1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
|
(**
This example is part of the Flocq formalization of floating-point
arithmetic in Coq: https://flocq.gitlabpages.inria.fr/
Copyright (C) 2014-2018 Sylvie Boldo
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
COPYING file for more details.
*)
From Coq Require Import ZArith Reals Psatz.
From Flocq Require Import Core Plus_error.
Open Scope R_scope.
Section av1.
Lemma Rmin_Rmax_overflow: forall x y z M, Rabs x <= M -> Rabs y <= M ->
Rmin x y <= z <= Rmax x y -> Rabs z <= M.
Proof.
intros x y z M Hx Hy H.
case (Rle_or_lt 0 z); intros Hz.
rewrite Rabs_right.
apply Rle_trans with (1:=proj2 H).
generalize (proj2 H).
apply Rmax_case_strong.
intros; apply Rle_trans with (2:=Hx).
apply RRle_abs.
intros; apply Rle_trans with (2:=Hy).
apply RRle_abs.
now apply Rle_ge.
rewrite Rabs_left; try assumption.
apply Rle_trans with (Rmax (-x) (-y)).
rewrite Rmax_opp.
apply Ropp_le_contravar, H.
apply Rmax_case_strong.
intros; apply Rle_trans with (2:=Hx).
rewrite <- Rabs_Ropp.
apply RRle_abs.
intros; apply Rle_trans with (2:=Hy).
rewrite <- Rabs_Ropp.
apply RRle_abs.
Qed.
Definition radix2 := Build_radix 2 (refl_equal true).
Notation bpow e := (bpow radix2 e).
Variable emin prec : Z.
Context { prec_gt_0_ : Prec_gt_0 prec }.
Notation format := (generic_format radix2 (FLT_exp emin prec)).
Notation round_flt :=(round radix2 (FLT_exp emin prec) ZnearestE).
Notation ulp_flt :=(ulp radix2 (FLT_exp emin prec)).
Notation cexp := (cexp radix2 (FLT_exp emin prec)).
Notation pred_flt := (pred radix2 (FLT_exp emin prec)).
Lemma FLT_format_double: forall u, format u -> format (2*u).
Proof with auto with typeclass_instances.
intros u Fu.
apply generic_format_FLT.
apply FLT_format_generic in Fu...
destruct Fu as [uf H1 H2 H3].
exists (Float radix2 (Fnum uf) (Fexp uf+1)).
rewrite H1; unfold F2R; simpl.
rewrite bpow_plus, bpow_1.
simpl;ring.
easy.
apply Z.le_trans with (1:=H3).
apply Zle_succ.
Qed.
Lemma FLT_format_half: forall u,
format u -> bpow (prec+emin) <= Rabs u -> format (u/2).
Proof with auto with typeclass_instances.
intros u Fu H.
apply FLT_format_generic in Fu...
destruct Fu as [[n e] H1 H2 H3].
simpl in H1, H2, H3.
apply generic_format_FLT.
exists (Float radix2 n (e-1)).
rewrite H1; unfold F2R; simpl.
unfold Zminus; rewrite bpow_plus.
change (bpow (-(1))) with (/2).
unfold Rdiv; ring.
easy.
cut (prec + emin < prec +e)%Z.
simpl ; lia.
apply lt_bpow with radix2.
apply Rle_lt_trans with (1:=H).
rewrite H1; unfold F2R; simpl.
rewrite Rabs_mult; rewrite (Rabs_right (bpow e)).
2: apply Rle_ge, bpow_ge_0.
rewrite bpow_plus.
apply Rmult_lt_compat_r.
apply bpow_gt_0.
rewrite <- abs_IZR.
rewrite <- IZR_Zpower.
now apply IZR_lt.
now apply Zlt_le_weak.
Qed.
Lemma FLT_round_half: forall z, bpow (prec+emin) <= Rabs z ->
round_flt (z/2)= round_flt z /2.
Proof with auto with typeclass_instances.
intros z Hz.
apply Rmult_eq_reg_l with 2.
2: apply sym_not_eq; auto with real.
apply trans_eq with (round_flt z).
2: field.
assert (z <> 0)%R.
intros K; contradict Hz.
rewrite K, Rabs_R0; apply Rlt_not_le.
apply bpow_gt_0.
assert (cexp (z/2) = cexp z -1)%Z.
assert (prec+emin < mag radix2 z)%Z.
apply lt_bpow with radix2.
destruct mag as (e,He); simpl.
apply Rle_lt_trans with (1:=Hz).
now apply He.
unfold cexp, FLT_exp.
replace ((mag radix2 (z/2))-prec)%Z with ((mag radix2 z -1) -prec)%Z.
rewrite Z.max_l; lia.
apply Zplus_eq_compat; try reflexivity.
apply sym_eq, mag_unique.
destruct (mag radix2 z) as (e,He); simpl.
unfold Rdiv; rewrite Rabs_mult.
rewrite (Rabs_right (/2)).
split.
apply Rmult_le_reg_l with (bpow 1).
apply bpow_gt_0.
rewrite <- bpow_plus.
replace (1+(e-1-1))%Z with (e-1)%Z by ring.
apply Rle_trans with (Rabs z).
now apply He.
change (bpow 1) with 2%R.
right; simpl; field.
apply Rmult_lt_reg_l with (bpow 1).
apply bpow_gt_0.
rewrite <- bpow_plus.
replace (1+(e-1))%Z with e by ring.
apply Rle_lt_trans with (Rabs z).
change (bpow 1) with 2.
right; field.
now apply He.
lra.
unfold round, scaled_mantissa, F2R.
rewrite H0; simpl.
rewrite Rmult_comm, Rmult_assoc.
apply f_equal2.
apply f_equal, f_equal.
replace (-(cexp z -1))%Z with (-cexp z +1)%Z by ring.
rewrite bpow_plus.
change (bpow 1) with 2.
field.
unfold Zminus; rewrite bpow_plus.
change (bpow (-(1))) with (/2).
field.
Qed.
Lemma FLT_ulp_le_id: forall u, bpow emin <= u -> ulp_flt u <= u.
Proof with auto with typeclass_instances.
intros u H.
rewrite ulp_neq_0.
2: apply Rgt_not_eq, Rlt_le_trans with (2:=H), bpow_gt_0.
case (Rle_or_lt (bpow (emin+prec-1)) u); intros Hu.
unfold ulp; rewrite cexp_FLT_FLX.
unfold cexp, FLX_exp.
destruct (mag radix2 u) as (e,He); simpl.
apply Rle_trans with (bpow (e-1)).
apply bpow_le.
unfold Prec_gt_0 in prec_gt_0_; lia.
rewrite <- (Rabs_right u).
apply He.
apply Rgt_not_eq, Rlt_gt.
apply Rlt_le_trans with (2:=Hu).
apply bpow_gt_0.
apply Rle_ge, Rle_trans with (2:=Hu), bpow_ge_0.
rewrite Rabs_right.
assumption.
apply Rle_ge, Rle_trans with (2:=Hu), bpow_ge_0.
unfold ulp; rewrite cexp_FLT_FIX.
apply H.
apply Rgt_not_eq, Rlt_gt.
apply Rlt_le_trans with (2:=H).
apply bpow_gt_0.
rewrite Rabs_right.
apply Rlt_le_trans with (1:=Hu).
apply bpow_le; lia.
apply Rle_ge, Rle_trans with (2:=H), bpow_ge_0.
Qed.
Lemma FLT_ulp_double: forall u, ulp_flt (2*u) <= 2*ulp_flt(u).
Proof.
intros u.
case (Req_bool_spec u 0); intros Hu'.
rewrite Hu', Rmult_0_r.
rewrite <- (Rmult_1_l (ulp_flt 0)) at 1.
apply Rmult_le_compat_r.
apply ulp_ge_0.
left; apply Rlt_plus_1.
rewrite 2!ulp_neq_0; trivial.
2: lra.
change 2 with (bpow 1) at 2.
rewrite <- bpow_plus.
apply bpow_le.
case (Rle_or_lt (bpow (emin+prec-1)) (Rabs u)); intros Hu.
(* *)
rewrite cexp_FLT_FLX.
rewrite cexp_FLT_FLX; trivial.
unfold cexp, FLX_exp.
change 2 with (bpow 1).
rewrite Rmult_comm, mag_mult_bpow.
lia.
intros H; contradict Hu.
apply Rlt_not_le; rewrite H, Rabs_R0.
apply bpow_gt_0.
apply Rle_trans with (1:=Hu).
rewrite Rabs_mult.
pattern (Rabs u) at 1; rewrite <- (Rmult_1_l (Rabs u)).
apply Rmult_le_compat_r.
apply Rabs_pos.
rewrite <- (abs_IZR 2).
now apply IZR_le.
(* *)
rewrite cexp_FLT_FIX.
rewrite cexp_FLT_FIX; trivial.
unfold FIX_exp, cexp; lia.
apply Rlt_le_trans with (1:=Hu).
apply bpow_le; lia.
lra.
rewrite Rabs_mult.
rewrite Rabs_pos_eq.
2: now apply IZR_le.
apply Rlt_le_trans with (2*bpow (emin + prec - 1)).
apply Rmult_lt_compat_l with (1 := Rlt_0_2).
assumption.
change 2 with (bpow 1).
rewrite <- bpow_plus.
apply bpow_le; lia.
Qed.
Lemma round_plus_small_id_aux: forall f h, format f -> (bpow (prec+emin) <= f) -> 0 < f
-> Rabs h <= /4* ulp_flt f -> round_flt (f+h) = f.
Proof with auto with typeclass_instances.
intros f h Ff H1 H2 Hh.
case (Rle_or_lt 0 h); intros H3;[destruct H3|idtac].
