File: API.txt

package info (click to toggle)
flot 0.6+debian-2
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 504 kB
  • ctags: 147
  • sloc: makefile: 14
file content (1024 lines) | stat: -rw-r--r-- 38,003 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
Flot Reference
--------------

Consider a call to the plot function:

   var plot = $.plot(placeholder, data, options)

The placeholder is a jQuery object or DOM element or jQuery expression
that the plot will be put into. This placeholder needs to have its
width and height set as explained in the README (go read that now if
you haven't, it's short). The plot will modify some properties of the
placeholder so it's recommended you simply pass in a div that you
don't use for anything else. Make sure you check any fancy styling
you apply to the div, e.g. background images have been reported to be a
problem on IE 7.

The format of the data is documented below, as is the available
options. The "plot" object returned has some methods you can call.
These are documented separately below.

Note that in general Flot gives no guarantees if you change any of the
objects you pass in to the plot function or get out of it since
they're not necessarily deep-copied.


Data Format
-----------

The data is an array of data series:

  [ series1, series2, ... ]

A series can either be raw data or an object with properties. The raw
data format is an array of points:

  [ [x1, y1], [x2, y2], ... ]

E.g.

  [ [1, 3], [2, 14.01], [3.5, 3.14] ]

Note that to simplify the internal logic in Flot both the x and y
values must be numbers (even if specifying time series, see below for
how to do this). This is a common problem because you might retrieve
data from the database and serialize them directly to JSON without
noticing the wrong type. If you're getting mysterious errors, double
check that you're inputting numbers and not strings.

If a null is specified as a point or if one of the coordinates is null
or couldn't be converted to a number, the point is ignored when
drawing. As a special case, a null value for lines is interpreted as a
line segment end, i.e. the points before and after the null value are
not connected.

Lines and points take two coordinates. For bars, you can specify a
third coordinate which is the bottom of the bar (defaults to 0).

The format of a single series object is as follows:

  {
    color: color or number
    data: rawdata
    label: string
    lines: specific lines options
    bars: specific bars options
    points: specific points options
    xaxis: 1 or 2
    yaxis: 1 or 2
    clickable: boolean
    hoverable: boolean
    shadowSize: number
  }

You don't have to specify any of them except the data, the rest are
options that will get default values. Typically you'd only specify
label and data, like this:

  {
    label: "y = 3",
    data: [[0, 3], [10, 3]]
  }

The label is used for the legend, if you don't specify one, the series
will not show up in the legend.

If you don't specify color, the series will get a color from the
auto-generated colors. The color is either a CSS color specification
(like "rgb(255, 100, 123)") or an integer that specifies which of
auto-generated colors to select, e.g. 0 will get color no. 0, etc.

The latter is mostly useful if you let the user add and remove series,
in which case you can hard-code the color index to prevent the colors
from jumping around between the series.

The "xaxis" and "yaxis" options specify which axis to use, specify 2
to get the secondary axis (x axis at top or y axis to the right).
E.g., you can use this to make a dual axis plot by specifying
{ yaxis: 2 } for one data series.

"clickable" and "hoverable" can be set to false to disable
interactivity for specific series if interactivity is turned on in
the plot, see below.

The rest of the options are all documented below as they are the same
as the default options passed in via the options parameter in the plot
commmand. When you specify them for a specific data series, they will
override the default options for the plot for that data series.

Here's a complete example of a simple data specification:

  [ { label: "Foo", data: [ [10, 1], [17, -14], [30, 5] ] },
    { label: "Bar", data: [ [11, 13], [19, 11], [30, -7] ] } ]


Plot Options
------------

All options are completely optional. They are documented individually
below, to change them you just specify them in an object, e.g.

  var options = {
    series: {
      lines: { show: true },
      points: { show: true }
    }
  };

  $.plot(placeholder, data, options);


Customizing the legend
======================

  legend: {
    show: boolean
    labelFormatter: null or (fn: string, series object -> string)
    labelBoxBorderColor: color
    noColumns: number
    position: "ne" or "nw" or "se" or "sw"
    margin: number of pixels or [x margin, y margin]
    backgroundColor: null or color
    backgroundOpacity: number between 0 and 1
    container: null or jQuery object/DOM element/jQuery expression
  }

