File: test_properties.py

package info (click to toggle)
flox 0.11.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 3,884 kB
  • sloc: python: 8,581; makefile: 154
file content (367 lines) | stat: -rw-r--r-- 12,153 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import warnings
from collections.abc import Callable
from typing import Any

import pandas as pd
import pytest

pytest.importorskip("hypothesis")
pytest.importorskip("dask")
pytest.importorskip("sparse")
pytest.importorskip("cftime")

import dask
import hypothesis.extra.numpy as npst
import hypothesis.strategies as st
import numpy as np
from hypothesis import assume, given, note, settings

import flox
from flox.core import groupby_reduce
from flox.lib import _is_sparse_supported_reduction, sparse_array_type
from flox.scan import groupby_scan
from flox.xrutils import (
    _contains_cftime_datetimes,
    _to_pytimedelta,
    datetime_to_numeric,
    is_duck_dask_array,
    isnull,
    notnull,
)

from . import BLOCKWISE_FUNCS, assert_equal, to_numpy
from .strategies import (
    all_arrays,
    by_arrays,
    chunked_arrays,
    func_st,
    numeric_dtypes,
    numeric_like_arrays,
    sparse_arrays,
)
from .strategies import chunks as chunks_strategy

dask.config.set(scheduler="sync")


def ffill(array, axis, dtype=None):
    return flox.aggregate_flox.ffill(np.zeros(array.shape[-1], dtype=int), array, axis=axis)


def bfill(array, axis, dtype=None):
    return flox.aggregate_flox.ffill(
        np.zeros(array.shape[-1], dtype=int),
        array[::-1],
        axis=axis,
    )[::-1]


NUMPY_SCAN_FUNCS: dict[str, Callable] = {
    "cumsum": np.cumsum,
    "nancumsum": np.nancumsum,
    "ffill": ffill,
    "bfill": bfill,
}


def not_overflowing_array(array: np.ndarray[Any, Any]) -> bool:
    if array.dtype.kind in "Mm":
        array = array.view(np.int64)
    array = array.ravel()
    array = array[notnull(array)]
    if array.size == 0:
        return True

    if array.dtype.kind == "f":
        info = np.finfo(array.dtype)
        limit = 2 ** (info.nmant + 1)
    elif array.dtype.kind in ["i", "u"]:
        info = np.iinfo(array.dtype)  # type: ignore[assignment]
    else:
        return True

    with warnings.catch_warnings():
        warnings.simplefilter("ignore", RuntimeWarning)
        result = bool(np.all((array < info.max / array.size) & (array > info.min / array.size)))
        if array.dtype.kind == "f":
            result = result and bool(np.all(np.abs(array) < limit / array.size))

    # note(f"returning {result}, {array.min()} vs {info.min}, {array.max()} vs {info.max}")
    return result


@given(
    data=st.data(),
    array=st.one_of(all_arrays, chunked_arrays()),
    func=func_st,
)
@settings(deadline=None)
def test_groupby_reduce(data, array, func: str) -> None:
    # overflow behaviour differs between bincount and sum (for example)
    assume(not_overflowing_array(array))
    # TODO: fix var for complex numbers upstream
    assume(not (("quantile" in func or "var" in func or "std" in func) and array.dtype.kind == "c"))
    assume(not ("quantile" in func and array.dtype.kind == "b"))
    # arg* with nans in array are weird
    assume("arg" not in func and not np.any(isnull(array).ravel()))

    # TODO: funny bugs with overflows here
    is_cftime = _contains_cftime_datetimes(array)
    assume(
        not (
            is_cftime
            and func in ["prod", "nanprod", "var", "nanvar", "std", "nanstd", "quantile", "nanquantile"]
        )
    )

    axis = -1
    by = data.draw(
        by_arrays(
            elements={
                "alphabet": st.just("a"),
                "min_value": 1,
                "max_value": 1,
                "min_size": 1,
                "max_size": 1,
            },
            shape=st.just((array.shape[-1],)),
        )
    )
    if func in BLOCKWISE_FUNCS and isinstance(array, dask.array.Array):
        array = array.rechunk({axis: -1})
    assert len(np.unique(by)) == 1
    kwargs = {"q": 0.8} if "quantile" in func else {}
    flox_kwargs: dict[str, Any] = {}
    with np.errstate(invalid="ignore", divide="ignore"):
        actual, *_ = groupby_reduce(
            array,
            by,
            func=func,
            axis=axis,
            engine="numpy",
            **flox_kwargs,
            finalize_kwargs=kwargs,
        )

