File: poly_roots.c

package info (click to toggle)
flint 3.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 68,996 kB
  • sloc: ansic: 915,350; asm: 14,605; python: 5,340; sh: 4,512; lisp: 2,621; makefile: 787; cpp: 341
file content (222 lines) | stat: -rw-r--r-- 6,723 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
/* This file is public domain. Author: Fredrik Johansson. */

#include <string.h>
#include <ctype.h>
#include <stdlib.h>
#include <flint/fmpz_poly.h>
#include <flint/fmpz_poly_factor.h>
#include <flint/fmpq_poly.h>
#include <flint/acb.h>
#include <flint/arb_fmpz_poly.h>
#include <flint/arith.h>
#include <flint/profiler.h>

int main(int argc, char *argv[])
{
    fmpz_poly_t f, g;
    fmpz_poly_factor_t fac;
    fmpz_t t;
    acb_ptr roots;
    slong compd, printd, i, j, deg;
    int flags;

    if (argc < 2)
    {
        flint_printf("poly_roots [-refine d] [-print d] <poly>\n\n");

        flint_printf("Isolates all the complex roots of a polynomial with integer coefficients.\n\n");

        flint_printf("If -refine d is passed, the roots are refined to a relative tolerance\n");
        flint_printf("better than 10^(-d). By default, the roots are only computed to sufficient\n");
        flint_printf("accuracy to isolate them. The refinement is not currently done efficiently.\n\n");

        flint_printf("If -print d is passed, the computed roots are printed to d decimals.\n");
        flint_printf("By default, the roots are not printed.\n\n");

        flint_printf("The polynomial can be specified by passing the following as <poly>:\n\n");

        flint_printf("a <n>          Easy polynomial 1 + 2x + ... + (n+1)x^n\n");
        flint_printf("t <n>          Chebyshev polynomial T_n\n");
        flint_printf("u <n>          Chebyshev polynomial U_n\n");
        flint_printf("p <n>          Legendre polynomial P_n\n");
        flint_printf("c <n>          Cyclotomic polynomial Phi_n\n");
        flint_printf("s <n>          Swinnerton-Dyer polynomial S_n\n");
        flint_printf("b <n>          Bernoulli polynomial B_n\n");
        flint_printf("w <n>          Wilkinson polynomial W_n\n");
        flint_printf("e <n>          Taylor series of exp(x) truncated to degree n\n");
        flint_printf("m <n> <m>      The Mignotte-like polynomial x^n + (100x+1)^m, n > m\n");
        flint_printf("coeffs <c0 c1 ... cn>        c0 + c1 x + ... + cn x^n\n\n");

        flint_printf("Concatenate to multiply polynomials, e.g.: p 5 t 6 coeffs 1 2 3\n");
        flint_printf("for P_5(x)*T_6(x)*(1+2x+3x^2)\n\n");

        return 1;
    }

    compd = 0;
    printd = 0;
    flags = ARB_FMPZ_POLY_ROOTS_VERBOSE;

    fmpz_poly_init(f);
    fmpz_poly_init(g);
    fmpz_init(t);
    fmpz_poly_one(f);