(* 0 < h *)
rewrite Rabs_right in Hh.
2: now apply Rle_ge, Rlt_le.
apply round_N_eq_DN_pt with (f+ ulp_flt f)...
pattern f at 2; rewrite <- (round_DN_plus_eps_pos radix2 (FLT_exp emin prec) f) with (eps:=h); try assumption.
apply round_DN_pt...
now left.
split.
now left.
apply Rle_lt_trans with (1:=Hh).
rewrite <- (Rmult_1_l (ulp_flt f)) at 2.
apply Rmult_lt_compat_r.
rewrite ulp_neq_0; try now apply Rgt_not_eq.
apply bpow_gt_0.
lra.
rewrite <- (round_UP_plus_eps_pos radix2 (FLT_exp emin prec) f) with (eps:=h); try assumption.
apply round_UP_pt...
now left.
split; trivial.
apply Rle_trans with (1:=Hh).
rewrite <- (Rmult_1_l (ulp_flt f)) at 2.
apply Rmult_le_compat_r.
apply ulp_ge_0.
lra.
apply Rplus_lt_reg_l with (-f); ring_simplify.
apply Rlt_le_trans with (/2*ulp_flt f).
2: right; field.
apply Rle_lt_trans with (1:=Hh).
apply Rmult_lt_compat_r.
rewrite ulp_neq_0; try now apply Rgt_not_eq.
apply bpow_gt_0.
lra.
(* h = 0 *)
rewrite <- H, Rplus_0_r.
apply round_generic...
(* h < 0 *)
(* - assertions *)
rewrite Rabs_left in Hh; try assumption.
assert (0 < pred_flt f).
apply Rlt_le_trans with (bpow emin).
apply bpow_gt_0.
apply pred_ge_gt...
apply generic_format_FLT_bpow...
apply Z.le_refl.
apply Rlt_le_trans with (2:=H1).
apply bpow_lt.
unfold Prec_gt_0 in prec_gt_0_; lia.
assert (M:(prec + emin +1 <= mag radix2 f)%Z).
apply mag_ge_bpow.
replace (prec+emin+1-1)%Z with (prec+emin)%Z by ring.
rewrite Rabs_right; try assumption.
apply Rle_ge; now left.
assert (T1:(ulp_flt (pred_flt f) = ulp_flt f)
\/ ( ulp_flt (pred_flt f) = /2* ulp_flt f
/\ f = bpow (mag radix2 f -1))).
generalize H; rewrite pred_eq_pos; [idtac|now left].
unfold pred_pos; case Req_bool_spec; intros K HH.
(**)
right; split; try assumption.
rewrite ulp_neq_0;[idtac|now apply Rgt_not_eq].
apply trans_eq with (bpow (mag radix2 f- prec -1)).
apply f_equal.
unfold cexp.
apply trans_eq with (FLT_exp emin prec (mag radix2 f -1)%Z).
apply f_equal.
unfold FLT_exp.
rewrite Z.max_l by lia.
apply mag_unique.
rewrite Rabs_right.
split.
apply Rplus_le_reg_l with (bpow (mag radix2 f -1-prec)).
ring_simplify.
apply Rle_trans with (bpow (mag radix2 f - 1 - 1) + bpow (mag radix2 f - 1 - 1)).
apply Rplus_le_compat_r.
apply bpow_le.
unfold Prec_gt_0 in prec_gt_0_; lia.
apply Rle_trans with (bpow 1*bpow (mag radix2 f - 1 - 1)).
change (bpow 1) with 2.
right; ring.
rewrite <- bpow_plus.
apply Rle_trans with (bpow (mag radix2 f -1)).
apply bpow_le; lia.
rewrite <- K; now right.
rewrite <- K.
apply Rplus_lt_reg_l with (-f+bpow (mag radix2 f-1-prec)); ring_simplify.
apply bpow_gt_0.
apply Rle_ge.
rewrite K at 1.
apply Rplus_le_reg_l with (bpow (mag radix2 f - 1 - prec)).
ring_simplify.
apply bpow_le.
unfold Prec_gt_0 in prec_gt_0_; lia.
unfold FLT_exp.
rewrite Z.max_l by lia.
ring.
replace (/2) with (bpow (-1)) by reflexivity.
rewrite ulp_neq_0; try now apply Rgt_not_eq.
rewrite <- bpow_plus.
apply f_equal.
unfold cexp, FLT_exp.
rewrite Z.max_l by lia.
ring.
(**)
left.
assert (bpow (mag radix2 f -1) < f).
destruct (mag radix2 f); simpl in *.
destruct a.
now apply Rgt_not_eq.
rewrite Rabs_right in H0.
destruct H0; try assumption.
contradict H0.
now apply sym_not_eq.
apply Rle_ge; now left.
assert (bpow (mag radix2 f -1) + ulp_flt (bpow (mag radix2 f-1)) <= f).
rewrite <- succ_eq_pos;[idtac|apply bpow_ge_0].
apply succ_le_lt...
apply generic_format_FLT_bpow...
unfold Prec_gt_0 in prec_gt_0_;lia.
rewrite ulp_bpow in H4.
unfold FLT_exp in H4.
rewrite Z.max_l in H4 by lia.
replace (mag radix2 f - 1 + 1 - prec)%Z with (mag radix2 f - prec)%Z in H4 by ring.
rewrite ulp_neq_0; try now apply Rgt_not_eq.
rewrite ulp_neq_0 at 2; try now apply Rgt_not_eq.
unfold cexp.
apply f_equal; apply f_equal.
replace (ulp_flt f) with (bpow (mag radix2 f -prec)).
apply mag_unique.
rewrite Rabs_right.
split.
apply Rplus_le_reg_l with (bpow (mag radix2 f -prec)).
ring_simplify.
apply Rle_trans with (2:=H4); right; ring.
apply Rlt_trans with f.
apply Rplus_lt_reg_l with (-f+bpow (mag radix2 f - prec)).
ring_simplify.
apply bpow_gt_0.
apply Rle_lt_trans with (1:=RRle_abs _).
apply bpow_mag_gt.
apply Rle_ge.
apply Rplus_le_reg_l with (bpow (mag radix2 f - prec)).
ring_simplify.
left; apply Rle_lt_trans with (2:=H0).
apply bpow_le.
unfold Prec_gt_0 in prec_gt_0_;lia.
rewrite ulp_neq_0; try now apply Rgt_not_eq.
unfold cexp, FLT_exp.
rewrite Z.max_l.
reflexivity.
lia.
assert (T: (ulp_flt (pred_flt f) = ulp_flt f \/
(ulp_flt (pred_flt f) = / 2 * ulp_flt f /\ - h < / 4 * ulp_flt f))
\/ (ulp_flt (pred_flt f) = / 2 * ulp_flt f /\
f = bpow (mag radix2 f - 1) /\
- h = / 4 * ulp_flt f) ).
destruct T1.
left; now left.
case Hh; intros P.
left; right.
split; try apply H0; assumption.
right.
split; try split; try apply H0; assumption.
clear T1.
(* - end of assertions *)
destruct T.
(* normal case *)
apply round_N_eq_UP_pt with (pred_flt f)...
rewrite <- (round_DN_minus_eps_pos radix2 (FLT_exp emin prec) f) with (eps:=-h); try assumption.
replace (f--h) with (f+h) by ring.
apply round_DN_pt...
split.
auto with real.
apply Rle_trans with (1:=Hh).
apply Rle_trans with (/2*ulp_flt f).
apply Rmult_le_compat_r.
apply ulp_ge_0.
lra.
case H0.
intros Y; rewrite Y.
rewrite <- (Rmult_1_l (ulp_flt f)) at 2.
apply Rmult_le_compat_r.
apply ulp_ge_0.
lra.
intros Y; rewrite (proj1 Y); now right.
replace (f+h) with (pred_flt f + (f-pred_flt f+h)) by ring.
pattern f at 4; rewrite <- (round_UP_pred_plus_eps_pos radix2 (FLT_exp emin prec) f) with (eps:=(f - pred_flt f + h)); try assumption.
apply round_UP_pt...
replace (f-pred_flt f) with (ulp_flt (pred_flt f)).
split.
apply Rplus_lt_reg_l with (-h); ring_simplify.
case H0; [intros Y|intros (Y1,Y2)].
apply Rle_lt_trans with (1:=Hh).
rewrite Y.
rewrite <- (Rmult_1_l (ulp_flt f)) at 2.
apply Rmult_lt_compat_r.
rewrite ulp_neq_0;[apply bpow_gt_0|now apply Rgt_not_eq].
lra.
apply Rlt_le_trans with (1:=Y2).
rewrite Y1.
apply Rmult_le_compat_r.
apply ulp_ge_0.
lra.
apply Rplus_le_reg_l with (-ulp_flt (pred_flt f)); ring_simplify.
now left.
rewrite pred_eq_pos; try now left.
pattern f at 2; rewrite <- (pred_pos_plus_ulp radix2 (FLT_exp emin prec) f)...
ring.
apply Rplus_lt_reg_l with (-f); ring_simplify.
apply Rle_lt_trans with (-(/2 * ulp_flt (pred_flt f))).
right.
apply trans_eq with ((pred_flt f - f) / 2).
field.
rewrite pred_eq_pos; try now left.
pattern f at 2; rewrite <- (pred_pos_plus_ulp radix2 (FLT_exp emin prec) f)...
field.
replace h with (--h) by ring.
apply Ropp_lt_contravar.
case H0;[intros Y|intros (Y1,Y2)].
apply Rle_lt_trans with (1:=Hh).
rewrite Y.
apply Rmult_lt_compat_r.
rewrite ulp_neq_0; try apply bpow_gt_0; now apply Rgt_not_eq.
lra.
apply Rlt_le_trans with (1:=Y2).
rewrite Y1.
right; field.
