File: taylor_integrals.c

package info (click to toggle)
flint 3.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 68,996 kB
  • sloc: ansic: 915,350; asm: 14,605; python: 5,340; sh: 4,512; lisp: 2,621; makefile: 787; cpp: 341
file content (153 lines) | stat: -rw-r--r-- 4,219 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
/* This file is public domain. Author: Fredrik Johansson. */

#include <stdlib.h>
#include <flint/acb_poly.h>
#include <flint/arb_calc.h>
#include <flint/acb_calc.h>
#include <flint/profiler.h>

int
sinx(acb_ptr out, const acb_t inp, void * params, slong order, slong prec)
{
    int xlen = FLINT_MIN(2, order);
    acb_set(out, inp);
    if (xlen > 1)
        acb_one(out + 1);
    _acb_poly_sin_series(out, out, xlen, order, prec);
    return 0;
}

int
elliptic(acb_ptr out, const acb_t inp, void * params, slong order, slong prec)
{
    acb_ptr t;
    t = _acb_vec_init(order);
    acb_set(t, inp);
    if (order > 1)
        acb_one(t + 1);
    _acb_poly_sin_series(t, t, FLINT_MIN(2, order), order, prec);
    _acb_poly_mullow(out, t, order, t, order, order, prec);
    _acb_vec_scalar_mul_2exp_si(t, out, order, -1);
    acb_sub_ui(t, t, 1, prec);
    _acb_vec_neg(t, t, order);
    _acb_poly_rsqrt_series(out, t, order, order, prec);
    _acb_vec_clear(t, order);
    return 0;
}

int
bessel(acb_ptr out, const acb_t inp, void * params, slong order, slong prec)
{
    acb_ptr t;
    acb_t z;
    ulong n;

    t = _acb_vec_init(order);
    acb_init(z);

    acb_set(t, inp);
    if (order > 1)
        acb_one(t + 1);

    n = 10;
    arb_set_si(acb_realref(z), 20);
    arb_set_si(acb_imagref(z), 10);

    /* z sin(t) */
    _acb_poly_sin_series(out, t, FLINT_MIN(2, order), order, prec);
    _acb_vec_scalar_mul(out, out, order, z, prec);

    /* t n */
    _acb_vec_scalar_mul_ui(t, t, FLINT_MIN(2, order), n, prec);

    _acb_poly_sub(out, t, FLINT_MIN(2, order), out, order, prec);

    _acb_poly_cos_series(out, out, order, order, prec);

    _acb_vec_clear(t, order);
    acb_clear(z);
    return 0;
}

int main(int argc, char *argv[])
{
    acb_t r, s, a, b;
    arf_t inr, outr;
    slong digits, prec;

    if (argc < 2)
    {
        flint_printf("integrals d\n");
        flint_printf("compute integrals using d decimal digits of precision\n");
        return 1;
    }

    acb_init(r);
    acb_init(s);
    acb_init(a);
    acb_init(b);
    arf_init(inr);
    arf_init(outr);

    arb_calc_verbose = 0;

    digits = atol(argv[1]);
    prec = digits * 3.32193;
    flint_printf("Digits: %wd\n", digits);

    flint_printf("----------------------------------------------------------------\n");
    flint_printf("Integral of sin(t) from 0 to 100.\n");
    arf_set_d(inr, 0.125);
    arf_set_d(outr, 1.0);
    TIMEIT_ONCE_START;
    acb_set_si(a, 0);
    acb_set_si(b, 100);
    acb_calc_integrate_taylor(r, sinx, NULL, a, b, inr, outr, prec, 1.1 * prec);
    flint_printf("RESULT:\n");
    acb_printn(r, digits, 0); flint_printf("\n");
    TIMEIT_ONCE_STOP;

    flint_printf("----------------------------------------------------------------\n");
    flint_printf("Elliptic integral F(phi, m) = integral of 1/sqrt(1 - m*sin(t)^2)\n");
    flint_printf("from 0 to phi, with phi = 6+6i, m = 1/2. Integration path\n");
    flint_printf("0 -> 6 -> 6+6i.\n");
    arf_set_d(inr, 0.2);
    arf_set_d(outr, 0.5);
    TIMEIT_ONCE_START;
    acb_set_si(a, 0);
    acb_set_si(b, 6);
    acb_calc_integrate_taylor(r, elliptic, NULL, a, b, inr, outr, prec, 1.1 * prec);
    acb_set_si(a, 6);
    arb_set_si(acb_realref(b), 6);
    arb_set_si(acb_imagref(b), 6);
    acb_calc_integrate_taylor(s, elliptic, NULL, a, b, inr, outr, prec, 1.1 * prec);
    acb_add(r, r, s, prec);
    flint_printf("RESULT:\n");
    acb_printn(r, digits, 0); flint_printf("\n");
    TIMEIT_ONCE_STOP;

    flint_printf("----------------------------------------------------------------\n");
    flint_printf("Bessel function J_n(z) = (1/pi) * integral of cos(t*n - z*sin(t))\n");
    flint_printf("from 0 to pi. With n = 10, z = 20 + 10i.\n");
    arf_set_d(inr, 0.1);
    arf_set_d(outr, 0.5);
    TIMEIT_ONCE_START;
    acb_set_si(a, 0);
    acb_const_pi(b, 3 * prec);
    acb_calc_integrate_taylor(r, bessel, NULL, a, b, inr, outr, prec, 3 * prec);
    acb_div(r, r, b, prec);
    flint_printf("RESULT:\n");
    acb_printn(r, digits, 0); flint_printf("\n");
    TIMEIT_ONCE_STOP;

    acb_clear(r);
    acb_clear(s);
    acb_clear(a);
    acb_clear(b);
    arf_clear(inr);
    arf_clear(outr);

    flint_cleanup();
    return 0;
}