The legend is generated as a table with the data series labels and
small label boxes with the color of the series. If you want to format
the labels in some way, e.g. make them to links, you can pass in a
function for "labelFormatter". Here's an example that makes them
clickable:

  labelFormatter: function(label, series) {
    // series is the series object for the label
    return '<a href="#' + label + '">' + label + '</a>';
  }

"noColumns" is the number of columns to divide the legend table into.
"position" specifies the overall placement of the legend within the
plot (top-right, top-left, etc.) and margin the distance to the plot
edge (this can be either a number or an array of two numbers like [x,
y]). "backgroundColor" and "backgroundOpacity" specifies the
background. The default is a partly transparent auto-detected
background.

If you want the legend to appear somewhere else in the DOM, you can
specify "container" as a jQuery object/expression to put the legend
table into. The "position" and "margin" etc. options will then be
ignored. Note that Flot will overwrite the contents of the container.


Customizing the axes
====================

  xaxis, yaxis, x2axis, y2axis: {
    mode: null or "time"
    min: null or number
    max: null or number
    autoscaleMargin: null or number
    
    labelWidth: null or number
    labelHeight: null or number

    transform: null or fn: number -> number
    inverseTransform: null or fn: number -> number
    
    ticks: null or number or ticks array or (fn: range -> ticks array)
    tickSize: number or array
    minTickSize: number or array
    tickFormatter: (fn: number, object -> string) or string
    tickDecimals: null or number
  }

All axes have the same kind of options. The "mode" option
determines how the data is interpreted, the default of null means as
decimal numbers. Use "time" for time series data, see the next section.

The options "min"/"max" are the precise minimum/maximum value on the
scale. If you don't specify either of them, a value will automatically
be chosen based on the minimum/maximum data values.

The "autoscaleMargin" is a bit esoteric: it's the fraction of margin
that the scaling algorithm will add to avoid that the outermost points
ends up on the grid border. Note that this margin is only applied
when a min or max value is not explicitly set. If a margin is
specified, the plot will furthermore extend the axis end-point to the
nearest whole tick. The default value is "null" for the x axis and
0.02 for the y axis which seems appropriate for most cases.

"labelWidth" and "labelHeight" specifies a fixed size of the tick
labels in pixels. They're useful in case you need to align several
plots.

"transform" and "inverseTransform" are callbacks you can put in to
change the way the data is drawn. You can design a function to
compress or expand certain parts of the axis non-linearly, e.g.
suppress weekends or compress far away points with a logarithm or some
other means. When Flot draws the plot, each value is first put through
the transform function. Here's an example, the x axis can be turned
into a natural logarithm axis with the following code:

  xaxis: {
    transform: function (v) { return Math.log(v); },
    inverseTransform: function (v) { return Math.exp(v); }
  }

Note that for finding extrema, Flot assumes that the transform
function does not reorder values (monotonicity is assumed).

The inverseTransform is simply the inverse of the transform function
(so v == inverseTransform(transform(v)) for all relevant v). It is
required for converting from canvas coordinates to data coordinates,
e.g. for a mouse interaction where a certain pixel is clicked. If you
don't use any interactive features of Flot, you may not need it.


The rest of the options deal with the ticks.

If you don't specify any ticks, a tick generator algorithm will make
some for you. The algorithm has two passes. It first estimates how
many ticks would be reasonable and uses this number to compute a nice
round tick interval size. Then it generates the ticks.

You can specify how many ticks the algorithm aims for by setting
"ticks" to a number. The algorithm always tries to generate reasonably
round tick values so even if you ask for three ticks, you might get
five if that fits better with the rounding. If you don't want any
ticks at all, set "ticks" to 0 or an empty array.

Another option is to skip the rounding part and directly set the tick
interval size with "tickSize". If you set it to 2, you'll get ticks at
2, 4, 6, etc. Alternatively, you can specify that you just don't want
ticks at a size less than a specific tick size with "minTickSize".
Note that for time series, the format is an array like [2, "month"],
see the next section.

