1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
/*
Copyright (C) 2010 Fredrik Johansson
This file is part of FLINT.
FLINT is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version. See <https://www.gnu.org/licenses/>.
*/
#include "ulong_extras.h"
#include "mpn_extras.h"
#include "fmpz.h"
#include "fmpz_factor.h"
void
fmpz_factor(fmpz_factor_t factor, const fmpz_t n)
{
ulong exp;
ulong p;
mpz_ptr xsrc;
nn_ptr xd;
slong xsize;
slong found;
slong trial_start, trial_stop;
TMP_INIT;
if (!COEFF_IS_MPZ(*n))
{
fmpz_factor_si(factor, *n);
return;
}
_fmpz_factor_set_length(factor, 0);
/* Get sign and size */
xsrc = COEFF_TO_PTR(*n);
if (xsrc->_mp_size < 0)
{
xsize = -(xsrc->_mp_size);
factor->sign = -1;
}
else
{
xsize = xsrc->_mp_size;
factor->sign = 1;
}
/* Just a single limb */
if (xsize == 1)
{
_fmpz_factor_extend_factor_ui(factor, xsrc->_mp_d[0]);
return;
}
/* Create a temporary copy to be mutated */
TMP_START;
xd = TMP_ALLOC(xsize * sizeof(ulong));
flint_mpn_copyi(xd, xsrc->_mp_d, xsize);
/* Factor out powers of two */
xsize = flint_mpn_remove_2exp(xd, xsize, &exp);
if (exp != 0)
_fmpz_factor_append_ui(factor, UWORD(2), exp);
trial_start = 1;
trial_stop = 1000;
while (xsize > 1)
{
found = flint_mpn_factor_trial(xd, xsize, trial_start, trial_stop);
if (found)
{
p = n_primes_arr_readonly(found+1)[found];
exp = 1;
mpn_divexact_1(xd, xd, xsize, p);
xsize -= (xd[xsize - 1] == 0);
/* Check if p^2 divides n */
if (flint_mpn_divisible_1_odd(xd, xsize, p))
{
/* TODO: when searching for squarefree numbers
(Moebius function, etc), we can abort here. */
mpn_divexact_1(xd, xd, xsize, p);
xsize -= (xd[xsize - 1] == 0);
exp = 2;
}
/* If we're up to cubes, then maybe there are higher powers */
if (exp == 2 && flint_mpn_divisible_1_odd(xd, xsize, p))
{
mpn_divexact_1(xd, xd, xsize, p);
xsize -= (xd[xsize - 1] == 0);
xsize = flint_mpn_remove_power_ascending(xd, xsize, &p, 1, &exp);
exp += 3;
}
_fmpz_factor_append_ui(factor, p, exp);
/* flint_printf("added %wu %wu\n", p, exp); */
/* Continue using only trial division whilst it is successful.
This allows quickly factoring huge highly composite numbers
such as factorials, which can arise in some applications. */
trial_start = found + 1;
trial_stop = trial_start + 1000;
continue;
}
else
{
fmpz_t n2;
mpz_ptr data;
fmpz_init2(n2, xsize);
data = _fmpz_promote(n2);
flint_mpn_copyi(data->_mp_d, xd, xsize);
data->_mp_size = xsize;
fmpz_factor_no_trial(factor, n2);
fmpz_clear(n2);
goto cleanup;
}
}
/* Any single-limb factor left? */
if (xd[0] != 1)
_fmpz_factor_extend_factor_ui(factor, xd[0]);
cleanup:
TMP_END;
return;
}
|