, slong lena, const fmpz_t p, slong N)

    Sets ``rop`` to the norm of the element ``(op,len)`` 
    in `\mathbf{Z}_q` to precision `N`, where ``len`` is at 
    least one.

    The result will be reduced modulo `p^N`.

    Note that whenever ``(op,len)`` is a unit, so is its norm. 
    Thus, the output ``rop`` of this function will typically 
    not have to be canonicalised or reduced by the caller.

.. function:: void qadic_norm(padic_t rop, const qadic_t op, const qadic_ctx_t ctx)

    Computes the norm of ``op`` to the given precision.

    Algorithm selection is automatic depending on the input.

.. function:: void qadic_norm_analytic(padic_t rop, const qadic_t op, const qadic_ctx_t ctx)

    Whenever ``op`` has valuation greater than `(p-1)^{-1}`, this 
    routine computes its norm ``rop`` via 

    .. math::


        \operatorname{Norm} (x) = \exp \Bigl( \bigl( \operatorname{Trace} \log (x) \bigr) \Bigr).



    In the special case that ``op`` lies in `\mathbf{Q}_p`, returns 
    its norm as `\operatorname{Norm}(x) = x^d`, where `d` is the extension degree.

    Otherwise, raises an ``abort`` signal.

    The complexity of this implementation is quasi-linear in `d` and `N`, 
    and polynomial in `\log p`.

.. function:: void qadic_norm_resultant(padic_t rop, const qadic_t op, const qadic_ctx_t ctx)

    Sets ``rop`` to the norm of ``op``, using the formula 

    .. math::


        \operatorname{Norm}(x) = \ell(f)^{-\deg(a)} \operatorname{Res}(f(X), a(X)),


    where `\mathbf{Q}_q \cong \mathbf{Q}_p[X] / (f(X))`, `\ell(f)` is the 
    leading coefficient of `f(X)`, and `a(X) \in \mathbf{Q}_p[X]` denotes 
    the same polynomial as `x`.

    The complexity of the current implementation is given by 
    `\mathcal{O}(d^4 M(N \log p))`, where `M(n)` denotes the 
    complexity of multiplying to `n`-bit integers.


Output
--------------------------------------------------------------------------------


.. function:: int qadic_fprint_pretty(FILE * file, const qadic_t op, const qadic_ctx_t ctx)

    Prints a pretty representation of ``op`` to ``file``.

    In the current implementation, always returns `1`.  The return code is 
    part of the function's signature to allow for a later implementation to 
    return the number of characters printed or a non-positive error code.

.. function:: int qadic_print_pretty(const qadic_t op, const qadic_ctx_t ctx)

    Prints a pretty representation of ``op`` to ``stdout``.

    In the current implementation, always returns `1`.  The return code is 
    part of the function's signature to allow for a later implementation to 
    return the number of characters printed or a non-positive error code.