File: intro.md

package info (click to toggle)
flox 0.10.8-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 3,668 kB
  • sloc: python: 8,555; makefile: 172
file content (186 lines) | stat: -rw-r--r-- 3,814 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
---
jupytext:
  text_representation:
    format_name: myst
kernelspec:
  display_name: Python 3
  name: python3
---

```{eval-rst}
.. currentmodule:: flox
```

# 10 minutes to flox

## GroupBy single variable

```{code-cell}
import numpy as np
import xarray as xr

from flox.xarray import xarray_reduce

labels = xr.DataArray(
    [1, 2, 3, 1, 2, 3, 0, 0, 0],
    dims="x",
    name="label",
)
labels
```

### With numpy

```{code-cell}
da = xr.DataArray(
    np.ones((9,)), dims="x", name="array"
)
```

Apply the reduction using {py:func}`flox.xarray.xarray_reduce` specifying the reduction operation in `func`

```{code-cell}
xarray_reduce(da, labels, func="sum")
```

### With dask

Let's first chunk `da` and `labels`

```{code-cell}
da_chunked = da.chunk(x=2)
labels_chunked = labels.chunk(x=3)
```

Grouping a dask array by a numpy array is unchanged

```{code-cell}
xarray_reduce(da_chunked, labels, func="sum")
```

When grouping **by** a dask array, we need to specify the "expected group labels" on the output so we can construct the result DataArray.
Without the `expected_groups` kwarg, an error is raised

```{code-cell}
---
tags: [raises-exception]
---
xarray_reduce(da_chunked, labels_chunked, func="sum")
```

Now we specify `expected_groups`:

```{code-cell}
dask_result = xarray_reduce(
    da_chunked, labels_chunked, func="sum", expected_groups=[0, 1, 2, 3],
)
dask_result
```

Note that any group labels not present in `expected_groups` will be ignored.
You can also provide `expected_groups` for the pure numpy GroupBy.

```{code-cell}
numpy_result = xarray_reduce(
    da, labels, func="sum", expected_groups=[0, 1, 2, 3],
)
numpy_result
```

The two are identical:

```{code-cell}
numpy_result.identical(dask_result)
```

## Binning by a single variable

For binning, specify the bin edges in `expected_groups` using {py:class}`pandas.IntervalIndex`:

```{code-cell}
import pandas as pd

xarray_reduce(
    da,
    labels,
    func="sum",
    expected_groups=pd.IntervalIndex.from_breaks([0.5, 1.5, 2.5, 6]),
)
```

Similarly for dask inputs

```{code-cell}
xarray_reduce(
    da_chunked,
    labels_chunked,
    func="sum",
    expected_groups=pd.IntervalIndex.from_breaks([0.5, 1.5, 2.5, 6]),
)
```

For more control over the binning (which edge is closed), pass the appropriate kwarg to {py:class}`pandas.IntervalIndex`:

```{code-cell}
xarray_reduce(
    da_chunked,
    labels_chunked,
    func="sum",
    expected_groups=pd.IntervalIndex.from_breaks([0.5, 1.5, 2.5, 6], closed="left"),
)
```

## Grouping by multiple variables

```{code-cell}
arr = np.ones((4, 12))
labels1 = np.array(["a", "a", "c", "c", "c", "b", "b", "c", "c", "b", "b", "f"])
labels2 = np.array([1, 2, 2, 1])

da = xr.DataArray(
    arr, dims=("x", "y"), coords={"labels2": ("x", labels2), "labels1": ("y", labels1)}
)
da
```

To group by multiple variables simply pass them as `*args`:

```{code-cell}
xarray_reduce(da, "labels1", "labels2", func="sum")
```

## Histogramming (Binning by multiple variables)

An unweighted histogram is simply a groupby multiple variables with count.

```{code-cell} python
arr = np.ones((4, 12))
labels1 = np.array(np.linspace(0, 10, 12))
labels2 = np.array([1, 2, 2, 1])

da = xr.DataArray(
    arr, dims=("x", "y"), coords={"labels2": ("x", labels2), "labels1": ("y", labels1)}
)
da
```

Specify bins in `expected_groups`

```{code-cell} python
xarray_reduce(
    da,
    "labels1",
    "labels2",
    func="count",
    expected_groups=(
        pd.IntervalIndex.from_breaks([-0.5, 4.5, 6.5, 8.9]),  # labels1
        pd.IntervalIndex.from_breaks([0.5, 1.5, 1.9]),  # labels2
    ),
)
```

## Resampling

Use the xarray interface i.e. `da.resample(time="M").mean()`.

Optionally pass [`method="blockwise"`](method-blockwise): `da.resample(time="M").mean(method="blockwise")`