File: test_modulator.cpp

package info (click to toggle)
fluidsynth 2.5.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 7,268 kB
  • sloc: ansic: 45,303; cpp: 4,897; xml: 864; sh: 200; makefile: 74
file content (256 lines) | stat: -rw-r--r-- 9,746 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

#include "test.h"
#include "fluidsynth.h"
#include "fluid_mod.h"

#include <array>
#include <cmath>

// Range shall be set to 7bit resolution, i.e. 128
constexpr fluid_real_t Range = 128.0;

// These formulas match the logic used in the convex/concave table generation code.
static const fluid_real_t UnipolarConvexMid = (1.0 - ((-200.0 * 2 / FLUID_PEAK_ATTENUATION) * std::log(64 / (FLUID_VEL_CB_SIZE - 1.0)) / static_cast<double>(FLUID_M_LN10)));
static const fluid_real_t UnipolarConcaveMid = ((-200.0 * 2 / FLUID_PEAK_ATTENUATION) * std::log(((FLUID_VEL_CB_SIZE - 1) - 64) / (FLUID_VEL_CB_SIZE - 1.0)) / static_cast<double>(FLUID_M_LN10));
constexpr fluid_real_t BipolarConvexMid = 0.0f;
constexpr fluid_real_t BipolarConcaveMid = 0.0f;

constexpr std::array<int, 4> Mapping = {FLUID_MOD_SWITCH, FLUID_MOD_LINEAR, FLUID_MOD_CONCAVE, FLUID_MOD_CONVEX};
constexpr std::array<int, 2> Polar = {FLUID_MOD_UNIPOLAR, FLUID_MOD_BIPOLAR};
constexpr std::array<int, 2> Direction = {FLUID_MOD_POSITIVE, FLUID_MOD_NEGATIVE};

static fluid_real_t get_mod_max(const fluid_mod_t *mod)
{
    // The maximum mapped position is always 127/128, see section 9.5.3 of SF2.4
    // For switches however, we keep sticking to fluidsynth historical limits of +-1.0
    return ((mod->flags1 & FLUID_MOD_MAP_MASK) == FLUID_MOD_SWITCH) ? 1.0f : (Range-1)/Range;
}

static void test_mod_source_mapping(fluid_mod_t *mod)
{
    fluid_real_t v1, tmp;

    for(unsigned int i = 0; i < Mapping.size(); i++)
    {
        // Test unipolar positive mappings
        {
            static const fluid_real_t mid = 64.0/128.0;
            fluid_mod_set_source1(mod,
                            FLUID_MOD_VELOCITY,
                            FLUID_MOD_GC
                            | Mapping[i]
                            | FLUID_MOD_UNIPOLAR
                            | FLUID_MOD_POSITIVE
                            );

            v1 = fluid_mod_transform_source_value(mod, 0, Range, true);
            TEST_ASSERT(v1 == 0.0f);

            // skip midpoint validation for concave and convex since we're not checking correctness of concave and convex implementations here
            if(Mapping[i] != FLUID_MOD_CONCAVE && Mapping[i] != FLUID_MOD_CONVEX)
            {
                v1 = fluid_mod_transform_source_value(mod, 64, Range, true);
                tmp = ((mod->flags1 & FLUID_MOD_MAP_MASK) == FLUID_MOD_SWITCH) ? 1.0f : mid;
                TEST_ASSERT(v1 == tmp);
            }
            else if(Mapping[i] == FLUID_MOD_CONVEX)
            {
                v1 = fluid_mod_transform_source_value(mod, 64, Range, true);
                TEST_ASSERT(std::fabs(v1 - UnipolarConvexMid) <= 1e-6);
            }
            else if(Mapping[i] == FLUID_MOD_CONCAVE)
            {
                v1 = fluid_mod_transform_source_value(mod, 64, Range, true);
                TEST_ASSERT(std::fabs(v1 - UnipolarConcaveMid) <= 1e-6);
            }

            v1 = fluid_mod_transform_source_value(mod, 127, Range, true);
            tmp = get_mod_max(mod);
            TEST_ASSERT(v1 == tmp);
        }