        # numpy-groupies always does the calculation in float64
        if (
            ("var" in func or "std" in func or "sum" in func or "mean" in func or "quantile" in func)
            and array.dtype.kind == "f"
            and array.dtype.itemsize != 8
        ):
            # bincount always accumulates in float64,
            # casting to float64 handles std more like npg does.
            # Setting dtype=float64 works fine for sum, mean.
            cast_to = array.dtype
            array = array.astype(np.float64)
            note(f"casting array to float64, cast_to={cast_to!r}")
        else:
            cast_to = None

        if array.dtype.kind in "Mm":
            array = array.view(np.int64)
            cast_to = array.dtype
        elif is_cftime:
            offset = array.min()
            array = datetime_to_numeric(array, offset, datetime_unit="us")
        note(("kwargs:", kwargs, "cast_to:", cast_to))
        expected = getattr(np, func)(array, axis=axis, keepdims=True, **kwargs)
        if cast_to is not None:
            note(("casting to:", cast_to))
            expected = expected.astype(cast_to)
            actual = actual.astype(cast_to)
        if is_cftime:
            expected = _to_pytimedelta(expected, unit="us") + offset

    note(("expected: ", expected, "actual: ", actual))
    tolerance = {"atol": 1e-15}
    assert_equal(expected, actual, tolerance)


@settings(deadline=None)
@given(
    data=st.data(),
    array=chunked_arrays(arrays=numeric_like_arrays | sparse_arrays()) | sparse_arrays(),
    func=func_st,
)
def test_groupby_reduce_numpy_vs_other(data, array, func: str) -> None:
    if (
        isinstance(array, sparse_array_type)
        or (is_duck_dask_array(array) and isinstance(array._meta, sparse_array_type))
        and not _is_sparse_supported_reduction(func)
    ):
        assume(False)
    numpy_array = to_numpy(array)
    # overflow behaviour differs between bincount and sum (for example)
    assume(not_overflowing_array(numpy_array))
    # TODO: fix var for complex numbers upstream
    assume(not (("quantile" in func or "var" in func or "std" in func) and array.dtype.kind == "c"))
    # # arg* with nans in array are weird
    assume("arg" not in func and not np.any(isnull(numpy_array.ravel())))
    if hasattr(array, "rechunk") and func in ["nanmedian", "nanquantile", "median", "quantile"]:
        array = array.rechunk({-1: -1})

    axis = -1
    by = data.draw(by_arrays(shape=st.just((array.shape[-1],))))
    kwargs = {"q": 0.8} if "quantile" in func else {}
    flox_kwargs: dict[str, Any] = {}

    kwargs = dict(
        func=func,
        axis=axis,
        engine="numpy",
        **flox_kwargs,
        finalize_kwargs=kwargs,
    )
    result_other, *_ = groupby_reduce(array, by, **kwargs)
    result_numpy, *_ = groupby_reduce(numpy_array, by, **kwargs)
    assert isinstance(result_other, type(array))
    assert_equal(result_other, result_numpy)


@given(
    data=st.data(),
    array=chunked_arrays(arrays=numeric_like_arrays),
    func=st.sampled_from(tuple(NUMPY_SCAN_FUNCS)),
)
def test_scans_against_numpy(data, array: dask.array.Array, func: str) -> None:
    if "cum" in func:
        assume(not_overflowing_array(np.asarray(array)))

    by = data.draw(by_arrays(shape=st.just((array.shape[-1],))))
    axis = array.ndim - 1

    # Too many float32 edge-cases!
    if "cum" in func and array.dtype.kind == "f" and array.dtype.itemsize == 4:
        assume(False)
    numpy_array = array.compute()
    if numpy_array.dtype.kind not in "Mm":
        assume((np.abs(numpy_array) < 2**53).all())

    if numpy_array.dtype.kind in "Mm":
        dtype = numpy_array.dtype
        asnumeric = numpy_array.view(np.int64)
    else:
        asnumeric = numpy_array
        dtype = NUMPY_SCAN_FUNCS[func](asnumeric[..., [0]], axis=axis).dtype
    expected = np.empty_like(numpy_array, dtype=dtype)
    group_idx, uniques = pd.factorize(by)
    for i in range(len(uniques)):
        mask = group_idx == i
        if not mask.any():
            note((by, group_idx, uniques))
            raise ValueError
        expected[..., mask] = NUMPY_SCAN_FUNCS[func](asnumeric[..., mask], axis=axis)

    if dtype:
        expected = expected.astype(dtype)
    note((numpy_array, group_idx, array.chunks))

    tolerance = {"rtol": 1e-13, "atol": 1e-15}
    actual = groupby_scan(numpy_array, by, func=func, axis=-1, dtype=dtype)
    assert_equal(actual, expected, tolerance)

    actual = groupby_scan(array, by, func=func, axis=-1, dtype=dtype)
    assert_equal(actual, expected, tolerance)


