1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
|
(**
This example is part of the Flocq formalization of floating-point
arithmetic in Coq: https://flocq.gitlabpages.inria.fr/
Copyright (C) 2014-2018 Sylvie Boldo
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
COPYING file for more details.
*)
From Coq Require Import ZArith Reals Psatz.
From Flocq Require Import Core Relative Sterbenz Operations.
From Interval Require Import Tactic.
Section Delta_FLX.
Open Scope R_scope.
Variables a b c:R.
Lemma Triangle_equiv_expressions: let s:=((a+b+c)/2) in
sqrt (s*(s-a)*(s-b)*(s-c)) = /4*sqrt ((a+(b+c))*(a+(b-c))*(c+(a-b))*(c-(a-b))).
Proof.
intros s.
assert (0 <= /4).
assert (0 < 2).
apply Rle_lt_0_plus_1; apply Rlt_le; exact Rlt_0_1.
left; apply Rinv_0_lt_compat.
now repeat apply Rmult_lt_0_compat.
assert (0 <= /16).
apply Rle_trans with (/4*/4).
now apply Rmult_le_pos.
right; field.
replace (/4) with (sqrt (/16)).
rewrite <- sqrt_mult_alt.
apply f_equal.
unfold s; field.
exact H0.
apply sqrt_lem_1.
exact H0.
exact H.
field.
Qed.
(*********************** FLX ************************************)
Variable beta : radix.
Notation bpow e := (bpow beta e).
Variable prec : Z.
Context { prec_gt_0_ : Prec_gt_0 prec }.
Notation format := (generic_format beta (FLX_exp prec)).
Notation round_flx :=(round beta (FLX_exp prec) ZnearestE).
Hypothesis pGt1: (1 < prec)%Z.
(** Next two assumptions are proved below in radix 2 (with 7 bits) and radix 10 (with 3 digits) *)
Hypothesis prec_suff: (/2*bpow (1-prec) <= /100).
Hypothesis fourth_format: format (/4).
Hypothesis cPos: 0 <= c.
Hypothesis cLeb: c <= b.
Hypothesis bLea: b <= a.
Hypothesis isaTriangle1: a <= b+c.
Hypothesis Fa: format a.
Hypothesis Fb: format b.
Hypothesis Fc: format c.
Let t1:=round_flx (a+round_flx (b+c)).
Let t4:=round_flx (c-round_flx (a-b)).
Let t3:=round_flx (c+round_flx (a-b)).
Let t2:=round_flx (a+round_flx (b-c)).
Let M := round_flx (round_flx (round_flx (t1*t2)*t3) *t4).
Let E_M := (a+(b+c))*(a+(b-c))*(c+(a-b))*(c-(a-b)).
Let Delta := round_flx ( round_flx (/4) * round_flx (sqrt M)).
Let E_Delta := /4*sqrt ((a+(b+c))*(a+(b-c))*(c+(a-b))*(c-(a-b))).
Lemma FLX_pos_is_pos: forall x, 0 <= x -> 0 <= round_flx x.
Proof with auto with typeclass_instances.
intros x Hx.
apply round_pred_ge_0 with (Rnd_NE_pt beta (FLX_exp prec)) x; auto.
apply Rnd_NE_pt_monotone; auto...
apply Rnd_NG_pt_refl.
apply generic_format_0.
apply round_NE_pt...
Qed.
Lemma FLXN_le_exp: forall f1 f2:float beta,
((Zpower beta (prec - 1) <= Z.abs (Fnum f1) < Zpower beta prec)%Z) ->
((Zpower beta (prec - 1) <= Z.abs (Fnum f2) < Zpower beta prec))%Z ->
0 <= F2R f1 -> F2R f1 <= F2R f2 -> (Fexp f1 <= Fexp f2)%Z.
Proof.
intros f1 f2 H1 H2 H3 H4.
case (Zle_or_lt (Fexp f1) (Fexp f2)).
trivial.
assert (F2R f1 <= F2R f2) by assumption.
intros H5; contradict H.
apply Rlt_not_le.
unfold F2R.
apply Rlt_le_trans with (IZR(Zpower beta prec)*bpow (Fexp f2))%R.
apply Rmult_lt_compat_r.
apply bpow_gt_0.
apply IZR_lt.
apply Z.le_lt_trans with (2:=proj2 H2).
rewrite Z.abs_eq.
auto with zarith.
apply le_IZR.
apply Rmult_le_reg_r with (bpow (Fexp f2)).
apply bpow_gt_0.
rewrite Rmult_0_l.
apply Rle_trans with (1:=H3).
apply H4.
rewrite IZR_Zpower, <-bpow_plus.
apply Rle_trans with (bpow ((prec-1)+Fexp f1)).
apply bpow_le.
lia.
rewrite bpow_plus.
apply Rmult_le_compat_r.
apply bpow_ge_0.
rewrite <- IZR_Zpower.
apply IZR_le.
apply Z.le_trans with (1:=proj1 H1).
rewrite Z.abs_eq.
auto with zarith.
apply le_IZR.
apply Rmult_le_reg_r with (bpow (Fexp f1)).
apply bpow_gt_0.
rewrite Rmult_0_l.
exact H3.
lia.
lia.
Qed.
Lemma t1pos: 0 <= t1.
Proof with auto with typeclass_instances.
apply FLX_pos_is_pos.
apply Rplus_le_le_0_compat.
apply Rle_trans with (1:=cPos); apply Rle_trans with (1:=cLeb); exact bLea.
apply FLX_pos_is_pos.
apply Rplus_le_le_0_compat.
apply Rle_trans with (1:=cPos); exact cLeb.
exact cPos.
Qed.
Lemma t2pos: 0 <= t2.
Proof with auto with typeclass_instances.
apply FLX_pos_is_pos.
apply Rplus_le_le_0_compat.
apply Rle_trans with (1:=cPos); apply Rle_trans with (1:=cLeb); exact bLea.
apply FLX_pos_is_pos.
apply Rle_0_minus.
exact cLeb.
Qed.
Lemma t3pos: 0 <= t3.
Proof with auto with typeclass_instances.
apply FLX_pos_is_pos.
apply Rplus_le_le_0_compat.
exact cPos.
apply FLX_pos_is_pos.
apply Rle_0_minus.
exact bLea.
Qed.
Lemma t4pos: 0 <= t4.
Proof with auto with typeclass_instances.
apply FLX_pos_is_pos.
apply Rle_0_minus.
apply round_le_generic...
apply Rplus_le_reg_l with b; ring_simplify.
exact isaTriangle1.
Qed.
Lemma Mpos: 0 <= M.
Proof with auto with typeclass_instances.
apply FLX_pos_is_pos.
apply Rmult_le_pos;[idtac|exact t4pos].
apply FLX_pos_is_pos.
apply Rmult_le_pos;[idtac|exact t3pos].
apply FLX_pos_is_pos.
apply Rmult_le_pos;[exact t1pos|exact t2pos].
Qed.
Lemma ab_exact: round_flx (a-b)=a-b.
Proof with auto with typeclass_instances.
apply round_generic...
apply sterbenz_aux...
lra.
Qed.
Lemma t4_exact_aux: forall (f:float beta) g,
(Z.abs (Fnum f) < Zpower beta prec)%Z
-> (0 <= g <= F2R f)%R
-> (exists n:Z, (g=IZR n*bpow (Fexp f))%R)
-> format g.
Proof with auto with typeclass_instances.
intros f g Hf (Hg1,Hg2) (n,Hg3).
apply generic_format_FLX.
exists (Float beta n (Fexp f)).
exact Hg3.
apply lt_IZR.
rewrite IZR_Zpower.
2: lia.
apply Rmult_lt_reg_r with (bpow (Fexp f)).
apply bpow_gt_0.
apply Rle_lt_trans with (F2R f).
apply Rle_trans with (2:=Hg2).
apply Rle_trans with (Rabs (F2R (Float beta n (Fexp f)))).
rewrite <- F2R_Zabs.
right; reflexivity.
unfold F2R; simpl.
rewrite <- Hg3.
right; apply Rabs_right.
now apply Rle_ge.
rewrite <- (Rabs_right (F2R f)).
replace (F2R f) with (F2R (Float beta (Fnum f) (Fexp f))) by reflexivity.
rewrite <- F2R_Zabs.
unfold F2R; apply Rmult_lt_compat_r.
apply bpow_gt_0.
rewrite <- IZR_Zpower.
2: lia.
apply IZR_lt.
now simpl.
apply Rle_ge; apply Rle_trans with (1:=Hg1); assumption.
Qed.
Lemma t4_exact: t4=c-(a-b).
Proof with auto with typeclass_instances.
unfold t4; rewrite ab_exact.
case cPos; intros K.
apply round_generic...
apply FLXN_format_generic in Fc...
destruct Fc as [fc Hfc1 Hfc2].
apply t4_exact_aux with fc.
apply Hfc2.
now apply Rgt_not_eq.
split.
apply Rle_0_minus.
apply Rplus_le_reg_l with b; ring_simplify.
exact isaTriangle1.
rewrite <-Hfc1.
apply Rplus_le_reg_l with (-c+a); ring_simplify.
exact bLea.
apply FLXN_format_generic in Fa...
destruct Fa as [fa Hfa1 Hfa2].
apply FLXN_format_generic in Fb...
destruct Fb as [fb Hfb1 Hfb2].
exists (Fnum fc -(Fnum fa*Zpower beta (Fexp fa-Fexp fc)
-Fnum fb*Zpower beta (Fexp fb-Fexp fc)))%Z.
rewrite Hfa1, Hfb1, Hfc1; unfold F2R; simpl.
rewrite 2!minus_IZR.
rewrite 2!mult_IZR.
rewrite 2!IZR_Zpower.
unfold Zminus; rewrite 2!bpow_plus.
rewrite bpow_opp.
field.
apply Rgt_not_eq.
apply bpow_gt_0.
assert (Fexp fc <= Fexp fb)%Z.
2: lia.
apply FLXN_le_exp.
apply Hfc2.
now apply Rgt_not_eq.
apply Hfb2.
apply Rgt_not_eq.
apply Rlt_le_trans with c; assumption.
rewrite <- Hfc1; assumption.
rewrite <- Hfc1, <-Hfb1; assumption.
assert (Fexp fc <= Fexp fa)%Z.
apply FLXN_le_exp.
apply Hfc2.
now apply Rgt_not_eq.
apply Hfa2.
apply Rgt_not_eq.
apply Rlt_le_trans with c; try assumption.
apply Rle_trans with b; assumption.
rewrite <- Hfc1; assumption.
rewrite <- Hfc1, <-Hfa1.
apply Rle_trans with b; assumption.
lia.
unfold Rminus; rewrite <-K, Rplus_0_l.
rewrite round_NE_opp.
apply f_equal.
apply ab_exact.