If you want to completely override the tick algorithm, you can specify
an array for "ticks", either like this:

  ticks: [0, 1.2, 2.4]

Or like this where the labels are also customized:

  ticks: [[0, "zero"], [1.2, "one mark"], [2.4, "two marks"]]

You can mix the two if you like.
  
For extra flexibility you can specify a function as the "ticks"
parameter. The function will be called with an object with the axis
min and max and should return a ticks array. Here's a simplistic tick
generator that spits out intervals of pi, suitable for use on the x
axis for trigonometric functions:

  function piTickGenerator(axis) {
    var res = [], i = Math.floor(axis.min / Math.PI);
    do {
      var v = i * Math.PI;
      res.push([v, i + "\u03c0"]);
      ++i;
    } while (v < axis.max);
    
    return res;
  }


You can control how the ticks look like with "tickDecimals", the
number of decimals to display (default is auto-detected).

Alternatively, for ultimate control over how ticks look like you can
provide a function to "tickFormatter". The function is passed two
parameters, the tick value and an "axis" object with information, and
should return a string. The default formatter looks like this:

  function formatter(val, axis) {
    return val.toFixed(axis.tickDecimals);
  }

The axis object has "min" and "max" with the range of the axis,
"tickDecimals" with the number of decimals to round the value to and
"tickSize" with the size of the interval between ticks as calculated
by the automatic axis scaling algorithm (or specified by you). Here's
an example of a custom formatter:

  function suffixFormatter(val, axis) {
    if (val > 1000000)
      return (val / 1000000).toFixed(axis.tickDecimals) + " MB";
    else if (val > 1000)
      return (val / 1000).toFixed(axis.tickDecimals) + " kB";
    else
      return val.toFixed(axis.tickDecimals) + " B";
  }

Time series data
================

Time series are a bit more difficult than scalar data because
calendars don't follow a simple base 10 system. For many cases, Flot
abstracts most of this away, but it can still be a bit difficult to
get the data into Flot. So we'll first discuss the data format.

The time series support in Flot is based on Javascript timestamps,
i.e. everywhere a time value is expected or handed over, a Javascript
timestamp number is used. This is a number, not a Date object. A
Javascript timestamp is the number of milliseconds since January 1,
1970 00:00:00 UTC. This is almost the same as Unix timestamps, except it's
in milliseconds, so remember to multiply by 1000!

You can see a timestamp like this

  alert((new Date()).getTime())

Normally you want the timestamps to be displayed according to a
certain time zone, usually the time zone in which the data has been
produced. However, Flot always displays timestamps according to UTC.
It has to as the only alternative with core Javascript is to interpret
the timestamps according to the time zone that the visitor is in,
which means that the ticks will shift unpredictably with the time zone
and daylight savings of each visitor.

So given that there's no good support for custom time zones in
Javascript, you'll have to take care of this server-side.

The easiest way to think about it is to pretend that the data
production time zone is UTC, even if it isn't. So if you have a
datapoint at 2002-02-20 08:00, you can generate a timestamp for eight
o'clock UTC even if it really happened eight o'clock UTC+0200.

In PHP you can get an appropriate timestamp with
'strtotime("2002-02-20 UTC") * 1000', in Python with
'calendar.timegm(datetime_object.timetuple()) * 1000', in .NET with
something like:

  public static int GetJavascriptTimestamp(System.DateTime input)
  {
    System.TimeSpan span = new System.TimeSpan(System.DateTime.Parse("1/1/1970").Ticks);
    System.DateTime time = input.Subtract(span);
    return (long)(time.Ticks / 10000);
  }

Javascript also has some support for parsing date strings, so it is
possible to generate the timestamps manually client-side.

If you've already got the real UTC timestamp, it's too late to use the
pretend trick described above. But you can fix up the timestamps by
adding the time zone offset, e.g. for UTC+0200 you would add 2 hours
to the UTC timestamp you got. Then it'll look right on the plot. Most
programming environments have some means of getting the timezone
offset for a specific date (note that you need to get the offset for
each individual timestamp to account for daylight savings).