        // Test unipolar negative mappings
        {
            static const fluid_real_t mid = (64-1)/128.0;
            fluid_mod_set_source1(mod,
                            FLUID_MOD_VELOCITY,
                            FLUID_MOD_GC
                            | Mapping[i]
                            | FLUID_MOD_UNIPOLAR
                            | FLUID_MOD_NEGATIVE
                            );

            v1 = fluid_mod_transform_source_value(mod, 127, Range, true);
            TEST_ASSERT(v1 == 0.0f);

            if(Mapping[i] != FLUID_MOD_CONCAVE && Mapping[i] != FLUID_MOD_CONVEX)
            {
                v1 = fluid_mod_transform_source_value(mod, 64, Range, true);
                tmp = ((mod->flags1 & FLUID_MOD_MAP_MASK) == FLUID_MOD_SWITCH) ? 0.0f : mid;
                TEST_ASSERT(v1 == tmp);
            }
            else if(Mapping[i] == FLUID_MOD_CONVEX)
            {
                v1 = fluid_mod_transform_source_value(mod, 64-1, Range, true);
                TEST_ASSERT(std::fabs(v1 - UnipolarConvexMid) <= 1e-6);
            }
            else if(Mapping[i] == FLUID_MOD_CONCAVE)
            {
                v1 = fluid_mod_transform_source_value(mod, 64-1, Range, true);
                TEST_ASSERT(std::fabs(v1 - UnipolarConcaveMid) <= 1e-6);
            }
            
            v1 = fluid_mod_transform_source_value(mod, 0, Range, true);
            tmp = get_mod_max(mod);
            TEST_ASSERT(v1 == tmp);
        }

        // Test bipolar positive mappings
        {
            static const fluid_real_t mid = 0;
            fluid_mod_set_source1(mod,
                            FLUID_MOD_VELOCITY,
                            FLUID_MOD_GC
                            | Mapping[i]
                            | FLUID_MOD_BIPOLAR
                            | FLUID_MOD_POSITIVE
                            );

            v1 = fluid_mod_transform_source_value(mod, 0, Range, true);
            TEST_ASSERT(v1 == -1.0f);

            if(Mapping[i] != FLUID_MOD_CONCAVE && Mapping[i] != FLUID_MOD_CONVEX)
            {
                v1 = fluid_mod_transform_source_value(mod, 64, Range, true);
                tmp = ((mod->flags1 & FLUID_MOD_MAP_MASK) == FLUID_MOD_SWITCH) ? 1.0f : mid;
                TEST_ASSERT(v1 == tmp);
            }
            else if(Mapping[i] == FLUID_MOD_CONVEX)
            {
                // v1 should be zero exactly
                v1 = fluid_mod_transform_source_value(mod, 64, Range, true);
                TEST_ASSERT(v1 == BipolarConvexMid);
            }
            else if(Mapping[i] == FLUID_MOD_CONCAVE)
            {
                // v1 should be zero exactly
                v1 = fluid_mod_transform_source_value(mod, 64, Range, true);
                TEST_ASSERT(v1 == BipolarConcaveMid);
            }

            v1 = fluid_mod_transform_source_value(mod, 127, Range, true);
            tmp = get_mod_max(mod);
            TEST_ASSERT(v1 == tmp);
        }