Qed.
Notation err x y e := (Rabs (x - y) <= e * Rabs y).
Notation eps :=(/2*bpow (1-prec)).
Lemma epsPos: 0 <= eps.
Proof.
apply Rmult_le_pos.
auto with real.
apply bpow_ge_0.
Qed.
Lemma err_aux: forall x y e1 e2, err x y e1 -> e1 <= e2 -> err x y e2.
Proof.
intros x y e1 e2 H1 H2.
apply Rle_trans with (e1*Rabs y).
exact H1.
apply Rmult_le_compat_r.
apply Rabs_pos.
exact H2.
Qed.
Lemma err_0: forall x, err x x 0.
Proof.
intros x.
replace (x-x) with 0%R by ring.
rewrite Rabs_R0; right; ring.
Qed.
Lemma err_opp: forall x y e, err x y e -> err (-x) (-y) e.
Proof.
intros x y e H.
replace (-x - (-y)) with (-(x-y)) by ring.
now rewrite 2!Rabs_Ropp.
Qed.
Lemma err_init: forall x, err (round_flx x) x eps.
Proof with auto with typeclass_instances.
intros x.
apply Rle_trans with (/ 2 * bpow (- prec + 1) * Rabs x).
apply relative_error_N_FLX...
right; apply f_equal2; auto.
apply f_equal, f_equal; ring.
Qed.
Lemma err_add: forall x1 y1 e1 x2 y2 e2, err x1 y1 e1 -> err x2 y2 e2 -> 0 <= y1 -> 0 <= y2
-> err (round_flx (x1+x2)) (y1+y2) (eps + (1+eps)*(Rmax e1 e2)).
Proof with auto with typeclass_instances.
intros x1 y1 e1 x2 y2 e2 H1 H2 Hy1 Hy2.
replace (round_flx (x1+x2) - (y1+y2)) with ((round_flx (x1+x2)-(x1+x2))+(x1+x2 - (y1+y2))) by ring.
apply Rle_trans with (1:=Rabs_triang _ _).
apply Rle_trans with (eps*Rabs (x1+x2) + Rabs (x1 + x2 - (y1 + y2))).
apply Rplus_le_compat_r.
apply err_init.
rewrite Rmult_plus_distr_r.
pattern (x1+x2) at 1; replace (x1+x2) with ((x1 + x2 - (y1 + y2))+(y1+y2)) by ring.
apply Rle_trans with (eps * Rabs (y1 + y2) + (1 + eps) * (Rabs (x1 + x2 - (y1 + y2)))).
apply Rle_trans with (eps * Rabs (x1 + x2 - (y1 + y2)) + eps *Rabs (y1 + y2) + Rabs (x1 + x2 - (y1 + y2))).
apply Rplus_le_compat_r.
rewrite <- Rmult_plus_distr_l.
apply Rmult_le_compat_l.
apply epsPos.
apply Rabs_triang.
right; ring.
apply Rplus_le_compat_l.
rewrite Rmult_assoc.
apply Rmult_le_compat_l.
apply Fourier_util.Rle_zero_pos_plus1, epsPos.
replace (x1 + x2 - (y1 + y2)) with ((x1-y1)+(x2-y2)) by ring.
apply Rle_trans with (1:=Rabs_triang _ _).
apply Rle_trans with (e1*Rabs y1 + e2* Rabs y2).
now apply Rplus_le_compat.
apply Rle_trans with (Rmax e1 e2*Rabs y1 + Rmax e1 e2 * Rabs y2).
apply Rplus_le_compat; apply Rmult_le_compat_r; try apply Rabs_pos.
apply Rmax_l.
apply Rmax_r.
rewrite <- Rmult_plus_distr_l.
right; apply f_equal.
repeat rewrite Rabs_right; try reflexivity; apply Rle_ge; try assumption.
now apply Rplus_le_le_0_compat.
Qed.
Lemma err_add2: forall x x2 y2 e2, err x2 y2 e2
-> 0 <= e2 -> 0 <= y2 <= x
-> err (round_flx (x+x2)) (x+y2) (eps*(1+e2)+e2/2).
Proof with auto with typeclass_instances.
intros x x2 y2 e2 H2 H (Y1,Y2).
replace (round_flx (x+x2) - (x+y2)) with ((round_flx (x+x2)-(x+x2))+(x2 - y2)) by ring.
apply Rle_trans with (1:=Rabs_triang _ _).
rewrite Rmult_plus_distr_r.
apply Rplus_le_compat.
apply Rle_trans with (eps*Rabs (x+x2)).
apply err_init.
rewrite Rmult_assoc with (r3:=Rabs (x + y2)).
apply Rmult_le_compat_l.
apply epsPos.
replace (x+x2) with ((x + y2) +(x2-y2)) by ring.
apply Rle_trans with (1:=Rabs_triang _ _).
rewrite Rmult_plus_distr_r.
rewrite Rmult_1_l.
apply Rplus_le_compat_l.
apply Rle_trans with (1:=H2).
apply Rmult_le_compat_l.
apply H.
rewrite 2!Rabs_right.
rewrite <- (Rplus_0_l y2).
apply Rplus_le_compat; auto with real.
apply Rle_trans with y2; assumption.
apply Rle_ge, Rplus_le_le_0_compat.
apply Rle_trans with y2; assumption.
assumption.
apply Rle_ge; assumption.
apply Rle_trans with (1:=H2).
unfold Rdiv; rewrite Rmult_assoc.
apply Rmult_le_compat_l.
apply H.
apply Rmult_le_reg_l with 2; auto with real.
rewrite <- Rmult_assoc, Rinv_r.
2: now apply Rgt_not_eq, IZR_lt.
rewrite 2!Rabs_pos_eq.
lra.
lra.
easy.
Qed.
Lemma err_mult: forall x1 y1 e1 x2 y2 e2, err x1 y1 e1 -> err x2 y2 e2
-> err (round_flx (x1*x2)) (y1*y2) (eps+(1+eps)*(e1+e2+e1*e2)).
Proof with auto with typeclass_instances.
intros x1 y1 e1 x2 y2 e2 H1 H2.
replace (round_flx (x1 * x2) - y1*y2) with ((round_flx (x1 * x2) - x1*x2)+(x1*x2-y1*y2)) by ring.
apply Rle_trans with (1:=Rabs_triang _ _).
apply Rle_trans with (eps*Rabs (x1*x2)+Rabs (x1 * x2 - y1 * y2)).
apply Rplus_le_compat_r.
apply err_init.
rewrite Rmult_plus_distr_r.
apply Rle_trans with (eps*Rabs (y1 * y2) + (1+eps)*Rabs (x1 * x2 - y1 * y2)).
pattern (x1*x2) at 1; replace (x1*x2) with ((x1 * x2 - (y1 * y2))+(y1*y2)) by ring.
apply Rle_trans with (eps * Rabs (x1 * x2 - y1 * y2) + eps*Rabs (y1 * y2) + Rabs (x1 * x2 - y1 * y2)).
apply Rplus_le_compat_r.
rewrite <- Rmult_plus_distr_l.
apply Rmult_le_compat_l.
apply epsPos.
apply Rabs_triang.
right; ring.
apply Rplus_le_compat_l.
rewrite Rmult_assoc.
apply Rmult_le_compat_l.
apply Fourier_util.Rle_zero_pos_plus1, epsPos.
rewrite 2!Rmult_plus_distr_r.
replace (x1*x2-y1*y2) with ((x1-y1)*y2+(x2-y2)*y1+(x1-y1)*(x2-y2)) by ring.
apply Rle_trans with (1:=Rabs_triang _ _).
apply Rplus_le_compat.
apply Rle_trans with (1:=Rabs_triang _ _).
apply Rplus_le_compat.
rewrite 2!Rabs_mult.
rewrite <- Rmult_assoc.
apply Rmult_le_compat_r.
apply Rabs_pos.
exact H1.
rewrite 2!Rabs_mult.
rewrite (Rmult_comm _ (Rabs y2)).
rewrite <- Rmult_assoc.
apply Rmult_le_compat_r.
apply Rabs_pos.
exact H2.
apply Rle_trans with ((e1*Rabs y1)*(e2*Rabs y2)).
rewrite Rabs_mult.
apply Rmult_le_compat; try assumption; apply Rabs_pos.
rewrite Rabs_mult; right; ring.
Qed.
Lemma err_mult_exact: forall x y e r, 0 < r -> err x y e -> err (/r*x) (/r*y) e.
Proof.
intros x y e r Hr H.
assert (r <> 0).
now apply Rgt_not_eq.
apply Rmult_le_reg_l with r.
exact Hr.
rewrite <- (Rabs_right r) at 1 4.
rewrite <- Rabs_mult.
replace (r * (/ r * x - / r * y)) with (x-y) by now field.
apply Rle_trans with (1:=H).
rewrite (Rmult_comm (Rabs r) _), Rmult_assoc.
rewrite <- Rabs_mult.
replace (/r * y *r) with y by now field.
apply Rle_refl.
apply Rle_ge; now left.
Qed.
Lemma sqrt_var_maj_2: forall h : R, Rabs h <= /2 ->
Rabs (sqrt (1 + h) - 1) <= Rabs h / 2 + (Rabs h) * (Rabs h) / 4.
Proof.
intros h H1.
case (Rle_or_lt 0 h); intros Sh.
assert (0 <= h <= 1).
apply Rabs_le_inv in H1.
lra.
rewrite 2!Rabs_pos_eq.
apply Rminus_le.
interval with (i_autodiff h, i_prec 30).
apply Sh.
interval with (i_prec 30).
assert (-1/2 <= h <= 0).
apply Rabs_le_inv in H1.
lra.
rewrite 2!Rabs_left.
apply Rplus_le_reg_l with (h / 2 - h * h / 4).
replace (h / 2 - h * h / 4 + - (sqrt (1 + h) - 1)) with ((-h/2) * (-1 + h / 2 + 2 / (sqrt(1 + h) + 1))).
apply Rle_trans with (-h/2 * 0%R).