Once you've gotten the timestamps into the data and specified "time"
as the axis mode, Flot will automatically generate relevant ticks and
format them. As always, you can tweak the ticks via the "ticks" option
- just remember that the values should be timestamps (numbers), not
Date objects.

Tick generation and formatting can also be controlled separately
through the following axis options:

  minTickSize: array
  timeformat: null or format string
  monthNames: null or array of size 12 of strings
  twelveHourClock: boolean

Here "timeformat" is a format string to use. You might use it like
this:

  xaxis: {
    mode: "time"
    timeformat: "%y/%m/%d"
  }
  
This will result in tick labels like "2000/12/24". The following
specifiers are supported

  %h: hours
  %H: hours (left-padded with a zero)
  %M: minutes (left-padded with a zero)
  %S: seconds (left-padded with a zero)
  %d: day of month (1-31)
  %m: month (1-12)
  %y: year (four digits)
  %b: month name (customizable)
  %p: am/pm, additionally switches %h/%H to 12 hour instead of 24
  %P: AM/PM (uppercase version of %p)

You can customize the month names with the "monthNames" option. For
instance, for Danish you might specify:

  monthNames: ["jan", "feb", "mar", "apr", "maj", "jun", "jul", "aug", "sep", "okt", "nov", "dec"]

If you set "twelveHourClock" to true, the autogenerated timestamps
will use 12 hour AM/PM timestamps instead of 24 hour.
  
The format string and month names are used by a very simple built-in
format function that takes a date object, a format string (and
optionally an array of month names) and returns the formatted string.
If needed, you can access it as $.plot.formatDate(date, formatstring,
monthNames) or even replace it with another more advanced function
from a date library if you're feeling adventurous.

If everything else fails, you can control the formatting by specifying
a custom tick formatter function as usual. Here's a simple example
which will format December 24 as 24/12:

  tickFormatter: function (val, axis) {
    var d = new Date(val);
    return d.getUTCDate() + "/" + (d.getUTCMonth() + 1);
  }

Note that for the time mode "tickSize" and "minTickSize" are a bit
special in that they are arrays on the form "[value, unit]" where unit
is one of "second", "minute", "hour", "day", "month" and "year". So
you can specify

  minTickSize: [1, "month"]

to get a tick interval size of at least 1 month and correspondingly,
if axis.tickSize is [2, "day"] in the tick formatter, the ticks have
been produced with two days in-between.



Customizing the data series
===========================

  series: {
    lines, points, bars: {
      show: boolean
      lineWidth: number
      fill: boolean or number
      fillColor: null or color/gradient
    }

    points: {
      radius: number
    }

    bars: {
      barWidth: number
      align: "left" or "center"
      horizontal: boolean
    }

    lines: {
      steps: boolean
    }

    shadowSize: number
  }
  
  colors: [ color1, color2, ... ]

The options inside "series: {}" are copied to each of the series. So
you can specify that all series should have bars by putting it in the
global options, or override it for individual series by specifying
bars in a particular the series object in the array of data.
  
The most important options are "lines", "points" and "bars" that
specify whether and how lines, points and bars should be shown for
each data series. In case you don't specify anything at all, Flot will
default to showing lines (you can turn this off with
lines: { show: false}). You can specify the various types
independently of each other, and Flot will happily draw each of them
in turn (this is probably only useful for lines and points), e.g.

  var options = {
    series: {
      lines: { show: true, fill: true, fillColor: "rgba(255, 255, 255, 0.8)" },
      points: { show: true, fill: false }
    }
  };

"lineWidth" is the thickness of the line or outline in pixels. You can
set it to 0 to prevent a line or outline from being drawn; this will
also hide the shadow.

"fill" is whether the shape should be filled. For lines, this produces
area graphs. You can use "fillColor" to specify the color of the fill.
If "fillColor" evaluates to false (default for everything except
points which are filled with white), the fill color is auto-set to the
color of the data series. You can adjust the opacity of the fill by
setting fill to a number between 0 (fully transparent) and 1 (fully
opaque).