(* complex case: even choosing *)
elim H0; intros T1 (T2,T3); clear H0.
assert (pred_flt f = bpow (mag radix2 f - 1) - bpow (mag radix2 f - 1 -prec)).
rewrite pred_eq_pos; try now left.
unfold pred_pos; case Req_bool_spec.
intros _; rewrite <- T2.
apply f_equal, f_equal.
unfold FLT_exp.
rewrite Z.max_l.
ring.
lia.
intros Y; now contradict T2.
assert (round radix2 (FLT_exp emin prec) Zfloor (f+h) = pred_flt f).
replace (f+h) with (f-(-h)) by ring.
apply round_DN_minus_eps_pos...
split.
auto with real.
rewrite T3, T1.
apply Rmult_le_compat_r.
apply ulp_ge_0.
lra.
assert (round radix2 (FLT_exp emin prec) Zceil (f+h) = f).
replace (f+h) with (pred_flt f + /2*ulp_flt (pred_flt f)).
apply round_UP_pred_plus_eps_pos...
split.
apply Rmult_lt_0_compat.
lra.
rewrite ulp_neq_0; try now apply Rgt_not_eq.
apply bpow_gt_0.
rewrite <- (Rmult_1_l (ulp_flt (pred_flt f))) at 2.
apply Rmult_le_compat_r.
apply ulp_ge_0.
lra.
rewrite T1, H0, <- T2.
replace h with (--h) by ring; rewrite T3.
replace (bpow (mag radix2 f - 1 - prec)) with (/2*ulp_flt f).
field.
replace (/2) with (bpow (-1)) by reflexivity.
rewrite T2 at 1.
rewrite ulp_bpow, <- bpow_plus.
apply f_equal; unfold FLT_exp.
rewrite Z.max_l.
ring.
lia.
assert ((Z.even (Zfloor (scaled_mantissa radix2 (FLT_exp emin prec) (f + h)))) = false).
replace (Zfloor (scaled_mantissa radix2 (FLT_exp emin prec) (f + h)))
with (Zpower radix2 prec -1)%Z.
unfold Zminus; rewrite Z.even_add.
rewrite Z.even_opp.
rewrite Z.even_pow.
reflexivity.
unfold Prec_gt_0 in prec_gt_0_; lia.
apply eq_IZR.
rewrite <- scaled_mantissa_DN...
2: rewrite H4; assumption.
rewrite H4.
unfold scaled_mantissa.
rewrite bpow_opp.
rewrite <- ulp_neq_0; try now apply Rgt_not_eq.
rewrite T1.
rewrite Rinv_mult_distr.
2: apply Rgt_not_eq; lra.
2: apply Rgt_not_eq; rewrite ulp_neq_0; try apply bpow_gt_0.
2: now apply Rgt_not_eq.
rewrite Rinv_involutive.
2: apply Rgt_not_eq; lra.
rewrite T2 at 2.
rewrite ulp_bpow.
rewrite <- bpow_opp.
unfold FLT_exp at 2.
rewrite Z.max_l by lia.
replace 2 with (bpow 1) by reflexivity.
rewrite <- bpow_plus.
rewrite H0.
rewrite Rmult_minus_distr_r, <- 2!bpow_plus.
rewrite minus_IZR.
apply f_equal2.
rewrite IZR_Zpower.
apply f_equal.
ring.
unfold Prec_gt_0 in prec_gt_0_; lia.
apply trans_eq with (bpow 0).
reflexivity.
apply f_equal.
ring.
rewrite round_N_middle.
rewrite H5.
rewrite H6.
reflexivity.
rewrite H5, H4.
pattern f at 1; rewrite <- (pred_pos_plus_ulp radix2 (FLT_exp emin prec) f); try assumption.
ring_simplify.
rewrite <- pred_eq_pos;[idtac|now left].
rewrite T1.
replace h with (--h) by ring.
rewrite T3.
field.
Qed.
Lemma round_plus_small_id: forall f h, format f -> (bpow (prec+emin) <= Rabs f)
-> Rabs h <= /4* ulp_flt f -> round_flt (f+h) = f.
intros f h Ff H1 H2.
case (Rle_or_lt 0 f); intros V.
case V; clear V; intros V.
apply round_plus_small_id_aux; try assumption.
rewrite Rabs_right in H1; try assumption.
apply Rle_ge; now left.
contradict H1.
rewrite <- V, Rabs_R0.
apply Rlt_not_le, bpow_gt_0.
rewrite <- (Ropp_involutive f), <- (Ropp_involutive h).
replace (--f + --h) with (-(-f+-h)) by ring.
rewrite round_NE_opp.
apply f_equal.
apply round_plus_small_id_aux.
now apply generic_format_opp.
rewrite Rabs_left in H1; try assumption.
auto with real.
now rewrite Rabs_Ropp, ulp_opp.
Qed.
Definition avg_naive (x y : R) :=round_flt(round_flt(x+y)/2).
Variables x y:R.
Hypothesis Fx: format x.
Hypothesis Fy: format y.
Let a:=(x+y)/2.
Let av:=avg_naive x y.
Lemma avg_naive_correct: av = round_flt a.
Proof with auto with typeclass_instances.
case (Rle_or_lt (bpow (prec + emin)) (Rabs (x+y))).
(* normal case: division by 2 is exact *)
intros H.
unfold av,a,avg_naive.
rewrite round_generic...
now apply sym_eq, FLT_round_half.
apply FLT_format_half.
apply generic_format_round...
apply abs_round_ge_generic...
apply generic_format_FLT_bpow...
unfold Prec_gt_0 in prec_gt_0_; lia.
(* subnormal case: addition is exact, but division by 2 is not *)
intros H.
unfold av, avg_naive.
replace (round_flt (x + y)) with (x+y).
reflexivity.
apply sym_eq, round_generic...
apply FLT_format_plus_small...
left; assumption.
Qed.
Lemma avg_naive_symmetry: forall u v, avg_naive u v = avg_naive v u.
Proof.
intros u v; unfold avg_naive.
rewrite Rplus_comm; reflexivity.
Qed.
Lemma avg_naive_symmetry_Ropp: forall u v, avg_naive (-u) (-v) = - avg_naive u v.
Proof.
intros u v; unfold avg_naive.
replace (-u+-v) with (-(u+v)) by ring.
rewrite round_NE_opp.
replace (- round_flt (u + v) / 2) with (- (round_flt (u + v) / 2)) by (unfold Rdiv; ring).
now rewrite round_NE_opp.
Qed.
Lemma avg_naive_same_sign_1: 0 <= a -> 0 <= av.
Proof with auto with typeclass_instances.
intros H.
rewrite avg_naive_correct.
apply round_ge_generic...
apply generic_format_0.
Qed.
Lemma avg_naive_same_sign_2: a <= 0-> av <= 0.
Proof with auto with typeclass_instances.
intros H.
rewrite avg_naive_correct.
apply round_le_generic...
apply generic_format_0.
Qed.
Lemma avg_naive_between: Rmin x y <= av <= Rmax x y.
Proof with auto with typeclass_instances.
rewrite avg_naive_correct.
split.
apply round_ge_generic...
now apply P_Rmin.
apply Rmult_le_reg_l with (1 := Rlt_0_2).
replace (2 * Rmin x y) with (Rmin x y + Rmin x y) by ring.
replace (2 * a) with (x + y) by (unfold a; field).
apply Rplus_le_compat.
apply Rmin_l.
apply Rmin_r.
(* *)
apply round_le_generic...
now apply Rmax_case.
apply Rmult_le_reg_l with (1 := Rlt_0_2).
replace (2 * a) with (x + y) by (unfold a; field).
replace (2 * Rmax x y) with (Rmax x y + Rmax x y) by ring.
apply Rplus_le_compat.
apply Rmax_l.
apply Rmax_r.
Qed.
Lemma avg_naive_zero: a = 0 -> av = 0.
Proof with auto with typeclass_instances.
intros H1; rewrite avg_naive_correct, H1.
rewrite round_0...
Qed.
Lemma avg_naive_no_underflow: (bpow emin) <= Rabs a -> av <> 0.
Proof with auto with typeclass_instances.
intros H.
(* *)
cut (bpow emin <= Rabs av).
intros H1 H2.
rewrite H2 in H1; rewrite Rabs_R0 in H1.
contradict H1.
apply Rlt_not_le.
apply bpow_gt_0.
(* *)
rewrite avg_naive_correct.
apply abs_round_ge_generic...
apply generic_format_FLT_bpow...
lia.
Qed.
Lemma avg_naive_correct_weak1: Rabs (av -a) <= /2*ulp_flt a.
Proof with auto with typeclass_instances.
rewrite avg_naive_correct.
apply error_le_half_ulp...
Qed.
Lemma avg_naive_correct_weak2: Rabs (av -a) <= 3/2*ulp_flt a.
Proof with auto with typeclass_instances.
apply Rle_trans with (1:=avg_naive_correct_weak1).
apply Rmult_le_compat_r.
unfold ulp; apply ulp_ge_0.
lra.
Qed.
(* Hypothesis diff_sign: (0 <= x /\ y <= 0) \/ (x <= 0 /\ 0 <= y).
is useless for properties: only useful for preventing overflow *)
Definition avg_sum_half (x y : R) :=round_flt(round_flt(x/2) + round_flt(y/2)).
Let av2:=avg_sum_half x y.
Lemma avg_sum_half_correct: bpow (emin +prec+prec+1) <= Rabs x -> av2 = round_flt a.
Proof with auto with typeclass_instances.
intros Hx.
assert (G:(0 < prec)%Z).
unfold Prec_gt_0 in prec_gt_0_; assumption.
unfold av2, avg_sum_half.
replace (round_flt (x/2)) with (x/2).