2: right ; field.
apply Rmult_le_compat_l.
lra.
interval with (i_autodiff h, i_prec 30).
assert (0 < (sqrt (1 + h) + 1)).
interval.
replace (sqrt (1 + h) - 1) with (h / (sqrt (1 + h) + 1)).
field.
interval.
apply Rmult_eq_reg_l with (sqrt (1 + h) + 1).
2:apply Rgt_not_eq; assumption.
apply trans_eq with h.
field.
apply Rgt_not_eq; assumption.
apply trans_eq with (Rsqr (sqrt (1 + h)) -1).
rewrite Rsqr_sqrt.
ring.
lra.
unfold Rsqr; ring.
exact Sh.
apply Rlt_minus.
rewrite <- sqrt_1 at 2.
apply sqrt_lt_1_alt.
lra.
Qed.
Lemma err_sqrt: forall x y e, 0 <= y -> e <= /2 -> err x y e
-> err (round_flx (sqrt x)) (sqrt y) (eps+(1+eps)*(/2*e+/4*e*e)).
Proof with auto with typeclass_instances.
intros x y e Hy He H.
replace (round_flx (sqrt x) - sqrt y) with ((round_flx (sqrt x) - sqrt x)+(sqrt x - sqrt y)) by ring.
apply Rle_trans with (1:=Rabs_triang _ _).
apply Rle_trans with (eps*Rabs (sqrt x)+Rabs (sqrt x - sqrt y)).
apply Rplus_le_compat_r.
apply err_init.
rewrite Rmult_plus_distr_r.
apply Rle_trans with (eps*Rabs (sqrt y) + (1+eps)*Rabs (sqrt x - sqrt y)).
pattern (sqrt x) at 1; replace (sqrt x) with ((sqrt x-sqrt y)+sqrt y) by ring.
apply Rle_trans with (eps * Rabs (sqrt x - sqrt y) + eps*Rabs (sqrt y) + Rabs (sqrt x - sqrt y)).
apply Rplus_le_compat_r.
rewrite <- Rmult_plus_distr_l.
apply Rmult_le_compat_l.
apply epsPos.
apply Rabs_triang.
right; ring.
apply Rplus_le_compat_l.
rewrite Rmult_assoc.
apply Rmult_le_compat_l.
apply Fourier_util.Rle_zero_pos_plus1, epsPos.
case (Req_dec y 0); intros Hy'.
(* . *)
replace x with 0.
rewrite Hy', sqrt_0, Rminus_0_r, Rabs_R0, Rmult_0_r.
now apply Req_le.
case (Req_dec x 0).
easy.
intros H1.
absurd (Rabs x = 0).
now apply Rabs_no_R0.
assert (Rabs x <= 0).
replace x with (x-y).
replace 0 with (e*Rabs y).
exact H.
rewrite Hy', Rabs_R0; ring.
rewrite Hy'; ring.
case H0; try easy.
intros K; contradict K.
apply Rle_not_lt, Rabs_pos.
(* . *)
replace (sqrt x - sqrt y) with (sqrt y*(sqrt (1+(x-y)/y) - 1)).
rewrite Rabs_mult, Rmult_comm.
apply Rmult_le_compat_r.
apply Rabs_pos.
assert ((Rabs ((x - y) / y) <= e)).
apply Rmult_le_reg_r with (Rabs y).
case (Rabs_pos y); [easy|intros H'; contradict H'; apply sym_not_eq; now apply Rabs_no_R0].
apply Rle_trans with (2:=H).
rewrite <- Rabs_mult; right.
apply f_equal; now field.
apply Rle_trans with (Rabs ((x - y) / y) /2 + Rabs ((x - y) / y)*Rabs ((x - y) / y)/4).
apply sqrt_var_maj_2.
apply Rle_trans with (2:=He); assumption.
apply Rplus_le_compat.
unfold Rdiv; rewrite Rmult_comm.
apply Rmult_le_compat_l; try assumption.
auto with real.
unfold Rdiv; rewrite Rmult_comm.
rewrite Rmult_assoc.
apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; apply Rmult_lt_0_compat; auto with real.
apply Rmult_le_compat; try apply Rabs_pos; try apply H0.
rewrite Rmult_minus_distr_l, Rmult_1_r.
apply f_equal2;[idtac|reflexivity].
rewrite <- sqrt_mult.
apply f_equal.
now field.
exact Hy.
apply Rmult_le_reg_l with y.
case Hy; [easy|intros H'; contradict H'; now apply sym_not_eq].
apply Rplus_le_reg_l with (-(x-y)).
apply Rle_trans with (-(x-y)).
right; ring.
apply Rle_trans with (1:=RRle_abs _).
rewrite Rabs_Ropp.
apply Rle_trans with (1:=H).
apply Rle_trans with (1*Rabs y).
apply Rmult_le_compat_r.
apply Rabs_pos.
lra.
rewrite Rabs_pos_eq by easy.
right; now field.
Qed.
(* Ugly *)
Lemma M_correct_aux: forall r, 0 <= r <= /100 ->
2 * r ^ 8 + 15 * r ^ 7 + 50 * r ^ 6 + 97 * r ^ 5 + 120 * r ^ 4 +
97 * r ^ 3 + 50 * r ^ 2 + 15 * r <= 52 * r ^ 2 + 15 * r.
Proof.
intros r (H1,H2).
case H1; intros K.
apply Rplus_le_reg_l with (-15*r - 51*r*r); ring_simplify.
apply Rmult_le_reg_l with (/(r*r)).
apply Rinv_0_lt_compat.
now apply Rmult_lt_0_compat.
apply Rle_trans with (2*r ^ 6 + 15 * r ^ 5 + 50 * r ^ 4 + 97 * r ^ 3 + 120 * r ^ 2 + 97 * r -1 ).
right; field.
now apply Rgt_not_eq.
apply Rle_trans with 1.
2: right; field.
unfold pow; rewrite Rmult_1_r.
interval_intro (/100) upper.
assert (J := conj H1 (Rle_trans _ _ _ H2 H)).
clear -J.
interval.
now apply Rgt_not_eq.
rewrite <-K.
right; ring.
Qed.
(* Note: order of multiplications does not matter *)
Lemma M_correct: err M E_M (15/2*eps+26*eps*eps).
Proof.
eapply err_aux.
apply err_mult.
apply err_mult.
apply err_mult.
(* t1 *)
eapply err_aux.
apply err_add.
apply err_0.
apply err_init.
apply Rle_trans with (1:=cPos); apply Rle_trans with (1:=cLeb); exact bLea.
apply Rplus_le_le_0_compat.
apply Rle_trans with (1:=cPos); exact cLeb.
exact cPos.
apply Rle_trans with (2*eps+eps*eps).
rewrite Rmax_right.
right; ring.
apply epsPos.
now right.
(* t2 *)
eapply err_aux.
apply err_add2.
apply err_init.
apply epsPos.
split.
now apply Rle_0_minus.
apply Rle_trans with (2:=bLea).
apply Rle_trans with (b-0); auto with real.
apply Rplus_le_compat_l; auto with real.
apply Rle_trans with (3/2*eps+eps*eps).
right; field.
now right.
(* t3 *)
unfold t3; rewrite ab_exact.
apply err_init.
(* t4 *)
rewrite t4_exact.
apply err_0.
assert (0 <= eps).
left; apply Rmult_lt_0_compat.
apply Rinv_0_lt_compat.
apply Rle_lt_0_plus_1; apply Rlt_le; exact Rlt_0_1.
apply bpow_gt_0.
generalize H prec_suff; generalize eps.
clear; intros.
field_simplify.
unfold Rdiv; apply Rmult_le_compat_r.
auto with real.
apply M_correct_aux.
split; assumption.
Qed.
(* argh, would be simpler in radix 2 Delta = /4 * round_flx (sqrt M) *)
Lemma Delta_correct : (Rabs (Delta - E_Delta) <= (23/4*eps+38*eps*eps) * E_Delta).
Proof with auto with typeclass_instances.
pattern E_Delta at 2; replace E_Delta with (Rabs E_Delta).
eapply err_aux.
apply err_mult.
replace (round_flx (/ 4)) with (/4).
apply err_0.
apply sym_eq, round_generic...
apply err_sqrt.
repeat apply Rmult_le_pos.
apply Rplus_le_le_0_compat.
apply Rle_trans with (1:=cPos); apply Rle_trans with (1:=cLeb); assumption.
apply Rplus_le_le_0_compat.
apply Rle_trans with (1:=cPos); assumption.
assumption.
apply Rplus_le_le_0_compat.
apply Rle_trans with (1:=cPos); apply Rle_trans with (1:=cLeb); assumption.
now apply Rle_0_minus.
apply Rplus_le_le_0_compat.
assumption.
now apply Rle_0_minus.
apply Rplus_le_reg_l with a; ring_simplify.
rewrite Rplus_comm; assumption.
2: apply M_correct.
apply Rle_trans with (15/2*/100+26*/100).
apply Rplus_le_compat.
apply Rmult_le_compat_l.
unfold Rdiv; apply Rmult_le_pos.
apply IZR_le; auto with zarith.
auto with real.
assumption.
rewrite Rmult_assoc.
apply Rmult_le_compat_l.
apply IZR_le; auto with zarith.
rewrite <- (Rmult_1_l (/100)).
apply Rmult_le_compat.
apply epsPos.
apply epsPos.
apply Rle_trans with (1:=prec_suff).
apply Rmult_le_reg_l with 100%R.
apply IZR_lt; auto with zarith.
rewrite Rinv_r.
rewrite Rmult_1_r.
apply IZR_le; auto with zarith.
now apply Rgt_not_eq, IZR_lt.
easy.
lra.
generalize eps prec_suff epsPos ; clear.
intros r H0 H1.
apply Rcomplements.Rminus_le_0.
apply Rmult_le_reg_r with 16.
now apply IZR_lt.
rewrite Rmult_0_l.
replace (_ * 16) with (-(2704 * r ^ 4 + 6968 * r ^ 3 + 6257 * r ^ 2 + 2486 * r - 39) * (r*r)) by field.
apply Rmult_le_pos.
interval.
now apply Rmult_le_pos.
apply Rabs_pos_eq.
apply Rmult_le_pos.
lra.
apply sqrt_pos.
Qed.
Lemma Delta_correct_2 : radix_val beta=2%Z ->
(Rabs (Delta - E_Delta) <= (19/4*eps+33*eps*eps) * E_Delta).