For bars, fillColor can be a gradient, see the gradient documentation
below. "barWidth" is the width of the bars in units of the x axis (or
the y axis if "horizontal" is true), contrary to most other measures
that are specified in pixels. For instance, for time series the unit
is milliseconds so 24 * 60 * 60 * 1000 produces bars with the width of
a day. "align" specifies whether a bar should be left-aligned
(default) or centered on top of the value it represents. When
"horizontal" is on, the bars are drawn horizontally, i.e. from the y
axis instead of the x axis; note that the bar end points are still
defined in the same way so you'll probably want to swap the
coordinates if you've been plotting vertical bars first.

For lines, "steps" specifies whether two adjacent data points are
connected with a straight (possibly diagonal) line or with first a
horizontal and then a vertical line. Note that this transforms the
data by adding extra points.

"shadowSize" is the default size of shadows in pixels. Set it to 0 to
remove shadows.

The "colors" array specifies a default color theme to get colors for
the data series from. You can specify as many colors as you like, like
this:

  colors: ["#d18b2c", "#dba255", "#919733"]

If there are more data series than colors, Flot will try to generate
extra colors by lightening and darkening colors in the theme.


Customizing the grid
====================

  grid: {
    show: boolean
    aboveData: boolean
    color: color
    backgroundColor: color/gradient or null
    tickColor: color
    labelMargin: number
    markings: array of markings or (fn: axes -> array of markings)
    borderWidth: number
    borderColor: color or null
    clickable: boolean
    hoverable: boolean
    autoHighlight: boolean
    mouseActiveRadius: number
  }

The grid is the thing with the axes and a number of ticks. "color" is
the color of the grid itself whereas "backgroundColor" specifies the
background color inside the grid area. The default value of null means
that the background is transparent. You can also set a gradient, see
the gradient documentation below.

You can turn off the whole grid including tick labels by setting
"show" to false. "aboveData" determines whether the grid is drawn on
above the data or below (below is default).

"tickColor" is the color of the ticks and "labelMargin" is the spacing
between tick labels and the grid. Note that you can style the tick
labels with CSS, e.g. to change the color. They have class "tickLabel".
"borderWidth" is the width of the border around the plot. Set it to 0
to disable the border. You can also set "borderColor" if you want the
border to have a different color than the grid lines.

"markings" is used to draw simple lines and rectangular areas in the
background of the plot. You can either specify an array of ranges on
the form { xaxis: { from, to }, yaxis: { from, to } } (secondary axis
coordinates with x2axis/y2axis) or with a function that returns such
an array given the axes for the plot in an object as the first
parameter.

You can set the color of markings by specifying "color" in the ranges
object. Here's an example array:

  markings: [ { xaxis: { from: 0, to: 2 }, yaxis: { from: 10, to: 10 }, color: "#bb0000" }, ... ]

If you leave out one of the values, that value is assumed to go to the
border of the plot. So for example if you only specify { xaxis: {
from: 0, to: 2 } } it means an area that extends from the top to the
bottom of the plot in the x range 0-2.

A line is drawn if from and to are the same, e.g.

  markings: [ { yaxis: { from: 1, to: 1 } }, ... ]

would draw a line parallel to the x axis at y = 1. You can control the
line width with "lineWidth" in the range object.

An example function might look like this:

  markings: function (axes) {
    var markings = [];
    for (var x = Math.floor(axes.xaxis.min); x < axes.xaxis.max; x += 2)
      markings.push({ xaxis: { from: x, to: x + 1 } });
    return markings;
  }


If you set "clickable" to true, the plot will listen for click events
on the plot area and fire a "plotclick" event on the placeholder with
a position and a nearby data item object as parameters. The coordinates
are available both in the unit of the axes (not in pixels) and in
global screen coordinates.

Likewise, if you set "hoverable" to true, the plot will listen for
mouse move events on the plot area and fire a "plothover" event with
the same parameters as the "plotclick" event. If "autoHighlight" is
true (the default), nearby data items are highlighted automatically.
If needed, you can disable highlighting and control it yourself with
the highlight/unhighlight plot methods described elsewhere.