2: apply sym_eq, round_generic...
2: apply FLT_format_half; try assumption.
2: apply Rle_trans with (2:=Hx).
2: apply bpow_le; lia.
case (Rle_or_lt (bpow (prec + emin)) (Rabs y)).
(* y is big enough so that y/2 is correct *)
intros Hy.
replace (round_flt (y/2)) with (y/2).
apply f_equal; unfold a; field.
apply sym_eq, round_generic...
apply FLT_format_half; assumption.
(* y is a subnormal, then it is too small to impact the result *)
intros Hy.
assert (format (x/2)).
apply FLT_format_half.
assumption.
apply Rle_trans with (2:=Hx).
apply bpow_le.
lia.
assert (bpow (prec+emin) <= Rabs (x/2)).
apply Rmult_le_reg_l with (bpow 1).
apply bpow_gt_0.
rewrite <- bpow_plus.
apply Rle_trans with (Rabs x).
apply Rle_trans with (2:=Hx).
apply bpow_le.
lia.
rewrite <- (Rabs_right (bpow 1)).
rewrite <- Rabs_mult.
right; apply f_equal.
change (bpow 1) with 2.
field.
apply Rle_ge, bpow_ge_0.
assert (K1: Rabs (y / 2) <= bpow (prec+emin-1)).
unfold Rdiv; rewrite Rabs_mult.
unfold Zminus; rewrite bpow_plus.
simpl; rewrite (Rabs_pos_eq (/2)).
apply (Rmult_le_compat_r (/2)).
lra.
now left.
lra.
assert (K2:bpow (prec+emin-1) <= / 4 * ulp_flt (x / 2)).
assert (Z: x/2 <> 0).
intros K; contradict H0.
rewrite K, Rabs_R0.
apply Rlt_not_le, bpow_gt_0.
rewrite ulp_neq_0; trivial.
replace (/4) with (bpow (-2)) by reflexivity.
rewrite <- bpow_plus.
apply bpow_le.
unfold cexp, FLT_exp.
assert (emin+prec+prec+1 -1 < mag radix2 (x/2))%Z.
destruct (mag radix2 (x/2)) as (e,He).
simpl.
apply lt_bpow with radix2.
apply Rle_lt_trans with (Rabs (x/2)).
unfold Rdiv; rewrite Rabs_mult.
unfold Zminus; rewrite bpow_plus.
simpl; rewrite (Rabs_right (/2)).
apply Rmult_le_compat_r.
lra.
exact Hx.
lra.
apply He; trivial.
rewrite Z.max_l.
lia.
lia.
(* . *)
apply trans_eq with (x/2).
apply round_plus_small_id; try assumption.
apply Rle_trans with (2:=K2).
apply abs_round_le_generic...
apply generic_format_FLT_bpow...
lia.
unfold a; apply sym_eq.
replace ((x+y)/2) with (x/2+y/2) by field.
apply round_plus_small_id; try assumption.
now apply Rle_trans with (2:=K2).
Qed.
End av1.
Section av3.
Notation bpow e := (bpow radix2 e).
Variable emin prec : Z.
Context { prec_gt_0_ : Prec_gt_0 prec }.
Notation format := (generic_format radix2 (FLT_exp emin prec)).
Notation round_flt :=(round radix2 (FLT_exp emin prec) ZnearestE).
Notation ulp_flt :=(ulp radix2 (FLT_exp emin prec)).
Notation cexp := (cexp radix2 (FLT_exp emin prec)).
Definition avg_half_sub (x y : R) :=round_flt(x+round_flt(round_flt(y-x)/2)).
Variables x y:R.
Hypothesis Fx: format x.
Hypothesis Fy: format y.
Let a:=(x+y)/2.
Let av:=avg_half_sub x y.
Lemma avg_half_sub_symmetry_Ropp: forall u v, avg_half_sub (-u) (-v) = - avg_half_sub u v.
intros u v; unfold avg_half_sub.
replace (-v--u) with (-(v-u)) by ring.
rewrite round_NE_opp.
replace (- round_flt (v-u) / 2) with (- (round_flt (v-u) / 2)) by (unfold Rdiv; ring).
rewrite round_NE_opp.
replace (- u + - round_flt (round_flt (v - u) / 2)) with
(-(u+round_flt (round_flt (v - u) / 2))) by ring.
apply round_NE_opp.
Qed.
Lemma avg_half_sub_same_sign_1: 0 <= a -> 0 <= av.
Proof with auto with typeclass_instances.
intros H.
apply round_ge_generic...
apply generic_format_0.
apply Rplus_le_reg_l with (-x).
ring_simplify.
apply round_ge_generic...
now apply generic_format_opp.
apply Rmult_le_reg_l with (1 := Rlt_0_2).
apply Rle_trans with (-(2*x)).
right; ring.
apply Rle_trans with (round_flt (y - x)).
2: right; field.
apply round_ge_generic...
apply generic_format_opp.
now apply FLT_format_double...
apply Rplus_le_reg_l with (2*x).
apply Rmult_le_reg_r with (/2).
lra.
apply Rle_trans with 0;[right; ring|idtac].
apply Rle_trans with (1:=H).
right; unfold a, Rdiv; ring.
Qed.
Lemma avg_half_sub_same_sign_2: a <= 0-> av <= 0.
Proof with auto with typeclass_instances.
intros H.
apply round_le_generic...
apply generic_format_0.
apply Rplus_le_reg_l with (-x).
ring_simplify.
apply round_le_generic...
now apply generic_format_opp.
apply Rmult_le_reg_l with (1 := Rlt_0_2).
apply Rle_trans with (-(2*x)).
2: right; ring.
apply Rle_trans with (round_flt (y - x)).
right; field.
apply round_le_generic...
apply generic_format_opp.
now apply FLT_format_double...
apply Rplus_le_reg_l with (2*x).
apply Rmult_le_reg_r with (/2).
lra.
apply Rle_trans with 0;[idtac|right; ring].
apply Rle_trans with (2:=H).
right; unfold a, Rdiv; ring.
Qed.
Lemma avg_half_sub_between_aux: forall u v, format u -> format v -> u <= v ->
u <= avg_half_sub u v <= v.
Proof with auto with typeclass_instances.
clear Fx Fy a av x y.
intros x y Fx Fy M.
split.
(* . *)
apply round_ge_generic...
apply Rplus_le_reg_l with (-x).
ring_simplify.
apply round_ge_generic...
apply generic_format_0.
unfold Rdiv; apply Rmult_le_pos.
apply round_ge_generic...
apply generic_format_0.
apply Rplus_le_reg_l with x.
now ring_simplify.
lra.
(* . *)
apply round_le_generic...
assert (H:(0 <= round radix2 (FLT_exp emin prec) Zfloor (y-x))).
apply round_ge_generic...
apply generic_format_0.
apply Rplus_le_reg_l with x.
now ring_simplify.
destruct H as [H|H].
(* .. *)
pattern y at 2; replace y with (x + (y-x)) by ring.
apply Rplus_le_compat_l.
case (generic_format_EM radix2 (FLT_exp emin prec) (y-x)); intros K.
apply round_le_generic...
rewrite round_generic...
apply Rmult_le_reg_l with (1 := Rlt_0_2).
apply Rplus_le_reg_l with (2*x-y).
apply Rle_trans with x.
right; field.
apply Rle_trans with (1:=M).
right; field.
apply Rle_trans with (round radix2 (FLT_exp emin prec) Zfloor (y - x)).
apply round_le_generic...
apply generic_format_round...
apply Rmult_le_reg_l with (1 := Rlt_0_2).
apply Rle_trans with (round_flt (y - x)).
right; field.
case (round_DN_or_UP radix2 (FLT_exp emin prec) ZnearestE (y-x));
intros H1; rewrite H1.
apply Rplus_le_reg_l with (-round radix2 (FLT_exp emin prec) Zfloor (y - x)).
ring_simplify.
now left.
rewrite round_UP_DN_ulp.
apply Rplus_le_reg_l with (-round radix2 (FLT_exp emin prec) Zfloor (y - x)); ring_simplify.
apply round_DN_pt...
apply generic_format_ulp...
case (Rle_or_lt (bpow (emin + prec - 1)) (y-x)); intros P.
apply FLT_ulp_le_id...
apply Rle_trans with (2:=P).
apply bpow_le; unfold Prec_gt_0 in prec_gt_0_; lia.
contradict K.
apply FLT_format_plus_small...
now apply generic_format_opp.
rewrite Rabs_right.
apply Rle_trans with (bpow (emin+prec-1)).
left; exact P.
apply bpow_le; lia.
apply Rle_ge; apply Rplus_le_reg_l with x; now ring_simplify.
assumption.
apply round_DN_pt...
(* .. *)
case M; intros H1.
2: rewrite H1; replace (y-y) with 0 by ring.
2: rewrite round_0...
2: unfold Rdiv; rewrite Rmult_0_l.
2: rewrite round_0...
2: right; ring.
apply Rle_trans with (x+0).
2: rewrite Rplus_0_r; assumption.
apply Rplus_le_compat_l.
replace 0 with (round_flt (bpow emin/2)).
apply round_le...
unfold Rdiv; apply Rmult_le_compat_r.
lra.
apply round_le_generic...
apply generic_format_FLT_bpow...
lia.
case (Rle_or_lt (y-x) (bpow emin)); trivial.
intros H2.
contradict H.
apply Rlt_not_eq.
apply Rlt_le_trans with (bpow emin).
apply bpow_gt_0.
apply round_DN_pt...
apply generic_format_FLT_bpow...
lia.
now left.
replace (bpow emin /2) with (bpow (emin-1)).
unfold round, scaled_mantissa, cexp, FLT_exp.
rewrite mag_bpow.
replace (emin - 1 + 1 - prec)%Z with (emin-prec)%Z by ring.
rewrite Z.max_r.