    for (i = 1; i < argc; i++)
    {
        if (!strcmp(argv[i], "-refine"))
        {
            compd = atol(argv[i+1]);
            i++;
        }
        else if (!strcmp(argv[i], "-print"))
        {
            printd = atol(argv[i+1]);
            i++;
        }
        else if (!strcmp(argv[i], "a"))
        {
            slong n = atol(argv[i+1]);
            fmpz_poly_zero(g);
            for (j = 0; j <= n; j++)
                fmpz_poly_set_coeff_ui(g, j, j+1);
            fmpz_poly_mul(f, f, g);
            i++;
        }
        else if (!strcmp(argv[i], "t"))
        {
            fmpz_poly_chebyshev_t(g, atol(argv[i+1]));
            fmpz_poly_mul(f, f, g);
            i++;
        }
        else if (!strcmp(argv[i], "u"))
        {
            fmpz_poly_chebyshev_u(g, atol(argv[i+1]));
            fmpz_poly_mul(f, f, g);
            i++;
        }
        else if (!strcmp(argv[i], "p"))
        {
            fmpq_poly_t h;
            fmpq_poly_init(h);
            fmpq_poly_legendre_p(h, atol(argv[i+1]));
            fmpq_poly_get_numerator(g, h);
            fmpz_poly_mul(f, f, g);
            fmpq_poly_clear(h);
            i++;
        }
        else if (!strcmp(argv[i], "c"))
        {
            fmpz_poly_cyclotomic(g, atol(argv[i+1]));
            fmpz_poly_mul(f, f, g);
            i++;
        }
        else if (!strcmp(argv[i], "s"))
        {
            fmpz_poly_swinnerton_dyer(g, atol(argv[i+1]));
            fmpz_poly_mul(f, f, g);
            i++;
        }
        else if (!strcmp(argv[i], "b"))
        {
            fmpq_poly_t h;
            fmpq_poly_init(h);
            arith_bernoulli_polynomial(h, atol(argv[i+1]));
            fmpq_poly_get_numerator(g, h);
            fmpz_poly_mul(f, f, g);
            fmpq_poly_clear(h);
            i++;
        }
        else if (!strcmp(argv[i], "w"))
        {
            slong n = atol(argv[i+1]);
            fmpz_poly_zero(g);
            fmpz_poly_fit_length(g, n+2);
            arith_stirling_number_1_vec(g->coeffs, n+1, n+2);
            _fmpz_poly_set_length(g, n+2);
            fmpz_poly_shift_right(g, g, 1);
            fmpz_poly_mul(f, f, g);
            i++;
        }
        else if (!strcmp(argv[i], "e"))
        {
            fmpq_poly_t h;
            fmpq_poly_init(h);
            fmpq_poly_set_coeff_si(h, 0, 0);
            fmpq_poly_set_coeff_si(h, 1, 1);
            fmpq_poly_exp_series(h, h, atol(argv[i+1]) + 1);
            fmpq_poly_get_numerator(g, h);
            fmpz_poly_mul(f, f, g);
            fmpq_poly_clear(h);
            i++;
        }
        else if (!strcmp(argv[i], "m"))
        {
            fmpz_poly_zero(g);
            fmpz_poly_set_coeff_ui(g, 0, 1);
            fmpz_poly_set_coeff_ui(g, 1, 100);
            fmpz_poly_pow(g, g,  atol(argv[i+2]));
            fmpz_poly_set_coeff_ui(g, atol(argv[i+1]), 1);
            fmpz_poly_mul(f, f, g);
            i += 2;
        }
        else if (!strcmp(argv[i], "coeffs"))
        {
            fmpz_poly_zero(g);
            i++;
            j = 0;
            while (i < argc)
            {
                if (fmpz_set_str(t, argv[i], 10) != 0)
                {
                    i--;
                    break;
                }

                fmpz_poly_set_coeff_fmpz(g, j, t);
                i++;
                j++;
            }
            fmpz_poly_mul(f, f, g);
        }
    }

    fmpz_poly_factor_init(fac);

    flint_printf("computing squarefree factorization...\n");
    TIMEIT_ONCE_START;
    fmpz_poly_factor_squarefree(fac, f);
    TIMEIT_ONCE_STOP;

    TIMEIT_ONCE_START;
    for (i = 0; i < fac->num; i++)
    {
        deg = fmpz_poly_degree(fac->p + i);

        flint_printf("%wd roots with multiplicity %wd\n", deg, fac->exp[i]);
        roots = _acb_vec_init(deg);

        arb_fmpz_poly_complex_roots(roots, fac->p + i, flags, compd * 3.32193 + 2);

        if (printd)
        {
            for (j = 0; j < deg; j++)
            {
                acb_printn(roots + j, printd, 0);
                flint_printf("\n");
            }
        }

        _acb_vec_clear(roots, deg);
    }
    TIMEIT_ONCE_STOP;

    fmpz_poly_factor_clear(fac);
    fmpz_poly_clear(f);
    fmpz_poly_clear(g);
    fmpz_clear(t);

    flint_cleanup();
    return 0;
}