You can use "plotclick" and "plothover" events like this:

    $.plot($("#placeholder"), [ d ], { grid: { clickable: true } });

    $("#placeholder").bind("plotclick", function (event, pos, item) {
        alert("You clicked at " + pos.x + ", " + pos.y);
        // secondary axis coordinates if present are in pos.x2, pos.y2,
        // if you need global screen coordinates, they are pos.pageX, pos.pageY

        if (item) {
          highlight(item.series, item.datapoint);
          alert("You clicked a point!");
        }
    });

The item object in this example is either null or a nearby object on the form:

  item: {
      datapoint: the point, e.g. [0, 2]
      dataIndex: the index of the point in the data array
      series: the series object
      seriesIndex: the index of the series
      pageX, pageY: the global screen coordinates of the point
  }

For instance, if you have specified the data like this 

    $.plot($("#placeholder"), [ { label: "Foo", data: [[0, 10], [7, 3]] } ], ...);

and the mouse is near the point (7, 3), "datapoint" is [7, 3],
"dataIndex" will be 1, "series" is a normalized series object with
among other things the "Foo" label in series.label and the color in
series.color, and "seriesIndex" is 0. Note that plugins and options
that transform the data can shift the indexes from what you specified
in the original data array.

If you use the above events to update some other information and want
to clear out that info in case the mouse goes away, you'll probably
also need to listen to "mouseout" events on the placeholder div.

"mouseActiveRadius" specifies how far the mouse can be from an item
and still activate it. If there are two or more points within this
radius, Flot chooses the closest item. For bars, the top-most bar
(from the latest specified data series) is chosen.

If you want to disable interactivity for a specific data series, you
can set "hoverable" and "clickable" to false in the options for that
series, like this { data: [...], label: "Foo", clickable: false }.


Specifying gradients
====================

A gradient is specified like this:

  { colors: [ color1, color2, ... ] }

For instance, you might specify a background on the grid going from
black to gray like this:

  grid: {
    backgroundColor: { colors: ["#000", "#999"] }
  }

For the series you can specify the gradient as an object that
specifies the scaling of the brightness and the opacity of the series
color, e.g.

  { colors: [{ opacity: 0.8 }, { brightness: 0.6, opacity: 0.8 } ] }

where the first color simply has its alpha scaled, whereas the second
is also darkened. For instance, for bars the following makes the bars
gradually disappear, without outline:

  bars: {
      show: true,
      lineWidth: 0,
      fill: true,
      fillColor: { colors: [ { opacity: 0.8 }, { opacity: 0.1 } ] }
  }
  
Flot currently only supports vertical gradients drawn from top to
bottom because that's what works with IE.


Plot Methods
------------

The Plot object returned from the plot function has some methods you
can call:

  - highlight(series, datapoint)

    Highlight a specific datapoint in the data series. You can either
    specify the actual objects, e.g. if you got them from a
    "plotclick" event, or you can specify the indices, e.g.
    highlight(1, 3) to highlight the fourth point in the second series
    (remember, zero-based indexing).

  
  - unhighlight(series, datapoint) or unhighlight()

    Remove the highlighting of the point, same parameters as
    highlight.

    If you call unhighlight with no parameters, e.g. as
    plot.unhighlight(), all current highlights are removed.


  - setData(data)

    You can use this to reset the data used. Note that axis scaling,
    ticks, legend etc. will not be recomputed (use setupGrid() to do
    that). You'll probably want to call draw() afterwards.

    You can use this function to speed up redrawing a small plot if
    you know that the axes won't change. Put in the new data with
    setData(newdata), call draw(), and you're good to go. Note that
    for large datasets, almost all the time is consumed in draw()
    plotting the data so in this case don't bother.

    
  - setupGrid()

    Recalculate and set axis scaling, ticks, legend etc.

    Note that because of the drawing model of the canvas, this
    function will immediately redraw (actually reinsert in the DOM)
    the labels and the legend, but not the actual tick lines because
    they're drawn on the canvas. You need to call draw() to get the
    canvas redrawn.
    
  - draw()

    Redraws the plot canvas.

  - triggerRedrawOverlay()

    Schedules an update of an overlay canvas used for drawing
    interactive things like a selection and point highlights. This
    is mostly useful for writing plugins. The redraw doesn't happen
    immediately, instead a timer is set to catch multiple successive
    redraws (e.g. from a mousemove).