        // Test bipolar negative mappings
        {
            static const fluid_real_t mid = -1/64.0;
            fluid_mod_set_source1(mod,
                            FLUID_MOD_VELOCITY,
                            FLUID_MOD_GC
                            | Mapping[i]
                            | FLUID_MOD_BIPOLAR
                            | FLUID_MOD_NEGATIVE
                            );

            v1 = fluid_mod_transform_source_value(mod, 127, Range, true);
            TEST_ASSERT(v1 == -1.0f);

            if(Mapping[i] != FLUID_MOD_CONCAVE && Mapping[i] != FLUID_MOD_CONVEX)
            {
                v1 = fluid_mod_transform_source_value(mod, 64, Range, true);
                tmp = ((mod->flags1 & FLUID_MOD_MAP_MASK) == FLUID_MOD_SWITCH) ? -1.0f : mid;
                TEST_ASSERT(v1 == tmp);
            }
            else if(Mapping[i] == FLUID_MOD_CONVEX)
            {
                // v1 should be zero exactly
                v1 = fluid_mod_transform_source_value(mod, 64-1, Range, true);
                TEST_ASSERT(v1 == BipolarConvexMid);
            }
            else if(Mapping[i] == FLUID_MOD_CONCAVE)
            {
                // v1 should be zero exactly
                v1 = fluid_mod_transform_source_value(mod, 64-1, Range, true);
                TEST_ASSERT(v1 == BipolarConcaveMid);
            }

            v1 = fluid_mod_transform_source_value(mod, 0, Range, true);
            tmp = get_mod_max(mod);
            TEST_ASSERT(v1 == tmp);
        }
    }
}

static void test_mod_no_source(fluid_mod_t *mod)
{
    fluid_mod_set_dest(mod, GEN_ATTENUATION);
    fluid_mod_set_amount(mod, 1);

    fluid_real_t tmp, v1;
    for (unsigned int i = 0; i < Mapping.size(); i++)
    {
        for (unsigned int j = 0; j < Polar.size(); j++)
        {
            for (unsigned int k = 0; k < Direction.size(); k++)
            {
                fluid_mod_set_source2(mod, FLUID_MOD_NONE, Mapping[i] | Polar[j] | Direction[k]);
                // No secondary source given, result must be one
                tmp = Range;
                v1 = fluid_mod_get_source_value(mod->src2, mod->flags2, &tmp, nullptr);
                TEST_ASSERT(tmp == Range);
                TEST_ASSERT(v1 == Range);
                v1 = fluid_mod_transform_source_value(mod, v1, Range, false);
                TEST_ASSERT(v1 == 1.0f);
            }
        }
    }

    fluid_mod_set_source2(mod, FLUID_MOD_VELOCITY, FLUID_MOD_GC | FLUID_MOD_SIN);
    tmp = Range;
    v1 = fluid_mod_get_source_value(mod->src2, mod->flags2, &tmp, nullptr);
    TEST_ASSERT(tmp == Range);
    TEST_ASSERT(v1 == Range);
    v1 = fluid_mod_transform_source_value(mod, v1, Range, false);
    TEST_ASSERT(v1 == 1.0f);
}

static void test_custom_mapping(fluid_mod_t *mod)
{
    fluid_mod_set_source2(mod, FLUID_MOD_VELOCITY, FLUID_MOD_CUSTOM);

    fluid_real_t v;

    fluid_mod_set_custom_mapping(mod, [](const fluid_mod_t*, int value, int range, int is_src1, void* data)
    {
        fluid_real_t v = *(fluid_real_t*)data;
        TEST_ASSERT(value == (int)v);
        TEST_ASSERT(range == (int)Range);
        TEST_ASSERT(!is_src1);
        return value * 1.0 / range;
    }, &v);

    for(int i = 0; i <= Range; i++)
    {
        v = i;
        v = fluid_mod_transform_source_value(mod, v, Range, false);
        TEST_ASSERT(-1. <= v && v <= 1. && v == (i*1.)/Range);
    }
}

// this tests ensures that samples with invalid SfSampleType flag combinations are rejected
int main(void)
{
    fluid_mod_t* mod = new_fluid_mod();

    test_mod_no_source(mod);

    test_mod_source_mapping(mod);

    test_custom_mapping(mod);

    delete_fluid_mod(mod);

    return EXIT_SUCCESS;
}