2: unfold Prec_gt_0 in prec_gt_0_; lia.
rewrite <- bpow_plus.
replace (emin-1+-emin)%Z with (-1)%Z by ring.
replace (ZnearestE (bpow (-1))) with 0%Z.
unfold F2R; simpl; ring.
change (bpow (-1)) with (/2).
simpl; unfold Znearest.
replace (Zfloor (/2)) with 0%Z.
rewrite Rcompare_Eq.
reflexivity.
simpl; ring.
apply sym_eq, Zfloor_imp.
simpl ; lra.
unfold Zminus; rewrite bpow_plus.
reflexivity.
Qed.
Lemma avg_half_sub_between: Rmin x y <= av <= Rmax x y.
Proof with auto with typeclass_instances.
case (Rle_or_lt x y); intros M.
(* x <= y *)
rewrite Rmin_left; try exact M.
rewrite Rmax_right; try exact M.
now apply avg_half_sub_between_aux.
(* y < x *)
rewrite Rmin_right; try now left.
rewrite Rmax_left; try now left.
unfold av; rewrite <- (Ropp_involutive x); rewrite <- (Ropp_involutive y).
rewrite avg_half_sub_symmetry_Ropp.
split; apply Ropp_le_contravar.
apply avg_half_sub_between_aux.
now apply generic_format_opp.
now apply generic_format_opp.
apply Ropp_le_contravar; now left.
apply avg_half_sub_between_aux.
now apply generic_format_opp.
now apply generic_format_opp.
apply Ropp_le_contravar; now left.
Qed.
Lemma avg_half_sub_zero: a = 0 -> av = 0.
Proof with auto with typeclass_instances.
intros H.
assert (y=-x).
apply Rplus_eq_reg_l with x.
apply Rmult_eq_reg_r with (/2).
apply trans_eq with a.
reflexivity.
rewrite H; ring.
lra.
unfold av, avg_half_sub.
rewrite H0.
replace (-x-x) with (-(2*x)) by ring.
rewrite round_generic with (x:=(-(2*x)))...
replace (-(2*x)/2) with (-x) by field.
rewrite round_generic with (x:=-x)...
replace (x+-x) with 0 by ring.
apply round_0...
now apply generic_format_opp.
apply generic_format_opp.
now apply FLT_format_double.
Qed.
Lemma avg_half_sub_no_underflow_aux_aux: forall z:Z, (0 < z)%Z ->
(ZnearestE (IZR z / 2) < z)%Z.
Proof.
intros z H1.
case (Zle_lt_or_eq 1 z); [lia|intros H2|intros H2].
apply lt_IZR.
apply Rplus_lt_reg_r with (- ((IZR z)/2)).
apply Rle_lt_trans with (-(((IZR z) /2) - IZR (ZnearestE (IZR z / 2)))).
right; ring.
apply Rle_lt_trans with (1:= RRle_abs _).
rewrite Rabs_Ropp.
apply Rle_lt_trans with (1:=Znearest_half (fun x => negb (Z.even x)) _).
apply Rle_lt_trans with (1*/2);[right; ring|idtac].
apply Rlt_le_trans with ((IZR z)*/2);[idtac|right; field].
apply Rmult_lt_compat_r.
lra.
now apply IZR_lt.
rewrite <- H2.
unfold Znearest; simpl.
replace (Zfloor (1 / 2)) with 0%Z.
rewrite Rcompare_Eq.
simpl; lia.
simpl; field.
unfold Rdiv; rewrite Rmult_1_l.
apply sym_eq, Zfloor_imp.
simpl; lra.
Qed.
Lemma avg_half_sub_no_underflow_aux1: forall f, format f -> 0 < f ->
f <= round_flt (f/2) -> False.
Proof with auto with typeclass_instances.
intros f Ff Hf1 Hf2.
apply FLT_format_generic in Ff...
destruct Ff as [g H1 H2 H3].
case (Zle_lt_or_eq emin (Fexp g)); try exact H3; intros H4.
contradict Hf2.
apply Rlt_not_le.
rewrite round_generic...
apply Rplus_lt_reg_l with (-(f/2)).
apply Rle_lt_trans with 0;[right; ring|idtac].
apply Rlt_le_trans with (f*/2);[idtac|right;field].
apply Rmult_lt_0_compat; try assumption.
lra.
apply generic_format_FLT.
exists (Float radix2 (Fnum g) (Fexp g-1)).
rewrite H1; unfold F2R; simpl.
unfold Zminus; rewrite bpow_plus.
apply Rmult_assoc.
easy.
simpl; lia.
contradict Hf2; apply Rlt_not_le.
unfold round, scaled_mantissa.
replace (cexp (f/2)) with emin.
rewrite H1; unfold F2R; simpl.
rewrite <- H4.
apply Rmult_lt_compat_r.
apply bpow_gt_0.
apply IZR_lt.
replace (IZR (Fnum g) * bpow emin / 2 * bpow (- emin)) with (IZR (Fnum g) /2).
apply avg_half_sub_no_underflow_aux_aux.
apply lt_IZR.
apply Rmult_lt_reg_r with (bpow (Fexp g)).
apply bpow_gt_0.
rewrite Rmult_0_l.
apply Rlt_le_trans with (1:=Hf1).
right; rewrite H1; reflexivity.
unfold Rdiv; apply trans_eq with (IZR (Fnum g) * / 2 * (bpow (- emin)*bpow emin)).
rewrite <- bpow_plus.
ring_simplify (-emin+emin)%Z.
simpl; ring.
ring.
apply sym_eq, cexp_FLT_FIX.
apply Rgt_not_eq, Rlt_gt.
lra.
rewrite H1; unfold F2R, Rdiv; simpl.
replace (/2) with (bpow (-1)) by reflexivity.
rewrite Rmult_assoc, <- bpow_plus.
rewrite Rabs_mult.
rewrite (Rabs_right (bpow _)).
2: apply Rle_ge, bpow_ge_0.
rewrite (Zplus_comm emin _).
rewrite (bpow_plus _ prec _).
apply Rmult_lt_compat.
apply Rabs_pos.
apply bpow_ge_0.
rewrite <- IZR_Zpower, <- abs_IZR.
now apply IZR_lt.
unfold Prec_gt_0 in prec_gt_0_; lia.
rewrite <- H4; apply bpow_lt.
lia.
Qed.
Lemma avg_half_sub_no_underflow_aux2: forall u v, format u -> format v ->
(0 <= u /\ 0 <= v) \/ (u <= 0 /\ v <= 0) ->
u <= v ->
(bpow emin) <= Rabs ((u+v)/2) -> avg_half_sub u v <> 0.
Proof with auto with typeclass_instances.
clear Fx Fy a av x y; intros x y Fx Fy same_sign xLey H; unfold avg_half_sub.
apply round_plus_neq_0...
apply generic_format_round...
intros J.
assert (H1:x <= 0).
apply Rplus_le_reg_r with (round_flt (round_flt (y - x) / 2)).
rewrite J, Rplus_0_l.
apply round_ge_generic...
apply generic_format_0.
unfold Rdiv; apply Rmult_le_pos.
apply round_ge_generic...
apply generic_format_0.
apply Rplus_le_reg_l with x; now ring_simplify.
lra.
destruct H1 as [H1|H1].
(* *)
destruct same_sign as [(H2,H3)|(_,H2)].
contradict H2; now apply Rlt_not_le.
apply avg_half_sub_no_underflow_aux1 with (-x).
now apply generic_format_opp.
rewrite <- Ropp_0; now apply Ropp_lt_contravar.
apply Rle_trans with (round_flt (round_flt (y - x) / 2)).
apply Rplus_le_reg_l with x.
rewrite J; right; ring.
apply round_le...
unfold Rdiv; apply Rmult_le_compat_r.
lra.
apply round_le_generic...
now apply generic_format_opp.
apply Rplus_le_reg_l with x.
now ring_simplify.
(* *)
rewrite H1 in J, H.
rewrite Rplus_0_l in H.
contradict J; apply Rgt_not_eq, Rlt_gt.
rewrite Rplus_0_l.
unfold Rminus; rewrite Ropp_0, Rplus_0_r.
rewrite round_generic with (x:=y)...
apply Rlt_le_trans with (bpow emin).
apply bpow_gt_0.
apply round_ge_generic...
apply generic_format_FLT_bpow...
lia.
apply Rle_trans with (1:=H).
right; apply Rabs_right.
apply Rle_ge; unfold Rdiv; apply Rmult_le_pos.
rewrite <- H1; assumption.
lra.
Qed.
Lemma avg_half_sub_no_underflow_aux3: forall u v, format u -> format v ->
(0 <= u /\ 0 <= v) \/ (u <= 0 /\ v <= 0) ->
(bpow emin) <= Rabs ((u+v)/2) -> avg_half_sub u v <> 0.
Proof with auto with typeclass_instances.
clear Fx Fy a av x y; intros x y Fx Fy.
intros same_sign H.
case (Rle_or_lt x y); intros H1.
now apply avg_half_sub_no_underflow_aux2.
rewrite <- (Ropp_involutive x); rewrite <- (Ropp_involutive y).
rewrite avg_half_sub_symmetry_Ropp.
apply Ropp_neq_0_compat.
apply avg_half_sub_no_underflow_aux2.
now apply generic_format_opp.
now apply generic_format_opp.
rewrite <- Ropp_0; case same_sign; intros (T1,T2).
right; split; now apply Ropp_le_contravar.
left; split; now apply Ropp_le_contravar.
apply Ropp_le_contravar; now left.
apply Rle_trans with (1:=H).
rewrite <- Rabs_Ropp.
right; apply f_equal.
unfold Rdiv; ring.