  - width()/height()

    Gets the width and height of the plotting area inside the grid.
    This is smaller than the canvas or placeholder dimensions as some
    extra space is needed (e.g. for labels).

  - offset()

    Returns the offset of the plotting area inside the grid relative
    to the document, useful for instance for calculating mouse
    positions (event.pageX/Y minus this offset is the pixel position
    inside the plot).

  - pointOffset({ x: xpos, y: ypos })

    Returns the calculated offset of the data point at (x, y) in data
    space within the placeholder div. If you are working with dual axes, you
    can specify the x and y axis references, e.g. 

      o = pointOffset({ x: xpos, y: ypos, xaxis: 2, yaxis: 2 })
      // o.left and o.top now contains the offset within the div
  

There are also some members that let you peek inside the internal
workings of Flot which is useful in some cases. Note that if you change
something in the objects returned, you're changing the objects used by
Flot to keep track of its state, so be careful.

  - getData()

    Returns an array of the data series currently used in normalized
    form with missing settings filled in according to the global
    options. So for instance to find out what color Flot has assigned
    to the data series, you could do this:

      var series = plot.getData();
      for (var i = 0; i < series.length; ++i)
        alert(series[i].color);

    A notable other interesting field besides color is datapoints
    which has a field "points" with the normalized data points in a
    flat array (the field "pointsize" is the increment in the flat
    array to get to the next point so for a dataset consisting only of
    (x,y) pairs it would be 2).

  - getAxes()

    Gets an object with the axes settings as { xaxis, yaxis, x2axis,
    y2axis }.

    Various things are stuffed inside an axis object, e.g. you could
    use getAxes().xaxis.ticks to find out what the ticks are for the
    xaxis. Two other useful attributes are p2c and c2p, functions for
    transforming from data point space to the canvas plot space and
    back. Both returns values that are offset with the plot offset.
 
  - getPlaceholder()

    Returns placeholder that the plot was put into. This can be useful
    for plugins for adding DOM elements or firing events.

  - getCanvas()

    Returns the canvas used for drawing in case you need to hack on it
    yourself. You'll probably need to get the plot offset too.
  
  - getPlotOffset()

    Gets the offset that the grid has within the canvas as an object
    with distances from the canvas edges as "left", "right", "top",
    "bottom". I.e., if you draw a circle on the canvas with the center
    placed at (left, top), its center will be at the top-most, left
    corner of the grid.

  - getOptions()

    Gets the options for the plot, in a normalized format with default
    values filled in.
    

Hooks
=====

In addition to the public methods, the Plot object also has some hooks
that can be used to modify the plotting process. You can install a
callback function at various points in the process, the function then
gets access to the internal data structures in Flot.

Here's an overview of the phases Flot goes through:

  1. Plugin initialization, parsing options
  
  2. Constructing the canvases used for drawing

  3. Set data: parsing data specification, calculating colors,
     copying raw data points into internal format,
     normalizing them, finding max/min for axis auto-scaling

  4. Grid setup: calculating axis spacing, ticks, inserting tick
     labels, the legend

  5. Draw: drawing the grid, drawing each of the series in turn

  6. Setting up event handling for interactive features

  7. Responding to events, if any

Each hook is simply a function which is put in the appropriate array.
You can add them through the "hooks" option, and they are also available
after the plot is constructed as the "hooks" attribute on the returned
plot object, e.g.

  // define a simple draw hook
  function hellohook(plot, canvascontext) { alert("hello!"); };

  // pass it in, in an array since we might want to specify several
  var plot = $.plot(placeholder, data, { hooks: { draw: [hellohook] } });

  // we can now find it again in plot.hooks.draw[0] unless a plugin
  // has added other hooks

The available hooks are described below. All hook callbacks get the
plot object as first parameter. You can find some examples of defined
hooks in the plugins bundled with Flot.

 - processOptions  [phase 1]

   function(plot, options)
   
   Called after Flot has parsed and merged options. Useful in the
   instance where customizations beyond simple merging of default
   values is needed. A plugin might use it to detect that it has been
   enabled and then turn on or off other options.