Proof with auto with typeclass_instances.
intros Hradix.
replace Delta with (/ 4 * round_flx (sqrt M)).
pattern E_Delta at 2; replace E_Delta with (Rabs E_Delta).
apply err_mult_exact.
apply Rmult_lt_0_compat; auto with real.
eapply err_aux.
apply err_sqrt.
repeat apply Rmult_le_pos.
apply Rplus_le_le_0_compat.
apply Rle_trans with (1:=cPos); apply Rle_trans with (1:=cLeb); assumption.
apply Rplus_le_le_0_compat.
apply Rle_trans with (1:=cPos); assumption.
assumption.
apply Rplus_le_le_0_compat.
apply Rle_trans with (1:=cPos); apply Rle_trans with (1:=cLeb); assumption.
now apply Rle_0_minus.
apply Rplus_le_le_0_compat.
assumption.
now apply Rle_0_minus.
apply Rplus_le_reg_l with a; ring_simplify.
rewrite Rplus_comm; assumption.
2: apply M_correct.
assert (H := epsPos).
interval with (i_bisect eps).
generalize eps prec_suff epsPos ; clear.
intros r H0 H1.
apply Rcomplements.Rminus_le_0.
apply Rmult_le_reg_r with 16.
now apply IZR_lt.
rewrite Rmult_0_l.
replace (_ * 16) with (-(2704 * r ^ 3 + 4264 * r ^ 2 + 1993 * r - 35) * (r*r)) by field.
apply Rmult_le_pos.
interval.
now apply Rmult_le_pos.
apply Rabs_pos_eq.
apply Rmult_le_pos.
lra.
apply sqrt_pos.
apply trans_eq with (round_flx (/ 4 * round_flx (sqrt M))).
apply sym_eq, round_generic...
apply generic_format_FLX.
assert (format (round_flx (sqrt M))).
apply generic_format_round...
apply FLX_format_generic in H...
destruct H as [f Hf1 Hf2].
exists (Float beta (Fnum f) (Fexp f -2)).
rewrite Hf1; unfold F2R; simpl.
unfold Zminus;rewrite bpow_plus.
replace (bpow (-(2))) with (/4).
ring.
simpl; unfold Zpower_pos;simpl.
rewrite Hradix; apply f_equal.
simpl; ring.
now simpl.
apply f_equal.
apply f_equal2.
apply sym_eq, round_generic...
reflexivity.
Qed.
End Delta_FLX.
Section Hyp_ok.
Definition radix10 := Build_radix 10 (refl_equal true).
Lemma prec_suff_2: forall prec:Z, (7 <= prec)%Z -> (/2*bpow radix2 (1-prec) <= /100)%R.
Proof.
intros p Hp.
apply Rle_trans with (/2* bpow radix2 (-6))%R.
apply Rmult_le_compat_l.
lra.
apply bpow_le.
lia.
rewrite <- (Rmult_1_l (bpow _ _)).
interval.
Qed.
Lemma prec_suff_10: forall prec:Z, (3 <= prec)%Z -> (/2*bpow radix10 (1-prec) <= /100)%R.
Proof.
intros p Hp.
apply Rle_trans with (/2* bpow radix10 (-2))%R.
apply Rmult_le_compat_l.
lra.
apply bpow_le.
lia.
rewrite bpow_exp.
change (IZR radix10) with 10%R.
interval.
Qed.
Lemma fourth_format_2: forall prec:Z, (0 < prec)%Z -> generic_format radix2 (FLX_exp prec) (/4).
Proof with auto with typeclass_instances.
intros prec Hprec.
change (/4)%R with (bpow radix2 (-2)).
apply generic_format_bpow'...
unfold FLX_exp.
lia.
Qed.
Lemma fourth_format_10: forall prec:Z, (2 <= prec)%Z -> generic_format radix10 (FLX_exp prec) (/4).
Proof with auto with typeclass_instances.
intros prec Hprec.
apply generic_format_FLX.
exists (Float radix10 25 (-2)).
change (F2R (Float radix10 25 (-2))) with (25 / 100)%R.
field.
simpl.
apply Z.lt_le_trans with (10^2)%Z.
unfold Zpower, Zpower_pos; simpl; lia.
change 10%Z with (radix_val radix10).
now apply Zpower_le.
Qed.
End Hyp_ok.
Section Delta_FLT.
Open Scope R_scope.
Variables a b c:R.
Variable beta : radix.
Notation bpow e := (bpow beta e).
Variable prec emin : Z.
Context { prec_gt_0_ : Prec_gt_0 prec }.
(*********************** FLT ************************************)
Notation format := (generic_format beta (FLT_exp emin prec)).
Notation round_flt :=(round beta (FLT_exp emin prec) ZnearestE ).
Hypothesis pGt1: (1 < prec)%Z.
Hypothesis OneisNormal: (emin <= -3-prec)%Z.
(** Next two assumptions are proved below in radix 2 (with 7 bits) and radix 10 (with 3 digits) *)
Hypothesis prec_suff: (/2*bpow (1-prec) <= /100).
Hypothesis fourth_format_gen: forall e, (emin +2 <= e)%Z -> format (/4* bpow e).
Lemma fourth_format: format (/4).
Proof.
replace (/4) with (/4*bpow 0).
apply fourth_format_gen.
lia.
simpl; ring.
Qed.
Hypothesis cPos: 0 <= c.
Hypothesis cLeb: c <= b.
Hypothesis bLea: b <= a.
Hypothesis isaTriangle1: a <= b+c.
Hypothesis Fa: format a.
Hypothesis Fb: format b.
Hypothesis Fc: format c.
Let t1:=round_flt (a+round_flt (b+c)).
Let t4:=round_flt (c-round_flt (a-b)).
Let t3:=round_flt (c+round_flt (a-b)).
Let t2:=round_flt (a+round_flt (b-c)).
Let M := round_flt (round_flt (round_flt (t1*t2)*t3) *t4).
Let E_M := (a+(b+c))*(a+(b-c))*(c+(a-b))*(c-(a-b)).
Let Delta := round_flt ( round_flt (/4) * round_flt (sqrt M)).
Let E_Delta := /4*sqrt ((a+(b+c))*(a+(b-c))*(c+(a-b))*(c-(a-b))).
Lemma FLT_pos_is_pos: forall x, 0 <= x -> 0 <= round_flt x.
Proof with auto with typeclass_instances.
intros x Hx.
apply round_pred_ge_0 with (Rnd_NE_pt beta (FLT_exp emin prec)) x; auto.
apply Rnd_NE_pt_monotone; auto...
apply Rnd_NG_pt_refl.
apply generic_format_0.
apply round_NE_pt...
Qed.
Lemma t1pos_: 0 <= t1.
Proof with auto with typeclass_instances.
apply FLT_pos_is_pos.
apply Rplus_le_le_0_compat.
apply Rle_trans with (1:=cPos); apply Rle_trans with (1:=cLeb); exact bLea.
apply FLT_pos_is_pos.
apply Rplus_le_le_0_compat.
apply Rle_trans with (1:=cPos); exact cLeb.
exact cPos.
Qed.
Lemma t2pos_: 0 <= t2.
Proof with auto with typeclass_instances.
apply FLT_pos_is_pos.
apply Rplus_le_le_0_compat.
apply Rle_trans with (1:=cPos); apply Rle_trans with (1:=cLeb); exact bLea.
apply FLT_pos_is_pos.
apply Rle_0_minus.
exact cLeb.
Qed.
Lemma t3pos_: 0 <= t3.
Proof with auto with typeclass_instances.
apply FLT_pos_is_pos.
apply Rplus_le_le_0_compat.
exact cPos.
apply FLT_pos_is_pos.
apply Rle_0_minus.
exact bLea.
Qed.
Lemma t4pos_: 0 <= t4.
Proof with auto with typeclass_instances.
apply FLT_pos_is_pos.
apply Rle_0_minus.
apply round_le_generic...
apply Rplus_le_reg_l with b; ring_simplify.
exact isaTriangle1.
Qed.
Lemma Mpos_: 0 <= M.
Proof with auto with typeclass_instances.
apply FLT_pos_is_pos.
apply Rmult_le_pos;[idtac|exact t4pos_].
apply FLT_pos_is_pos.
apply Rmult_le_pos;[idtac|exact t3pos_].
apply FLT_pos_is_pos.
apply Rmult_le_pos;[exact t1pos_|exact t2pos_].
Qed.
Lemma ab_exact_: round_flt (a-b)=a-b.
Proof with auto with typeclass_instances.
apply round_generic...
apply sterbenz_aux...
lra.
Qed.
Lemma t4_exact_aux_: forall (f:float beta) g,
(Z.abs (Fnum f) < Zpower beta prec)%Z
-> (0 <= g <= F2R f)%R
-> (exists n:Z, (g=IZR n*bpow (Fexp f))%R)
-> (emin <= Fexp f)%Z
-> format g.
Proof with auto with typeclass_instances.
intros f g Hf (Hg1,Hg2) (n,Hg3) Y.
apply generic_format_FLT.
exists (Float beta n (Fexp f)).
exact Hg3.
apply lt_IZR.
rewrite IZR_Zpower.
2: lia.
apply Rmult_lt_reg_r with (bpow (Fexp f)).
apply bpow_gt_0.
apply Rle_lt_trans with (F2R f).
apply Rle_trans with (2:=Hg2).
apply Rle_trans with (Rabs (F2R (Float beta n (Fexp f)))).
rewrite <- F2R_Zabs.
right; reflexivity.
unfold F2R; simpl.
rewrite <- Hg3.
right; apply Rabs_right.
now apply Rle_ge.
rewrite <- (Rabs_right (F2R f)).
replace (F2R f) with (F2R (Float beta (Fnum f) (Fexp f))) by reflexivity.
rewrite <- F2R_Zabs.
unfold F2R; apply Rmult_lt_compat_r.
apply bpow_gt_0.
rewrite <- IZR_Zpower.
2: lia.
apply IZR_lt.
now simpl.
apply Rle_ge; apply Rle_trans with (1:=Hg1); assumption.
assumption.
Qed.
Lemma t4_exact_: t4=c-(a-b).