@given(data=st.data(), array=chunked_arrays())
def test_ffill_bfill_reverse(data, array: dask.array.Array) -> None:
    by = data.draw(by_arrays(shape=st.just((array.shape[-1],))))

    def reverse(arr):
        return arr[..., ::-1]

    forward = groupby_scan(array, by, func="ffill")
    as_numpy = groupby_scan(array.compute(), by, func="ffill")
    assert_equal(forward, as_numpy)

    backward = groupby_scan(array, by, func="bfill")
    as_numpy = groupby_scan(array.compute(), by, func="bfill")
    assert_equal(backward, as_numpy)

    backward_reversed = reverse(groupby_scan(reverse(array), reverse(by), func="bfill"))
    assert_equal(forward, backward_reversed)

    forward_reversed = reverse(groupby_scan(reverse(array), reverse(by), func="ffill"))
    assert_equal(forward_reversed, backward)


@given(
    data=st.data(),
    array=chunked_arrays(),
    func=st.sampled_from(["first", "last", "nanfirst", "nanlast"]),
)
def test_first_last(data, array: dask.array.Array, func: str) -> None:
    by = data.draw(by_arrays(shape=st.just((array.shape[-1],))))

    INVERSES = {
        "first": "last",
        "last": "first",
        "nanfirst": "nanlast",
        "nanlast": "nanfirst",
    }
    MATES = {
        "first": "nanfirst",
        "last": "nanlast",
        "nanfirst": "first",
        "nanlast": "last",
    }
    inverse = INVERSES[func]
    mate = MATES[func]

    if func in ["first", "last"]:
        array = array.rechunk((*array.chunks[:-1], -1))

    for arr in [array, array.compute()]:
        forward, *fg = groupby_reduce(arr, by, func=func, engine="flox")
        reverse, *rg = groupby_reduce(arr[..., ::-1], by[..., ::-1], func=inverse, engine="flox")

        assert forward.dtype == reverse.dtype
        assert forward.dtype == arr.dtype

        assert_equal(fg, rg)
        assert_equal(forward, reverse)

    if arr.dtype.kind == "f" and not isnull(array.compute()).any():
        if mate in ["first", "last"]:
            array = array.rechunk((*array.chunks[:-1], -1))

        first, *_ = groupby_reduce(array, by, func=func, engine="flox")
        second, *_ = groupby_reduce(array, by, func=mate, engine="flox")
        assert_equal(first, second)


@given(data=st.data(), func=st.sampled_from(["nanfirst", "nanlast"]))
def test_first_last_useless(data, func):
    shape = data.draw(npst.array_shapes())
    by = data.draw(by_arrays(shape=st.just(shape[slice(-1, None)])))
    chunks = data.draw(chunks_strategy(shape=shape))
    array = np.zeros(shape, dtype=np.int8)
    if chunks is not None:
        array = dask.array.from_array(array, chunks=chunks)
    actual, groups = groupby_reduce(array, by, axis=-1, func=func, engine="numpy")
    expected = np.zeros(shape[:-1] + (len(groups),), dtype=array.dtype)
    assert_equal(actual, expected)


@given(
    func=st.sampled_from(["sum", "prod", "nansum", "nanprod"]),
    engine=st.sampled_from(["numpy", "flox"]),
    array_dtype=st.none() | numeric_dtypes,
    dtype=st.none() | numeric_dtypes,
)
def test_agg_dtype_specified(func, array_dtype, dtype, engine):
    # regression test for GH388
    counts = np.array([0, 2, 1, 0, 1], dtype=array_dtype)
    group = np.array([1, 1, 1, 2, 2])
    actual, _ = groupby_reduce(
        counts,
        group,
        expected_groups=(np.array([1, 2]),),
        func=func,
        dtype=dtype,
        engine=engine,
    )
    expected = getattr(np, func)(counts, keepdims=True, dtype=dtype)
    assert actual.dtype == expected.dtype