 
 - processRawData  [phase 3]

   function(plot, series, data, datapoints)
 
   Called before Flot copies and normalizes the raw data for the given
   series. If the function fills in datapoints.points with normalized
   points and sets datapoints.pointsize to the size of the points,
   Flot will skip the copying/normalization step for this series.
   
   In any case, you might be interested in setting datapoints.format,
   an array of objects for specifying how a point is normalized and
   how it interferes with axis scaling.

   The default format array for points is something along the lines of:

     [
       { x: true, number: true, required: true },
       { y: true, number: true, required: true }
     ]

   The first object means that for the first coordinate it should be
   taken into account when scaling the x axis, that it must be a
   number, and that it is required - so if it is null or cannot be
   converted to a number, the whole point will be zeroed out with
   nulls. Beyond these you can also specify "defaultValue", a value to
   use if the coordinate is null. This is for instance handy for bars
   where one can omit the third coordinate (the bottom of the bar)
   which then defaults to 0.


 - processDatapoints  [phase 3]

   function(plot, series, datapoints)
 
   Called after normalization of the given series but before finding
   min/max of the data points. This hook is useful for implementing data
   transformations. "datapoints" contains the normalized data points in
   a flat array as datapoints.points with the size of a single point
   given in datapoints.pointsize. Here's a simple transform that
   multiplies all y coordinates by 2:

     function multiply(plot, series, datapoints) {
         var points = datapoints.points, ps = datapoints.pointsize;
         for (var i = 0; i < points.length; i += ps)
             points[i + 1] *= 2;
     }

   Note that you must leave datapoints in a good condition as Flot
   doesn't check it or do any normalization on it afterwards.


 - draw  [phase 5]

   function(plot, canvascontext)
 
   Hook for drawing on the canvas. Called after the grid is drawn
   (unless it's disabled) and the series have been plotted (in case
   any points, lines or bars have been turned on). For examples of how
   to draw things, look at the source code.
   
 
 - bindEvents  [phase 6]

   function(plot, eventHolder)

   Called after Flot has setup its event handlers. Should set any
   necessary event handlers on eventHolder, a jQuery object with the
   canvas, e.g.

     function (plot, eventHolder) {
         eventHolder.mousedown(function (e) {
             alert("You pressed the mouse at " + e.pageX + " " + e.pageY);
         });
     }

   Interesting events include click, mousemove, mouseup/down. You can
   use all jQuery events. Usually, the event handlers will update the
   state by drawing something (add a drawOverlay hook and call
   triggerRedrawOverlay) or firing an externally visible event for
   user code. See the crosshair plugin for an example.
     
   Currently, eventHolder actually contains both the static canvas
   used for the plot itself and the overlay canvas used for
   interactive features because some versions of IE get the stacking
   order wrong. The hook only gets one event, though (either for the
   overlay or for the static canvas).


 - drawOverlay  [phase 7]

   function (plot, canvascontext)

   The drawOverlay hook is used for interactive things that need a
   canvas to draw on. The model currently used by Flot works the way
   that an extra overlay canvas is positioned on top of the static
   canvas. This overlay is cleared and then completely redrawn
   whenever something interesting happens. This hook is called when
   the overlay canvas is to be redrawn.

   "canvascontext" is the 2D context of the overlay canvas. You can
   use this to draw things. You'll most likely need some of the
   metrics computed by Flot, e.g. plot.width()/plot.height(). See the
   crosshair plugin for an example.


   
Plugins
-------

Plugins extend the functionality of Flot. To use a plugin, simply
include its Javascript file after Flot in the HTML page.

If you're worried about download size/latency, you can concatenate all
the plugins you use, and Flot itself for that matter, into one big file
(make sure you get the order right), then optionally run it through a
Javascript minifier such as YUI Compressor.

Here's a brief explanation of how the plugin plumbings work:

Each plugin registers itself in the global array $.plot.plugins. When
you make a new plot object with $.plot, Flot goes through this array
calling the "init" function of each plugin and merging default options
from its "option" attribute. The init function gets a reference to the
plot object created and uses this to register hooks and add new public
methods if needed.

See the PLUGINS.txt file for details on how to write a plugin. As the
above description hints, it's actually pretty easy.