Proof with auto with typeclass_instances.
unfold t4; rewrite ab_exact_.
case cPos; intros K.
apply round_generic...
assert (H:(generic_format beta (FLX_exp prec) c)).
now apply generic_format_FLX_FLT with emin.
apply FLXN_format_generic in H...
destruct H as [fc Hfc1 Hfc2].
case (Zle_or_lt emin (Fexp fc)); intros Y.
(* normal *)
apply t4_exact_aux_ with fc.
apply Hfc2.
now apply Rgt_not_eq.
split.
apply Rle_0_minus.
apply Rplus_le_reg_l with b; ring_simplify.
exact isaTriangle1.
rewrite <-Hfc1.
apply Rplus_le_reg_l with (-c+a); ring_simplify.
exact bLea.
apply generic_format_FLX_FLT in Fa.
apply FLXN_format_generic in Fa...
destruct Fa as [fa Hfa1 Hfa2].
apply generic_format_FLX_FLT in Fb.
apply FLXN_format_generic in Fb...
destruct Fb as [fb Hfb1 Hfb2].
exists (Fnum fc -(Fnum fa*Zpower beta (Fexp fa-Fexp fc)
-Fnum fb*Zpower beta (Fexp fb-Fexp fc)))%Z.
rewrite Hfa1, Hfb1, Hfc1; unfold F2R; simpl.
rewrite 2!minus_IZR.
rewrite 2!mult_IZR.
rewrite 2!IZR_Zpower.
unfold Zminus; rewrite 2!bpow_plus.
rewrite bpow_opp.
field.
apply Rgt_not_eq.
apply bpow_gt_0.
assert (Fexp fc <= Fexp fb)%Z.
2: lia.
apply FLXN_le_exp with prec...
apply Hfc2.
now apply Rgt_not_eq.
apply Hfb2.
apply Rgt_not_eq.
apply Rlt_le_trans with c; assumption.
rewrite <- Hfc1; assumption.
rewrite <- Hfc1, <-Hfb1; assumption.
assert (Fexp fc <= Fexp fa)%Z.
apply FLXN_le_exp with prec...
apply Hfc2.
now apply Rgt_not_eq.
apply Hfa2.
apply Rgt_not_eq.
apply Rlt_le_trans with c; try assumption.
apply Rle_trans with b; assumption.
rewrite <- Hfc1; assumption.
rewrite <- Hfc1, <-Hfa1.
apply Rle_trans with b; assumption.
lia.
assumption.
(* subnormal *)
assert (exists f:float beta, c = F2R f /\ Fexp f = emin /\ (Z.abs (Fnum f) < beta ^ prec)%Z).
apply FLT_format_generic in Fc...
destruct Fc as [ffc Hffc1 Hffc2 Hffc3].
exists (Float beta (Fnum ffc*Zpower beta (Fexp ffc-emin)) emin).
split.
rewrite Hffc1; unfold F2R; simpl.
rewrite mult_IZR, IZR_Zpower.
unfold Zminus; rewrite bpow_plus, bpow_opp.
field.
apply Rgt_not_eq.
apply bpow_gt_0.
lia.
split.
reflexivity.
simpl.
apply lt_IZR.
rewrite abs_IZR, mult_IZR, IZR_Zpower.
2: lia.
unfold Zminus; rewrite bpow_plus, <- Rmult_assoc.
replace (IZR (Fnum ffc) * bpow (Fexp ffc)) with (F2R ffc) by reflexivity.
rewrite <- Hffc1.
rewrite Hfc1; unfold F2R; rewrite Rmult_assoc, <- bpow_plus.
rewrite Rabs_mult.
apply Rle_lt_trans with (Rabs (IZR (Fnum fc)) *1).
apply Rmult_le_compat_l.
apply Rabs_pos.
rewrite Rabs_right.
2: apply Rle_ge, bpow_ge_0.
replace 1 with (bpow 0) by reflexivity.
apply bpow_le.
lia.
rewrite Rmult_1_r.
rewrite <- abs_IZR.
apply IZR_lt.
apply Hfc2.
now apply Rgt_not_eq.
destruct H as (gc,(Hgc1,(Hgc2,Hgc3))).
apply t4_exact_aux_ with gc.
assumption.
split.
apply Rle_0_minus.
apply Rplus_le_reg_l with b; ring_simplify.
exact isaTriangle1.
rewrite <-Hgc1.
apply Rplus_le_reg_l with (-c+a); ring_simplify.
exact bLea.
apply FLT_format_generic in Fa...
destruct Fa as [fa Hfa1 Hfa2 Hfa3].
apply FLT_format_generic in Fb...
destruct Fb as [fb Hfb1 Hfb2 Hfb3].
rewrite Hgc2.
exists (Fnum gc -(Fnum fa*Zpower beta (Fexp fa-emin)
-Fnum fb*Zpower beta (Fexp fb -emin)))%Z.
rewrite Hfa1, Hfb1, Hgc1; unfold F2R; simpl.
rewrite Hgc2, 2!minus_IZR.
rewrite 2!mult_IZR.
rewrite 2!IZR_Zpower.
unfold Zminus; rewrite 2!bpow_plus.
rewrite bpow_opp.
field.
apply Rgt_not_eq.
apply bpow_gt_0.
lia.
lia.
lia.
(* *)
unfold Rminus; rewrite <-K, Rplus_0_l.
rewrite round_NE_opp.
apply f_equal.
apply ab_exact_.
Qed.
Lemma t4Let3: t4 <= t3.
Proof with auto with typeclass_instances.
apply round_le...
apply Rplus_le_compat_l.
assert (0 <= round_flt (a - b)).
rewrite ab_exact_.
now apply Rle_0_minus.
apply Rle_trans with (2:=H).
rewrite <- Ropp_0.
now apply Ropp_le_contravar.
Qed.
Lemma t3Let2: t3 <= t2.
Proof with auto with typeclass_instances.
apply round_le...
rewrite ab_exact_.
apply Rle_trans with (a+(c-b));[right; ring|idtac].
apply Rplus_le_compat_l.
apply Rle_trans with 0%R.
now apply Rle_minus.
apply FLT_pos_is_pos.
now apply Rle_0_minus.
Qed.
Lemma t2Let1: t2 <= t1.
Proof with auto with typeclass_instances.
apply round_le...
apply Rplus_le_compat_l.
apply round_le...
apply Rplus_le_compat_l.
apply Rle_trans with (2:=cPos).
rewrite <- Ropp_0.
now apply Ropp_le_contravar.
Qed.
Notation err x y e := (Rabs (x - y) <= e * Rabs y).
Notation eps :=(/2*bpow (1-prec)).
Lemma err_add_no_err: forall x1 x2,
format x1 -> format x2
-> err (round_flt (x1+x2)) (x1+x2) eps.
Proof with auto with typeclass_instances.
intros x1 x2 Fx1 Fx2.
case (Rle_or_lt (bpow (emin+prec-1)) (Rabs (x1+x2))); intros Y.
(* . *)
replace eps with (/ 2 * Raux.bpow beta (- prec + 1)).
apply relative_error_N_FLT...
apply f_equal; apply f_equal; ring.
(* . *)
replace (round_flt (x1 + x2)) with (x1+x2).
apply err_aux with 0.
apply err_0.
apply epsPos.
apply sym_eq, round_generic...
apply generic_format_FLT.
apply FLT_format_generic in Fx1; apply FLT_format_generic in Fx2...
destruct Fx1 as [f Hf1 Hf2 Hf3].
destruct Fx2 as [g Hg1 Hg2 Hg3].
exists (Fplus f g).
now rewrite F2R_plus, Hf1, Hg1.
apply lt_IZR.
rewrite abs_IZR.
rewrite IZR_Zpower.
2: auto with zarith.
apply Rmult_lt_reg_r with (bpow (Fexp (Fplus f g))).
apply bpow_gt_0.
apply Rle_lt_trans with (Rabs (F2R (Fplus f g))).
right; unfold F2R; rewrite Rabs_mult.
apply f_equal.
apply sym_eq, Rabs_right.
apply Rle_ge, bpow_ge_0.
rewrite F2R_plus, <- Hf1, <- Hg1.
apply Rlt_le_trans with (1:=Y).
rewrite <- bpow_plus.
apply bpow_le.
assert (emin <= Fexp (Fplus f g))%Z.
rewrite Fexp_Fplus.
now apply Z.min_case.
lia.
rewrite Fexp_Fplus.
now apply Z.min_case.
Qed.
Lemma err_add_: forall x1 y1 e1 x2 y2 e2, err x1 y1 e1 -> err x2 y2 e2 -> 0 <= y1 -> 0 <= y2
-> format x1 -> format x2
-> err (round_flt (x1+x2)) (y1+y2) (eps + (1+eps)*(Rmax e1 e2)).
Proof with auto with typeclass_instances.
intros x1 y1 e1 x2 y2 e2 H1 H2 Hy1 Hy2 Fx1 Fx2.
replace (round_flt (x1+x2) - (y1+y2)) with ((round_flt (x1+x2)-(x1+x2))+(x1+x2 - (y1+y2))) by ring.
apply Rle_trans with (1:=Rabs_triang _ _).
apply Rle_trans with (eps*Rabs (x1+x2) + Rabs (x1 + x2 - (y1 + y2))).
apply Rplus_le_compat_r.
now apply err_add_no_err.
(* *)
rewrite Rmult_plus_distr_r.
pattern (x1+x2) at 1; replace (x1+x2) with ((x1 + x2 - (y1 + y2))+(y1+y2)) by ring.
apply Rle_trans with (eps * Rabs (y1 + y2) + (1 + eps) * (Rabs (x1 + x2 - (y1 + y2)))).
apply Rle_trans with (eps * Rabs (x1 + x2 - (y1 + y2)) + eps *Rabs (y1 + y2) + Rabs (x1 + x2 - (y1 + y2))).
apply Rplus_le_compat_r.
rewrite <- Rmult_plus_distr_l.
apply Rmult_le_compat_l.
apply epsPos.
apply Rabs_triang.
right; ring.
apply Rplus_le_compat_l.
rewrite Rmult_assoc.
apply Rmult_le_compat_l.
apply Fourier_util.Rle_zero_pos_plus1, epsPos.
replace (x1 + x2 - (y1 + y2)) with ((x1-y1)+(x2-y2)) by ring.
apply Rle_trans with (1:=Rabs_triang _ _).
apply Rle_trans with (e1*Rabs y1 + e2* Rabs y2).
now apply Rplus_le_compat.
apply Rle_trans with (Rmax e1 e2*Rabs y1 + Rmax e1 e2 * Rabs y2).
apply Rplus_le_compat; apply Rmult_le_compat_r; try apply Rabs_pos.
apply Rmax_l.
apply Rmax_r.
rewrite <- Rmult_plus_distr_l.
right; apply f_equal.
repeat rewrite Rabs_right; try reflexivity; apply Rle_ge; try assumption.
now apply Rplus_le_le_0_compat.