Qed.
Lemma avg_half_sub_no_underflow:
(0 <= x /\ 0 <= y) \/ (x <= 0 /\ y <= 0) ->
(bpow emin) <= Rabs a -> av <> 0.
Proof with auto with typeclass_instances.
intros; now apply avg_half_sub_no_underflow_aux3.
Qed.
Lemma avg_half_sub_correct_aux: forall u v, format u -> format v -> u <= v ->
(0 <= u /\ 0 <= v) \/ (u <= 0 /\ v <= 0) ->
0 < Rabs ((u+v)/2) < bpow emin ->
Rabs (avg_half_sub u v -((u+v)/2)) <= 3/2 * ulp_flt ((u+v)/2).
Proof with auto with typeclass_instances.
clear Fx Fy x y a av.
intros u v Fu Fv uLev same_sign.
pose (b:=(u+v)/2); fold b.
(* mostly forward proof *)
intros (H1,H2).
apply generic_format_FIX_FLT,FIX_format_generic in Fu.
apply generic_format_FIX_FLT,FIX_format_generic in Fv.
destruct Fu as [[nu eu] J1 J2].
destruct Fv as [[nv ev] J3 J4]; simpl in J2, J4.
(* b is bpow emin /2 *)
assert (b = IZR (nu+nv) * bpow (emin-1)).
unfold b; rewrite J1, J3; unfold F2R; rewrite J2,J4; simpl.
unfold Zminus; rewrite bpow_plus, plus_IZR.
change (bpow (-(1))) with (/2).
field.
assert (Z.abs (nu+nv) = 1)%Z.
cut (0 < Z.abs (nu+nv) < 2)%Z. lia.
split; apply lt_IZR; simpl; rewrite abs_IZR;
apply Rmult_lt_reg_l with (bpow (emin-1)); try apply bpow_gt_0.
rewrite Rmult_0_r.
apply Rlt_le_trans with (1:=H1).
right; rewrite H, Rabs_mult.
rewrite (Rabs_right (bpow (emin -1))).
ring.
apply Rle_ge, bpow_ge_0.
apply Rle_lt_trans with (Rabs b).
right; rewrite H, Rabs_mult.
rewrite (Rabs_right (bpow (emin -1))).
ring.
apply Rle_ge, bpow_ge_0.
apply Rlt_le_trans with (1:=H2).
right; unfold Zminus; rewrite bpow_plus.
change (bpow (-(1))) with (/2).
field.
(* only 2 possible values for u and v *)
assert (((nu=0)/\ (nv=1)) \/ ((nu=-1)/\(nv=0)))%Z.
assert (nu <= nv)%Z.
apply le_IZR.
apply Rmult_le_reg_r with (bpow emin).
apply bpow_gt_0.
apply Rle_trans with u.
right; rewrite J1,J2; reflexivity.
apply Rle_trans with (1:=uLev).
right; rewrite J3,J4; reflexivity.
case same_sign; intros (L1,L2).
rewrite J1 in L1; apply Fnum_ge_0 in L1; simpl in L1.
rewrite J3 in L2; apply Fnum_ge_0 in L2; simpl in L2.
left.
rewrite Z.abs_eq in H0.
lia.
lia.
rewrite J1 in L1; apply Fnum_le_0 in L1; simpl in L1.
rewrite J3 in L2; apply Fnum_le_0 in L2; simpl in L2.
right.
rewrite Z.abs_neq in H0.
lia.
lia.
(* look into the 2 possible cases *)
assert (G1:(round_flt (bpow emin/2) = 0)).
replace (bpow emin /2) with (bpow (emin-1)).
unfold round, scaled_mantissa.
rewrite cexp_FLT_FIX.
unfold cexp, FIX_exp; simpl.
rewrite <- bpow_plus.
replace (bpow (emin - 1 + - emin)) with (/2).
replace (ZnearestE (/ 2)) with 0%Z.
unfold F2R; simpl; ring.
unfold Znearest.
replace (Zfloor (/2)) with 0%Z.
rewrite Rcompare_Eq.
reflexivity.
simpl; ring.
apply sym_eq, Zfloor_imp.
simpl; lra.
ring_simplify (emin-1+-emin)%Z; reflexivity.
apply Rgt_not_eq, Rlt_gt, bpow_gt_0.
rewrite Rabs_right.
apply bpow_lt.
unfold Prec_gt_0 in prec_gt_0_; lia.
apply Rle_ge, bpow_ge_0.
unfold Zminus; rewrite bpow_plus.
reflexivity.
case H3; intros (T1,T2).
unfold b, avg_half_sub.
rewrite J1,J3,J2,J4,T1,T2; unfold F2R; simpl.
rewrite Rmult_0_l, Rmult_1_l, 2!Rplus_0_l.
unfold Rminus; rewrite Ropp_0, Rplus_0_r.
rewrite (round_generic _ _ _ (bpow (emin)))...
2: apply generic_format_FLT_bpow...
2: lia.
rewrite G1.
rewrite round_0...
rewrite Rplus_0_l, Rabs_Ropp.
rewrite Rabs_right.
2: apply Rle_ge, Rmult_le_pos.
2: apply bpow_ge_0.
2: lra.
apply Rle_trans with ((3*ulp_flt (bpow emin / 2))/2);[idtac|right; unfold Rdiv; ring].
unfold Rdiv; apply Rmult_le_compat_r.
lra.
apply Rle_trans with (3*bpow emin).
apply Rle_trans with (1*bpow emin).
right; ring.
apply Rmult_le_compat_r.
apply bpow_ge_0.
now apply IZR_le.
apply Rmult_le_compat_l.
now apply IZR_le.
rewrite ulp_neq_0.
2: apply Rmult_integral_contrapositive_currified.
2: apply Rgt_not_eq, bpow_gt_0.
2: apply Rinv_neq_0_compat, Rgt_not_eq; lra.
apply bpow_le.
unfold cexp, FLT_exp.
apply Z.le_max_r.
unfold b, avg_half_sub.
rewrite J1,J3,J2,J4,T1,T2; unfold F2R; simpl.
rewrite Rmult_0_l, Rplus_0_r.
replace (0 - _ * bpow emin) with (bpow emin) by ring.
rewrite (round_generic _ _ _ (bpow emin))...
2: apply generic_format_FLT_bpow...
2: lia.
rewrite G1.
replace (_ * bpow emin + 0) with (-bpow emin) by ring.
rewrite round_generic...
2: apply generic_format_opp.
2: apply generic_format_FLT_bpow...
2: lia.
replace (- bpow emin - _ * bpow emin / 2) with (-(bpow emin/2)) by field.
rewrite Rabs_Ropp.
rewrite Rabs_right.
replace (_ * bpow emin / 2) with (-(bpow emin/2)) by field.
rewrite ulp_opp.
apply Rle_trans with ((3*ulp_flt (bpow emin / 2))/2);[idtac|right; unfold Rdiv; ring].
unfold Rdiv; apply Rmult_le_compat_r.
lra.
apply Rle_trans with (3*bpow emin).
apply Rle_trans with (1*bpow emin).
right; ring.
apply Rmult_le_compat_r.
apply bpow_ge_0.
now apply IZR_le.
apply Rmult_le_compat_l.
now apply IZR_le.
rewrite ulp_neq_0.
2: apply Rmult_integral_contrapositive_currified.
2: apply Rgt_not_eq, bpow_gt_0.
2: apply Rinv_neq_0_compat, Rgt_not_eq; lra.
apply bpow_le.
unfold cexp, FLT_exp.
apply Z.le_max_r.
apply Rle_ge, Rmult_le_pos.
apply bpow_ge_0.
lra.
Qed.
Lemma avg_half_sub_correct_aux2: forall u v, format u -> format v -> u <= v ->
(0 <= u /\ 0 <= v) \/ (u <= 0 /\ v <= 0) ->
Rabs (avg_half_sub u v -((u+v)/2)) <= 3/2 * ulp_flt ((u+v)/2).
Proof with auto with typeclass_instances.
clear Fx Fy a av x y.
intros u v Fu Fv uLev same_sign.
pose (b:=(u+v)/2); fold b.
assert (T: forall z, Rabs (2*z) = 2* Rabs z).
intros z; rewrite Rabs_mult.
rewrite Rabs_pos_eq; try reflexivity.
apply Rlt_le, Rlt_0_2.
destruct uLev as [uLtv|uEqv].
(* when u < v *)
assert (B: u <= v) by now left.
assert (K1: b <> 0).
unfold b ; lra.
(* . initial lemma *)
assert (Y:(Rabs (round_flt (v - u) - (v-u)) <= ulp_flt b)).
apply Rle_trans with (/2*ulp_flt (v-u)).
apply error_le_half_ulp...
apply Rmult_le_reg_l with (1 := Rlt_0_2).
rewrite <- Rmult_assoc, Rinv_r, Rmult_1_l.
2: apply Rgt_not_eq, Rlt_0_2.
apply Rle_trans with (ulp_flt (2*b)).
case same_sign; intros (T1,T2).
apply ulp_le_pos...
lra.
unfold b ; lra.
rewrite <- (ulp_opp _ _ (2*b)).
apply ulp_le_pos...
lra.
unfold b ; lra.
rewrite 2!ulp_neq_0; trivial.
2: lra.
change 2 with (bpow 1).
rewrite <- bpow_plus.
apply bpow_le.
unfold cexp, FLT_exp.
rewrite Rmult_comm, mag_mult_bpow; trivial.
rewrite <- Z.add_max_distr_l.
replace (mag radix2 b + 1 - prec)%Z with (1 + (mag radix2 b - prec))%Z by ring.
apply Z.max_le_compat_l.
lia.