Qed.
Lemma err_add2_: forall x x2 y2 e2, err x2 y2 e2
-> format x -> format x2
-> 0 <= e2 -> 0 <= y2 <= x
-> err (round_flt (x+x2)) (x+y2) (eps*(1+e2)+e2/2).
Proof with auto with typeclass_instances.
intros x x2 y2 e2 H2 Z1 Z2 H (Y1,Y2).
replace (round_flt (x+x2) - (x+y2)) with ((round_flt (x+x2)-(x+x2))+(x2 - y2)) by ring.
apply Rle_trans with (1:=Rabs_triang _ _).
rewrite Rmult_plus_distr_r.
apply Rplus_le_compat.
apply Rle_trans with (eps*Rabs (x+x2)).
now apply err_add_no_err.
rewrite Rmult_assoc with (r3:=Rabs (x + y2)).
apply Rmult_le_compat_l.
apply epsPos.
replace (x+x2) with ((x + y2) +(x2-y2)) by ring.
apply Rle_trans with (1:=Rabs_triang _ _).
rewrite Rmult_plus_distr_r.
rewrite Rmult_1_l.
apply Rplus_le_compat_l.
apply Rle_trans with (1:=H2).
apply Rmult_le_compat_l.
apply H.
rewrite 2!Rabs_right.
rewrite <- (Rplus_0_l y2).
apply Rplus_le_compat; auto with real.
apply Rle_trans with y2; assumption.
apply Rle_ge, Rplus_le_le_0_compat.
apply Rle_trans with y2; assumption.
assumption.
apply Rle_ge; assumption.
apply Rle_trans with (1:=H2).
unfold Rdiv; rewrite Rmult_assoc.
apply Rmult_le_compat_l.
apply H.
apply Rmult_le_reg_l with 2; auto with real.
rewrite <- Rmult_assoc, Rinv_r.
2: now apply IZR_neq.
rewrite 2!Rabs_pos_eq ; lra.
Qed.
Lemma err_mult_aux: forall x1 y1 e1 x2 y2 e2, format x1 -> format x2 -> err x1 y1 e1 -> err x2 y2 e2
-> err (round_flt (x1*x2)) (y1*y2) (eps+(1+eps)*(e1+e2+e1*e2))
\/ (Rabs (round_flt (x1*x2)) <= bpow (emin+prec-1)).
Proof with auto with typeclass_instances.
intros x1 y1 e1 x2 y2 e2 Hx1 Hx2 H1 H2.
case (Rle_or_lt (Rabs (x1 * x2)) (bpow (emin + prec-1))); intros Y.
right.
rewrite <- round_NE_abs...
eapply Rnd_NE_pt_monotone with (beta:=beta) (fexp:=(FLT_exp emin prec))...
apply round_NE_pt...
replace (bpow (emin + prec - 1)) with (round_flt ((bpow (emin + prec - 1)))).
apply round_NE_pt...
apply round_generic...
apply generic_format_bpow'...
unfold FLT_exp; apply Z.max_case; lia.
exact Y.
left.
replace (round_flt (x1 * x2) - y1*y2) with ((round_flt (x1 * x2) - x1*x2)+(x1*x2-y1*y2)) by ring.
apply Rle_trans with (1:=Rabs_triang _ _).
apply Rle_trans with (eps*Rabs (x1*x2)+Rabs (x1 * x2 - y1 * y2)).
apply Rplus_le_compat_r.
replace eps with (/ 2 * Raux.bpow beta (- prec + 1)).
apply relative_error_N_FLT...
left; exact Y.
apply f_equal; apply f_equal; ring.
rewrite Rmult_plus_distr_r.
apply Rle_trans with (eps*Rabs (y1 * y2) + (1+eps)*Rabs (x1 * x2 - y1 * y2)).
pattern (x1*x2) at 1; replace (x1*x2) with ((x1 * x2 - (y1 * y2))+(y1*y2)) by ring.
apply Rle_trans with (eps * Rabs (x1 * x2 - y1 * y2) + eps*Rabs (y1 * y2) + Rabs (x1 * x2 - y1 * y2)).
apply Rplus_le_compat_r.
rewrite <- Rmult_plus_distr_l.
apply Rmult_le_compat_l.
apply epsPos.
apply Rabs_triang.
right; ring.
apply Rplus_le_compat_l.
rewrite Rmult_assoc.
apply Rmult_le_compat_l.
apply Fourier_util.Rle_zero_pos_plus1, epsPos.
rewrite 2!Rmult_plus_distr_r.
replace (x1*x2-y1*y2) with ((x1-y1)*y2+(x2-y2)*y1+(x1-y1)*(x2-y2)) by ring.
apply Rle_trans with (1:=Rabs_triang _ _).
apply Rplus_le_compat.
apply Rle_trans with (1:=Rabs_triang _ _).
apply Rplus_le_compat.
rewrite 2!Rabs_mult.
rewrite <- Rmult_assoc.
apply Rmult_le_compat_r.
apply Rabs_pos.
exact H1.
rewrite 2!Rabs_mult.
rewrite (Rmult_comm _ (Rabs y2)).
rewrite <- Rmult_assoc.
apply Rmult_le_compat_r.
apply Rabs_pos.
exact H2.
apply Rle_trans with ((e1*Rabs y1)*(e2*Rabs y2)).
rewrite Rabs_mult.
apply Rmult_le_compat; try assumption; apply Rabs_pos.
rewrite Rabs_mult; right; ring.
Qed.
Lemma err_mult_: forall x1 y1 e1 x2 y2 e2, format x1 -> format x2 -> err x1 y1 e1 -> err x2 y2 e2
-> (bpow (emin+prec-1) < Rabs (round_flt (x1*x2)))
-> err (round_flt (x1*x2)) (y1*y2) (eps+(1+eps)*(e1+e2+e1*e2)).
Proof.
intros.
case (err_mult_aux x1 y1 e1 x2 y2 e2); try assumption.
easy.
intros Y; contradict Y.
now apply Rlt_not_le.
Qed.
Lemma err_sqrt_aux: forall x, bpow (Zceil ((IZR (emin+prec-1))/2)) < round_flt (sqrt x) -> bpow (emin+prec-1) < x.
Proof with auto with typeclass_instances.
intros x H.
case (Rle_or_lt x (bpow (emin + prec - 1))); intros H1;[idtac|easy].
contradict H.
apply Rle_not_lt.
apply round_le_generic...
apply generic_format_bpow.
unfold FLT_exp.
rewrite Z.max_l.
lia.
cut (emin + prec-1 <= Zceil (IZR (emin + prec - 1) / 2))%Z. lia.
rewrite <- (Zceil_IZR (emin+prec-1)) at 1.
apply Zceil_le.
apply Rmult_le_reg_l with 2%R.
now apply IZR_lt.
apply Rplus_le_reg_l with (-IZR (emin+prec-1)).
apply Rle_trans with (IZR (emin + prec - 1));[right; ring|idtac].
apply Rle_trans with 0%R;[idtac|right;simpl;field].
apply IZR_le.
lia.
apply Rle_trans with (sqrt (bpow (emin + prec - 1))).
now apply sqrt_le_1_alt.
apply Rle_trans with (sqrt (bpow (2*Zceil (IZR (emin + prec - 1) / 2)))).
apply sqrt_le_1_alt.
apply bpow_le.
apply le_IZR.
rewrite mult_IZR.
apply Rle_trans with ( 2 * ((IZR (emin + prec - 1) / 2))).
right; field.
apply Rmult_le_compat_l.
now apply IZR_le.
apply Zceil_ub.
right; apply sqrt_lem_1.
apply bpow_ge_0.
apply bpow_ge_0.
rewrite <- bpow_plus.
apply f_equal.
ring.
Qed.
Lemma err_sqrt_: forall x y e, 0 <= y -> e <= /2 -> err x y e ->
bpow (emin+prec-1) < round_flt (sqrt x)
-> err (round_flt (sqrt x)) (sqrt y) (eps+(1+eps)*(/2*e+/4*e*e)).
Proof with auto with typeclass_instances.
intros x y e Hy He H Y.
replace (round_flt (sqrt x) - sqrt y) with ((round_flt (sqrt x) - sqrt x)+(sqrt x - sqrt y)) by ring.
apply Rle_trans with (1:=Rabs_triang _ _).
apply Rle_trans with (eps*Rabs (sqrt x)+Rabs (sqrt x - sqrt y)).
apply Rplus_le_compat_r.
replace eps with (/ 2 * Raux.bpow beta (- prec + 1)).
apply relative_error_N_FLT...
rewrite Rabs_right.
2: apply Rle_ge, sqrt_pos.
case (Rle_or_lt (bpow (emin + prec - 1)) (sqrt x)); intros Y1.
assumption.
contradict Y; apply Rle_not_lt.
apply round_le_generic...
apply generic_format_bpow.
unfold FLT_exp.
replace (emin + prec - 1 + 1 - prec)%Z with emin by ring.
rewrite Z.max_l; lia.
now left.
apply f_equal; apply f_equal; ring.
rewrite Rmult_plus_distr_r.
apply Rle_trans with (eps*Rabs (sqrt y) + (1+eps)*Rabs (sqrt x - sqrt y)).
pattern (sqrt x) at 1; replace (sqrt x) with ((sqrt x-sqrt y)+sqrt y) by ring.
apply Rle_trans with (eps * Rabs (sqrt x - sqrt y) + eps*Rabs (sqrt y) + Rabs (sqrt x - sqrt y)).
apply Rplus_le_compat_r.
rewrite <- Rmult_plus_distr_l.
apply Rmult_le_compat_l.
apply epsPos.
apply Rabs_triang.
right; ring.
apply Rplus_le_compat_l.
rewrite Rmult_assoc.
apply Rmult_le_compat_l.
apply Fourier_util.Rle_zero_pos_plus1, epsPos.
case (Req_dec y 0); intros Hy'.
(* . *)
replace x with 0.
rewrite Hy', sqrt_0, Rminus_0_r, Rabs_R0, Rmult_0_r.
now apply Req_le.
case (Req_dec x 0).
easy.
intros H1.
absurd (Rabs x = 0).
now apply Rabs_no_R0.
assert (Rabs x <= 0).
replace x with (x-y).
replace 0 with (e*Rabs y).
exact H.
rewrite Hy', Rabs_R0; ring.
rewrite Hy'; ring.
case H0; try easy.
intros K; contradict K.
apply Rle_not_lt, Rabs_pos.
(* . *)
replace (sqrt x - sqrt y) with (sqrt y*(sqrt (1+(x-y)/y) - 1)).
rewrite Rabs_mult, Rmult_comm.
apply Rmult_le_compat_r.
apply Rabs_pos.
assert ((Rabs ((x - y) / y) <= e)).
apply Rmult_le_reg_r with (Rabs y).
case (Rabs_pos y); [easy|intros H'; contradict H'; apply sym_not_eq; now apply Rabs_no_R0].
apply Rle_trans with (2:=H).
rewrite <- Rabs_mult; right.
apply f_equal; now field.
apply Rle_trans with (Rabs ((x - y) / y) /2 + Rabs ((x - y) / y)*Rabs ((x - y) / y)/4).
apply sqrt_var_maj_2.
apply Rle_trans with (2:=He); assumption.
apply Rplus_le_compat.
unfold Rdiv; rewrite Rmult_comm.
apply Rmult_le_compat_l; try assumption.
auto with real.
unfold Rdiv; rewrite Rmult_comm.
rewrite Rmult_assoc.
apply Rmult_le_compat_l.
lra.
apply Rmult_le_compat; try apply Rabs_pos; try apply H0.
rewrite Rmult_minus_distr_l, Rmult_1_r.
apply (f_equal (fun v => v - _)).
rewrite <- sqrt_mult.
apply f_equal.
now field.
exact Hy.
apply Rmult_le_reg_l with y.
case Hy; [easy|intros H'; contradict H'; now apply sym_not_eq].
apply Rplus_le_reg_l with (-(x-y)).
apply Rle_trans with (-(x-y)).
right; ring.
apply Rle_trans with (1:=RRle_abs _).
rewrite Rabs_Ropp.
apply Rle_trans with (1:=H).
apply Rle_trans with (1*Rabs y).
apply Rmult_le_compat_r.
apply Rabs_pos.
lra.
rewrite Rabs_pos_eq by easy.
right; now field.
Qed.
Lemma subnormal_aux: forall x y, format x -> (Rabs x <= 1 -> Rabs y <= 1) -> bpow (emin+prec-1) < Rabs (round_flt (x*y))
-> bpow (emin+prec-1) < Rabs x.
Proof with auto with typeclass_instances.
intros x y Fx H1 H2.
case (Rle_or_lt (Rabs x) (bpow (emin + prec - 1))); intros H3;[idtac|assumption].
contradict H2.
apply Rle_not_lt.
apply Rle_trans with (2:=H3).
assert (H4: format (round_flt (x * y))).
apply generic_format_round...
rewrite <- round_NE_abs...
apply round_le_generic...
now apply generic_format_abs.
rewrite <- (Rmult_1_r (Rabs x)), Rabs_mult.
apply Rmult_le_compat_l.
apply Rabs_pos.
apply H1.
apply Rle_trans with (1:=H3).
apply Rle_trans with (bpow 0).
apply bpow_le.
lia.
now apply Rle_refl.
Qed.
Lemma subnormal_aux_aux: (round_flt (t1 * t2)) <= 1 -> t3 <= 1.
Proof with auto with typeclass_instances.
intros Y.
case (Rle_or_lt t1 1); intros Y1.
apply Rle_trans with (2:=Y1).
apply Rle_trans with (1:=t3Let2).
apply t2Let1.
case (Rle_or_lt t2 1); intros Y2.
apply Rle_trans with (2:=Y2).
apply t3Let2.
contradict Y.
apply Rlt_not_le.
apply Rlt_le_trans with (1:=Y1).
apply round_ge_generic...
apply generic_format_round...
rewrite <- (Rmult_1_r t1) at 1.
apply Rmult_le_compat_l.
apply t1pos_.
now left.
Qed.
Lemma subnormal_1: bpow (emin+prec-1) < M -> bpow (emin+prec-1) < Rabs (round_flt (round_flt (t1*t2)*t3)).
Proof with auto with typeclass_instances.
intros H.
apply subnormal_aux with t4.
apply generic_format_round...
rewrite 2!Rabs_right.
intros Y.
case (Rle_or_lt (round_flt (t1 * t2)) 1); intros Y1.
apply subnormal_aux_aux in Y1.
apply Rle_trans with (2:=Y1).
apply t4Let3.
case (Rle_or_lt t3 1); intros Y2.
apply Rle_trans with (2:=Y2).
apply t4Let3.
contradict Y.
apply Rlt_not_le.
apply Rlt_le_trans with (1:=Y1).
apply round_ge_generic...
apply generic_format_round...
rewrite <- (Rmult_1_r (round_flt (t1 * t2))) at 1.
apply Rmult_le_compat_l.
apply FLT_pos_is_pos.
apply Rmult_le_pos.
apply t1pos_.
apply t2pos_.
now left.
apply Rle_ge, t4pos_.
apply Rle_ge, FLT_pos_is_pos.
apply Rmult_le_pos.
apply FLT_pos_is_pos.
apply Rmult_le_pos.
apply t1pos_.
apply t2pos_.
apply t3pos_.
rewrite Rabs_right.
exact H.
apply Rle_ge, Mpos_.
Qed.
Lemma subnormal_2: bpow (emin+prec-1) < M -> bpow (emin+prec-1) < Rabs (round_flt (t1*t2)).
Proof with auto with typeclass_instances.
intros H.
apply subnormal_aux with t3.
apply generic_format_round...
rewrite 2!Rabs_right.
apply subnormal_aux_aux.
apply Rle_ge, t3pos_.
apply Rle_ge, FLT_pos_is_pos.
apply Rmult_le_pos.
apply t1pos_.
apply t2pos_.
apply subnormal_1.
exact H.
Qed.
Lemma M_correct_: bpow (emin+prec-1) < M -> err M E_M (15/2*eps+26*eps*eps).
Proof with auto with typeclass_instances.
intros Y1.
eapply err_aux.
apply err_mult_.
apply generic_format_round...
apply generic_format_round...
apply err_mult_.
apply generic_format_round...
apply generic_format_round...
apply err_mult_.
apply generic_format_round...
apply generic_format_round...
(* t1 *)
apply err_add_; try assumption.
apply err_0.
apply err_add_no_err; try assumption.
apply Rle_trans with (1:=cPos); apply Rle_trans with (1:=cLeb); exact bLea.
apply Rplus_le_le_0_compat.
apply Rle_trans with (1:=cPos); exact cLeb.
exact cPos.
apply generic_format_round...
(* t2 *)
apply err_add2_; try assumption.
apply err_add_no_err; try assumption.
now apply generic_format_opp...
apply generic_format_round...
apply epsPos.
split.
now apply Rle_0_minus.
apply Rle_trans with (2:=bLea).
apply Rle_trans with (b-0); auto with real.
apply Rplus_le_compat_l; auto with real.
now apply subnormal_2.
(* t3 *)
unfold t3; rewrite ab_exact_.
apply err_add_no_err; try assumption.
rewrite <- ab_exact_.
apply generic_format_round...
now apply subnormal_1.
(* t4 *)
rewrite t4_exact_.
apply err_0.
rewrite Rabs_right.
exact Y1.
apply Rle_ge, Mpos_.
(* *)
generalize eps prec_suff (epsPos beta prec) ; clear.
intros r H0 H1.
rewrite Rmax_right by easy.
apply Rcomplements.Rminus_le_0.
apply Rmult_le_reg_r with 2.
now apply IZR_lt.
rewrite Rmult_0_l.
replace (_ * 2) with ((-2 * r ^ 6 - 15 * r ^ 5 - 50 * r ^ 4 - 97 * r ^ 3 - 120 * r ^ 2 - 97 * r + 2) * (r*r)) by field.
apply Rmult_le_pos.
interval.
now apply Rmult_le_pos.
Qed.
(* argh, would be simpler in radix 2 Delta = /4 * round_flx (sqrt M) *)
Lemma Delta_correct_ :
/4 * bpow (Zceil ((IZR (emin+prec-1))/2)) < Delta ->
(Rabs (Delta - E_Delta) <= (23/4*eps+38*eps*eps) * E_Delta).
Proof with auto with typeclass_instances.
intros Y.
assert (bpow (Zceil (IZR (emin + prec - 1) / 2)) < round_flt (sqrt M)).
case (Rle_or_lt (round_flt (sqrt M)) (bpow (Zceil (IZR (emin + prec - 1) / 2)))); intros Y1.
2: easy.
contradict Y; apply Rle_not_lt.
apply round_le_generic...
apply fourth_format_gen.
apply le_IZR.
apply Rle_trans with (2:=Zceil_ub _).
apply Rmult_le_reg_r with 2%R.
now apply IZR_lt.
unfold Rdiv; rewrite Rmult_assoc.
rewrite Rinv_l.
rewrite Rmult_1_r.
rewrite <- mult_IZR.
apply IZR_le.
lia.
apply Rgt_not_eq.
now apply IZR_lt.
replace (round_flt (/ 4)) with (/4).
apply Rmult_le_compat_l.
lra.
exact Y1.
apply sym_eq, round_generic...
apply fourth_format.
pattern E_Delta at 2; replace E_Delta with (Rabs E_Delta).
eapply err_aux.
apply err_mult_.
apply generic_format_round...
apply generic_format_round...
replace (round_flt (/ 4)) with (/4).
apply err_0.
apply sym_eq, round_generic...
apply fourth_format.
apply err_sqrt_.
repeat apply Rmult_le_pos.
apply Rplus_le_le_0_compat.
apply Rle_trans with (1:=cPos); apply Rle_trans with (1:=cLeb); assumption.
apply Rplus_le_le_0_compat.
apply Rle_trans with (1:=cPos); assumption.
assumption.
apply Rplus_le_le_0_compat.
apply Rle_trans with (1:=cPos); apply Rle_trans with (1:=cLeb); assumption.
now apply Rle_0_minus.
apply Rplus_le_le_0_compat.
assumption.
now apply Rle_0_minus.
apply Rplus_le_reg_l with a; ring_simplify.
rewrite Rplus_comm; assumption.
instantiate (1:=(15/2*eps+26*eps*eps)).
generalize prec_suff (epsPos beta prec).
generalize eps; clear.
intros r H1 H2; interval_intro (/100) upper.
assert (J := conj H2 (Rle_trans _ _ _ H1 H)).
interval.
apply M_correct_.
apply err_sqrt_aux.
exact H.
apply Rle_lt_trans with (2:=H).
apply bpow_le.
rewrite <- (Zceil_IZR (emin+prec-1)) at 1.
apply Zceil_le.
apply Rmult_le_reg_l with 2%R.
now apply IZR_lt.
apply Rplus_le_reg_l with (-IZR (emin+prec-1)).
apply Rle_trans with (IZR (emin + prec - 1));[right; ring|idtac].
apply Rle_trans with 0%R;[idtac|right;simpl;field].
apply IZR_le.
lia.
rewrite Rabs_right.
apply Rle_lt_trans with (2:=Y).
apply Rmult_le_reg_l with 4.
now apply IZR_lt.
rewrite <- Rmult_assoc, Rinv_r.
rewrite Rmult_1_l.
apply Rle_trans with (bpow (2+(emin + prec - 1))).
rewrite bpow_plus.