(* . splitting case of av=0 *)
case (Rle_or_lt (bpow emin) (Rabs b)); intros D.
(* . main proof *)
unfold avg_half_sub.
case (Rle_or_lt (bpow (prec+emin)) (v-u)); intros H1.
(* .. v-u is big enough: division by 2 is exact *)
cut (round_flt (round_flt (v - u) / 2) = round_flt (v - u) / 2).
intros Z; rewrite Z.
replace (round_flt (u + round_flt (v - u) / 2) - b) with
((round_flt (u + round_flt (v - u) / 2) - (u + round_flt (v - u) / 2)) +/2*(round_flt (v - u)-(v-u))).
2: unfold b; field.
apply Rle_trans with (1:=Rabs_triang _ _).
apply Rle_trans with (ulp_flt b+/2*ulp_flt b);[idtac|right; field].
apply Rplus_le_compat.
apply Rle_trans with (/2*ulp_flt (u + round_flt (v - u) / 2)).
apply error_le_half_ulp...
apply Rmult_le_reg_l with (1 := Rlt_0_2).
rewrite <- Rmult_assoc, Rinv_r, Rmult_1_l.
2: apply Rgt_not_eq, Rlt_0_2.
apply Rle_trans with (2:=FLT_ulp_double _ _ _).
apply ulp_le...
replace (u + round_flt (v - u) / 2) with (b+/2*(round_flt (v - u) - (v - u))).
2: unfold b; field.
rewrite (T b).
replace (2 * Rabs b) with (Rabs b + Rabs b) by ring.
apply Rle_trans with (1:=Rabs_triang _ _).
apply Rplus_le_compat_l.
rewrite Rabs_mult.
rewrite Rabs_pos_eq.
2: lra.
apply Rmult_le_reg_l with (1 := Rlt_0_2).
rewrite <- Rmult_assoc, Rinv_r, Rmult_1_l.
2: apply Rgt_not_eq, Rlt_0_2.
apply Rle_trans with (1:=Y).
apply Rle_trans with (ulp_flt (2*b)).
apply ulp_le...
rewrite <- (Rmult_1_l (Rabs b)).
rewrite (T b).
apply Rmult_le_compat_r.
apply Rabs_pos.
now apply IZR_le.
rewrite <- (T b).
rewrite <- ulp_abs.
apply FLT_ulp_le_id...
assert (H:generic_format radix2 (FIX_exp emin) (2*b)).
replace (2*b) with (u+v).
2: unfold b; field.
apply generic_format_FIX_FLT,FIX_format_generic in Fu.
apply generic_format_FIX_FLT,FIX_format_generic in Fv.
destruct Fu as [fu J1 J2].
destruct Fv as [fv J3 J4].
apply generic_format_FIX.
exists (Float radix2 (Fnum fu+Fnum fv) emin).
rewrite J1,J3; unfold F2R; simpl.
rewrite J2,J4, plus_IZR; ring.
easy.
apply FIX_format_generic in H.
destruct H as [[n e] J1 J2].
rewrite J1; unfold F2R; rewrite J2.
simpl; rewrite Rabs_mult.
pattern (bpow emin) at 1; rewrite <- (Rmult_1_l (bpow emin)).
rewrite (Rabs_right (bpow emin)).
2: apply Rle_ge, bpow_ge_0.
apply Rmult_le_compat_r.
apply bpow_ge_0.
rewrite <- abs_IZR.
apply IZR_le.
cut (0 < Z.abs n)%Z. lia.
apply Z.abs_pos.
intros M; apply K1.
apply Rmult_eq_reg_l with 2.
2: apply Rgt_not_eq, Rlt_0_2.
rewrite Rmult_0_r, J1, M.
apply F2R_0.
rewrite Rabs_mult.
rewrite Rabs_right.
2: lra.
apply Rmult_le_compat_l with (2 := Y).
lra.
apply round_generic...
apply FLT_format_half...
apply generic_format_round...
apply abs_round_ge_generic...
apply generic_format_FLT_bpow...
unfold Prec_gt_0 in prec_gt_0_; lia.
rewrite Rabs_right; try assumption.
apply Rle_ge; left; apply Rplus_lt_reg_l with u; now ring_simplify.
(* .. v-u is small: subtraction is exact *)
cut ((round_flt (v - u)= (v-u))).
intros Z; rewrite Z.
replace (u + round_flt ((v-u) / 2)) with (b+((round_flt ((v-u) / 2) - (v-u)/2))).
2: unfold b; field.
pose (eps:=(round_flt ((v - u) / 2) - (v - u) / 2)%R); fold eps.
assert (Rabs eps <= /2*bpow emin).
unfold eps.
apply Rle_trans with (1:=error_le_half_ulp _ _ _ _)...
right; apply f_equal.
apply ulp_FLT_small...
rewrite Zplus_comm; apply Rle_lt_trans with (2:=H1).
rewrite Rabs_pos_eq ; lra.
replace (round_flt (b + eps) - b) with ((round_flt (b+eps) -(b+eps)) + eps) by ring.
apply Rle_trans with (1:=Rabs_triang _ _).
apply Rle_trans with (/2*ulp_flt (b+eps) + /2*bpow emin).
apply Rplus_le_compat.
apply error_le_half_ulp...
assumption.
apply Rmult_le_reg_l with (1 := Rlt_0_2).
apply Rle_trans with (ulp_flt (b + eps)+bpow emin).
right; field.
apply Rle_trans with (2*ulp_flt b + ulp_flt b).
2: right; field.
apply Rplus_le_compat.
apply Rle_trans with (2:=FLT_ulp_double _ _ _).
apply ulp_le...
rewrite (T b).
replace (2 * Rabs b) with (Rabs b + Rabs b) by ring.
apply Rle_trans with (1:=Rabs_triang _ _).
apply Rplus_le_compat_l.
apply Rle_trans with (2:=D).
rewrite <- (Rmult_1_l (bpow emin)).
apply Rle_trans with (1:=H).
apply Rmult_le_compat_r.
apply bpow_ge_0.
lra.
rewrite <- ulp_FLT_small with radix2 emin prec 0...
apply ulp_ge_ulp_0...
rewrite Rabs_R0; apply bpow_gt_0.
apply round_generic...
apply FLT_format_plus_small...
now apply generic_format_opp.
rewrite Rabs_right.
now left.
apply Rle_ge, Rplus_le_reg_l with u; now ring_simplify.
(* . when b = bpow emin /2 *)
apply avg_half_sub_correct_aux; trivial.
split; trivial.
now apply Rabs_pos_lt.
(* . x = y *)
unfold avg_half_sub,b.
rewrite uEqv.
replace (v-v) with 0 by ring.
rewrite round_0...
unfold Rdiv; rewrite Rmult_0_l.
rewrite round_0...
rewrite Rplus_0_r.
rewrite round_generic...
replace ((v+v)*/2) with v by field.
replace (v-v) with 0 by ring.
rewrite Rabs_R0.
apply Rmult_le_pos.
apply Rmult_le_pos.
now apply IZR_le.
lra.
apply ulp_ge_0.
Qed.
(* tight example x=1/2 and y=2^p-1: error is 5/4 ulp *)
Lemma avg_half_sub_correct: (0 <= x /\ 0 <= y) \/ (x <= 0 /\ y <= 0) ->
Rabs (av-a) <= 3/2 * ulp_flt a.
Proof with auto with typeclass_instances.
intros same_sign; case (Rle_or_lt x y); intros H.
now apply avg_half_sub_correct_aux2.
unfold av, a.
rewrite <- (Ropp_involutive x), <- (Ropp_involutive y).
rewrite avg_half_sub_symmetry_Ropp.
rewrite <- Rabs_Ropp.
replace (- (- avg_half_sub (- x) (- y) - (- - x + - - y) / 2)) with
(avg_half_sub (-x) (-y) - ((-x+-y)/2)).
2: unfold Rdiv; ring.
apply Rle_trans with (3 / 2 * ulp_flt ((- x + - y) / 2)).
apply avg_half_sub_correct_aux2.
now apply generic_format_opp.
now apply generic_format_opp.
apply Ropp_le_contravar; now left.
rewrite <- Ropp_0; case same_sign; intros (T1,T2).
right; split; now apply Ropp_le_contravar.
left; split; now apply Ropp_le_contravar.
right; apply f_equal.
rewrite <- ulp_opp.
apply f_equal.
unfold Rdiv; ring.
Qed.
(* Lemma avg_half_sub_symmetry: forall u v, avg_half_sub u v = avg_half_sub v u.
is false *)
End av3.
Section average.
Notation bpow e := (bpow radix2 e).
Variable emin prec : Z.
Context { prec_gt_0_ : Prec_gt_0 prec }.
Notation format := (generic_format radix2 (FLT_exp emin prec)).
Notation round_flt :=(round radix2 (FLT_exp emin prec) ZnearestE).
Notation ulp_flt :=(ulp radix2 (FLT_exp emin prec)).
Notation cexp := (cexp radix2 (FLT_exp emin prec)).
Definition average (x y : R) :=
let samesign := match (Rle_bool 0 x), (Rle_bool 0 y) with
true , true => true
| false , false => true
| _,_ => false
end in
if samesign then
match (Rle_bool (Rabs x) (Rabs y)) with
true => avg_half_sub emin prec x y
| false => avg_half_sub emin prec y x
end
else avg_naive emin prec x y.
Variables x y:R.
Hypothesis Fx: format x.
Hypothesis Fy: format y.
Let a:=(x+y)/2.
Let av:=average x y.