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Rle_trans with (IZR (radix_val beta)*IZR (radix_val beta)).
apply (Rmult_le_compat 2 _ 2); try apply IZR_le; try easy; clear.
apply Zle_bool_imp_le; now destruct beta.
apply Zle_bool_imp_le; now destruct beta.
right; simpl.
unfold Zpower_pos; simpl.
now rewrite mult_IZR, Zmult_1_r.
apply bpow_le.
apply le_IZR.
apply Rle_trans with (2:=Zceil_ub _).
apply Rmult_le_reg_r with 2%R.
now apply IZR_lt.
unfold Rdiv; rewrite Rmult_assoc.
rewrite Rinv_l.
rewrite Rmult_1_r.
rewrite <- mult_IZR.
apply IZR_le.
lia.
now apply Rgt_not_eq, IZR_lt.
now apply Rgt_not_eq, IZR_lt.
apply Rle_ge; apply FLT_pos_is_pos.
apply Rmult_le_pos.
apply FLT_pos_is_pos.
left; apply Rinv_0_lt_compat, Rmult_lt_0_compat; apply Rle_lt_0_plus_1; apply Rlt_le; exact Rlt_0_1.
apply FLT_pos_is_pos.
apply sqrt_pos.
(* *)
generalize eps prec_suff (epsPos beta prec) ; clear.
intros r H0 H1.
apply Rcomplements.Rminus_le_0.
apply Rmult_le_reg_r with 16.
now apply IZR_lt.
rewrite Rmult_0_l.
replace (_ * 16) with ((-2704 * r ^ 4 -6968 * r ^ 3 - 6257 * r ^ 2 - 2486 * r + 39) * (r*r)) by field.
apply Rmult_le_pos.
interval.
now apply Rmult_le_pos.
apply Rabs_pos_eq.
apply Rmult_le_pos.
lra.
apply sqrt_pos.
Qed.
Lemma Delta_correct_2_ : radix_val beta=2%Z ->
bpow (Zceil ((IZR (emin+prec-1))/2) -2) < Delta ->
(Rabs (Delta - E_Delta) <= (19/4*eps+33*eps*eps) * E_Delta).
Proof with auto with typeclass_instances.
intros Hradix Y.
assert (bpow (Zceil (IZR (emin + prec - 1) / 2)) < round_flt (sqrt M)).
case (Rle_or_lt (round_flt (sqrt M)) (bpow (Zceil (IZR (emin + prec - 1) / 2)))); intros Y1.
2: easy.
contradict Y; apply Rle_not_lt.
apply round_le_generic...
apply generic_format_bpow.
unfold FLT_exp.
rewrite Z.max_l.
lia.
cut (emin+prec+1 <= Zceil (IZR (emin + prec - 1) / 2))%Z. lia.
apply le_IZR.
apply Rle_trans with (2:=Zceil_ub _).
apply Rmult_le_reg_r with 2%R.
now apply IZR_lt.
unfold Rdiv; rewrite Rmult_assoc.
rewrite Rinv_l.
rewrite Rmult_1_r.
rewrite <- mult_IZR.
apply IZR_le.
lia.
now apply Rgt_not_eq, IZR_lt.
replace (round_flt (/ 4)) with (/4).
unfold Zminus; rewrite Rmult_comm, bpow_plus.
replace (bpow (-(2))) with (/4).
apply Rmult_le_compat_r.
lra.
exact Y1.
simpl; apply f_equal; unfold Zpower_pos; simpl.
rewrite Hradix; simpl; ring.
apply sym_eq, round_generic...
apply fourth_format.
replace Delta with (/ 4 * round_flt (sqrt M)).
pattern E_Delta at 2; replace E_Delta with (Rabs E_Delta).
apply err_mult_exact.
apply Rmult_lt_0_compat; auto with real.
eapply err_aux.
apply err_sqrt_.
repeat apply Rmult_le_pos.
apply Rplus_le_le_0_compat.
apply Rle_trans with (1:=cPos); apply Rle_trans with (1:=cLeb); assumption.
apply Rplus_le_le_0_compat.
apply Rle_trans with (1:=cPos); assumption.
assumption.
apply Rplus_le_le_0_compat.
apply Rle_trans with (1:=cPos); apply Rle_trans with (1:=cLeb); assumption.
now apply Rle_0_minus.
apply Rplus_le_le_0_compat.
assumption.
now apply Rle_0_minus.
apply Rplus_le_reg_l with a; ring_simplify.
rewrite Rplus_comm; assumption.
2: apply M_correct_.
generalize prec_suff (epsPos beta prec).
generalize eps; clear.
intros r H1 H2; interval_intro (/100) upper.
assert (J := conj H2 (Rle_trans _ _ _ H1 H)).
interval.
apply err_sqrt_aux.
exact H.
apply Rle_lt_trans with (2:=H).
apply bpow_le.
rewrite <- (Zceil_IZR (emin+prec-1)) at 1.
apply Zceil_le.
apply Rmult_le_reg_l with 2%R.
now apply IZR_lt.
apply Rplus_le_reg_l with (-IZR (emin+prec-1)).
apply Rle_trans with (IZR (emin + prec - 1));[right; ring|idtac].
apply Rle_trans with 0%R;[idtac|right;simpl;field].
apply IZR_le.
lia.
(* *)
generalize eps prec_suff (epsPos beta prec) ; clear.
intros r H0 H1.
apply Rcomplements.Rminus_le_0.
apply Rmult_le_reg_r with 16.
now apply IZR_lt.
rewrite Rmult_0_l.
replace (_ * 16) with ((-2704 * r ^ 3 - 4264 * r ^ 2 - 1993 * r + 35) * (r*r)) by field.
apply Rmult_le_pos.
interval.
now apply Rmult_le_pos.
apply Rabs_pos_eq.
apply Rmult_le_pos.
lra.
apply sqrt_pos.
apply trans_eq with (round_flt (/ 4 * round_flt (sqrt M))).
apply sym_eq, round_generic...
apply generic_format_FLT.
assert (format (round_flt (sqrt M))).
apply generic_format_round...
apply FLT_format_generic in H0...
destruct H0 as [f Hf1 Hf2 Hf3].
exists (Float beta (Fnum f) (Fexp f -2)).
rewrite Hf1; unfold F2R; simpl.
unfold Zminus;rewrite bpow_plus.
replace (bpow (-(2))) with (/4).
ring.
simpl; unfold Zpower_pos;simpl.
rewrite Hradix; apply f_equal.
simpl; ring.
now simpl.
simpl.
assert (emin+1+prec < prec+Fexp f)%Z;[idtac|lia].
apply lt_bpow with beta.
apply Rle_lt_trans with (bpow (Zceil (IZR (emin + prec - 1) / 2))).
apply bpow_le.
apply le_IZR.
apply Rle_trans with (2:=Zceil_ub _).
apply Rmult_le_reg_r with 2%R.
now apply IZR_lt.
unfold Rdiv; rewrite Rmult_assoc.
rewrite Rinv_l.
rewrite Rmult_1_r.
rewrite <- mult_IZR.
apply IZR_le.
lia.
now apply Rgt_not_eq, IZR_lt.
apply Rlt_le_trans with (1:=H).
rewrite Hf1.
apply Rle_trans with (1:=RRle_abs _).
rewrite <- F2R_abs.
unfold F2R; rewrite bpow_plus.
replace (Fexp (Fabs f)) with (Fexp f).
apply Rmult_le_compat_r.
apply bpow_ge_0.
rewrite <- IZR_Zpower.
left; apply IZR_lt.
replace (Fnum (Fabs f)) with (Z.abs (Fnum f)).
assumption.
destruct f; unfold Fabs; reflexivity.
lia.
destruct f; unfold Fabs; reflexivity.
apply f_equal.
apply f_equal2.
apply sym_eq, round_generic...
apply fourth_format.
reflexivity.
Qed.
End Delta_FLT.
Section Hyp_ok_.
Lemma fourth_format_gen_2: forall prec emin e:Z, (0 < prec)%Z -> (emin +2 <= e)%Z
-> generic_format radix2 (FLT_exp emin prec) (/4*bpow radix2 e).
Proof with auto with typeclass_instances.
intros prec emin e Hprec H.
change (/4)%R with (bpow radix2 (-2)).
rewrite <- bpow_plus.
apply generic_format_bpow...
unfold FLT_exp.
lia.
Qed.
Lemma fourth_format_gen_10: forall prec emin e:Z, (2 <= prec)%Z -> (emin +2 <= e)%Z
-> generic_format radix10 (FLT_exp emin prec) (/4*bpow radix10 e).
Proof with auto with typeclass_instances.
intros prec emin e Hprec H.
apply generic_format_FLT.
exists (Float radix10 25 (e-2)).
unfold F2R; simpl.
unfold Zminus; rewrite bpow_plus.
change (bpow radix10 (-(2))) with (/100)%R.
field.
simpl.
apply Z.lt_le_trans with (10^2)%Z.
unfold Zpower, Zpower_pos; simpl; lia.
change 10%Z with (radix_val radix10).
now apply Zpower_le.
simpl.
lia.
Qed.
End Hyp_ok_.
|