Lemma average_symmetry: forall u v, average u v = average v u.
Proof.
intros u v; unfold average.
case (Rle_bool_spec 0 u); case (Rle_bool_spec 0 v); intros.
rewrite 2!Rabs_right; try apply Rle_ge; try assumption.
case (Rle_bool_spec u v); case (Rle_bool_spec v u); trivial.
intros; replace u with v; trivial; auto with real.
intros H1 H2; contradict H1; auto with real.
apply avg_naive_symmetry.
apply avg_naive_symmetry.
rewrite 2!Rabs_left; try assumption.
case (Rle_bool_spec (-u) (-v)); case (Rle_bool_spec (-v) (-u)); trivial.
intros; replace u with v; trivial; auto with real.
intros H1 H2; contradict H1; auto with real.
Qed.
Lemma average_symmetry_Ropp: forall u v, format u -> format v ->
average (-u) (-v) = - average u v.
Proof with auto with typeclass_instances.
(* first: nonnegative u *)
assert (forall u v, 0 <= u -> format u -> format v ->
average (-u) (-v) = - average u v).
intros u v Hu Fu Fv; unfold average.
rewrite 2!Rabs_Ropp.
destruct Hu as [Hu|Hu].
(* 0 < u *)
rewrite Rle_bool_false.
2: apply Ropp_lt_cancel.
2: now rewrite Ropp_involutive, Ropp_0.
rewrite (Rle_bool_true 0 u); [idtac|now left].
rewrite Rabs_right.
2: apply Rle_ge; now left.
destruct (total_order_T 0 v) as [Hv|Hv];[destruct Hv as [Hv|Hv] |idtac].
(* . 0 < u and 0 < v *)
rewrite Rle_bool_false.
2: apply Ropp_lt_cancel.
2: now rewrite Ropp_involutive, Ropp_0.
rewrite (Rle_bool_true 0 v); [idtac|now left].
rewrite Rabs_right.
2: apply Rle_ge; now left.
case (Rle_bool_spec u v);intros.
apply avg_half_sub_symmetry_Ropp.
apply avg_half_sub_symmetry_Ropp.
(* . 0 < u and v = 0 *)
rewrite <- Hv, Ropp_0, Rabs_R0.
rewrite Rle_bool_true ;[idtac|now right].
rewrite Rle_bool_false; try exact Hu.
unfold avg_naive, avg_half_sub.
unfold Rminus; rewrite Ropp_0, Rplus_0_l, 2!Rplus_0_r.
rewrite (round_generic _ _ _ u); trivial.
rewrite (round_generic _ _ _ (-u)).
2: now apply generic_format_opp.
rewrite <- round_NE_opp.
rewrite <- round_NE_opp.
rewrite (round_generic _ _ _ (round_flt (-(u/2)))).
apply f_equal; field.
apply generic_format_round...
(* . 0 < u and v < 0 *)
rewrite Rabs_left; trivial.
rewrite Rle_bool_true.
rewrite Rle_bool_false; trivial.
apply avg_naive_symmetry_Ropp.
rewrite <- Ropp_0; apply Ropp_le_contravar.
now left.
(* u = 0 *)
rewrite <- Hu, Ropp_0, Rabs_R0.
rewrite Rle_bool_true.
2: now right.
rewrite (Rle_bool_true 0 (Rabs v)).
2: apply Rabs_pos.
destruct (total_order_T 0 v) as [Hv|Hv];[destruct Hv as [Hv|Hv] |idtac].
(* . u=0 and 0 < v *)
rewrite Rle_bool_false.
rewrite Rle_bool_true.
unfold avg_naive, avg_half_sub.
unfold Rminus; rewrite Ropp_0, 2!Rplus_0_l, Rplus_0_r.
rewrite (round_generic _ _ _ v); trivial.
rewrite (round_generic _ _ _ (-v)).
2: now apply generic_format_opp.
rewrite <- round_NE_opp.
rewrite <- round_NE_opp.
rewrite (round_generic _ _ _ (round_flt (-(v/2)))).
apply f_equal; field.
apply generic_format_round...
now left.
rewrite <- Ropp_0; now apply Ropp_lt_contravar.
(* . u=0 and v=0 *)
rewrite <- Hv, Ropp_0.
rewrite Rle_bool_true.
2: now right.
unfold avg_half_sub.
replace (0-0) with 0 by ring; rewrite round_0...
unfold Rdiv; rewrite Rmult_0_l, round_0, Rplus_0_l...
rewrite round_0...
ring.
(* . u=0 and v < 0 *)
rewrite Rle_bool_true.
rewrite Rle_bool_false.
unfold avg_naive, avg_half_sub.
unfold Rminus; rewrite Ropp_0, 2!Rplus_0_l, Rplus_0_r.
rewrite (round_generic _ _ _ v); trivial.
rewrite (round_generic _ _ _ (-v)).
2: now apply generic_format_opp.
rewrite <- round_NE_opp.
rewrite (round_generic _ _ _ (round_flt (-v/2))).
apply f_equal; field.
apply generic_format_round...
exact Hv.
rewrite <- Ropp_0; apply Ropp_le_contravar; now left.
(* any u *)
intros u v Fu Fv.
case (Rle_or_lt 0 u).
intros Hu; now apply H.
intros Hu.
apply trans_eq with (- average (--u) (--v)).
rewrite (H (-u) (-v)).
ring.
rewrite <- Ropp_0; apply Ropp_le_contravar; now left.
apply generic_format_opp...
apply generic_format_opp...
apply f_equal, f_equal2; ring.
Qed.
Lemma average_same_sign_1: 0 <= a -> 0 <= av.
Proof with auto with typeclass_instances.
intros H; unfold av, average.
case (Rle_bool_spec 0 x); case (Rle_bool_spec 0 y); intros.
case (Rle_bool_spec (Rabs x) (Rabs y)); intros.
apply avg_half_sub_same_sign_1...
apply avg_half_sub_same_sign_1...
now rewrite Rplus_comm.
apply avg_naive_same_sign_1...
apply avg_naive_same_sign_1...
case (Rle_bool_spec (Rabs x) (Rabs y)); intros.
apply avg_half_sub_same_sign_1...
apply avg_half_sub_same_sign_1...
now rewrite Rplus_comm.
Qed.
Lemma average_same_sign_2: a <= 0-> av <= 0.
Proof with auto with typeclass_instances.
intros H; unfold av, average.
case (Rle_bool_spec 0 x); case (Rle_bool_spec 0 y); intros.
case (Rle_bool_spec (Rabs x) (Rabs y)); intros.
apply avg_half_sub_same_sign_2...
apply avg_half_sub_same_sign_2...
now rewrite Rplus_comm.
apply avg_naive_same_sign_2...
apply avg_naive_same_sign_2...
case (Rle_bool_spec (Rabs x) (Rabs y)); intros.
apply avg_half_sub_same_sign_2...
apply avg_half_sub_same_sign_2...
now rewrite Rplus_comm.
Qed.
Lemma average_correct: Rabs (av -a) <= 3/2 * ulp_flt a.
Proof with auto with typeclass_instances.
unfold av,a,average.
case (Rle_bool_spec 0 x); case (Rle_bool_spec 0 y); intros.
case (Rle_bool_spec (Rabs x) (Rabs y)); intros.
apply avg_half_sub_correct...
rewrite Rplus_comm.
apply avg_half_sub_correct...
apply avg_naive_correct_weak2...
apply avg_naive_correct_weak2...
case (Rle_bool_spec (Rabs x) (Rabs y)); intros.
apply avg_half_sub_correct...
right; split; now left.
rewrite Rplus_comm.
apply avg_half_sub_correct...
right; split; now left.
Qed.
Lemma average_between: Rmin x y <= av <= Rmax x y.
Proof with auto with typeclass_instances.
unfold av,a,average.
case (Rle_bool_spec 0 x); case (Rle_bool_spec 0 y); intros.
case (Rle_bool_spec (Rabs x) (Rabs y)); intros.
apply avg_half_sub_between...
rewrite Rmin_comm, Rmax_comm.
apply avg_half_sub_between...
apply avg_naive_between...
apply avg_naive_between...
case (Rle_bool_spec (Rabs x) (Rabs y)); intros.
apply avg_half_sub_between...
rewrite Rmin_comm, Rmax_comm.
apply avg_half_sub_between...
Qed.
Lemma average_zero: a = 0 -> av = 0.
Proof with auto with typeclass_instances.
unfold av,a,average.
case (Rle_bool_spec 0 x); case (Rle_bool_spec 0 y); intros.
case (Rle_bool_spec (Rabs x) (Rabs y)); intros.
apply avg_half_sub_zero...
apply avg_half_sub_zero...
now rewrite Rplus_comm.
apply avg_naive_zero...
apply avg_naive_zero...
case (Rle_bool_spec (Rabs x) (Rabs y)); intros.
apply avg_half_sub_zero...
apply avg_half_sub_zero...
now rewrite Rplus_comm.
Qed.
Lemma average_no_underflow: (bpow emin) <= Rabs a -> av <> 0.
Proof with auto with typeclass_instances.
unfold av,a,average.
case (Rle_bool_spec 0 x); case (Rle_bool_spec 0 y); intros.
case (Rle_bool_spec (Rabs x) (Rabs y)); intros.
apply avg_half_sub_no_underflow...
apply avg_half_sub_no_underflow...
now rewrite Rplus_comm.
apply avg_naive_no_underflow...
apply avg_naive_no_underflow...
case (Rle_bool_spec (Rabs x) (Rabs y)); intros.
apply avg_half_sub_no_underflow...
right; split; now left.
apply avg_half_sub_no_underflow...
right; split; now left.
now rewrite Rplus_comm.
Qed.
End average.
|