1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
|
#include "test.h"
#include "fluidsynth.h"
#include "fluid_mod.h"
#include <array>
#include <cmath>
// Range shall be set to 7bit resolution, i.e. 128
constexpr fluid_real_t Range = 128.0;
// These formulas match the logic used in the convex/concave table generation code.
static const fluid_real_t UnipolarConvexMid = (1.0 - ((-200.0 * 2 / FLUID_PEAK_ATTENUATION) * std::log(64 / (FLUID_VEL_CB_SIZE - 1.0)) / static_cast<double>(FLUID_M_LN10)));
static const fluid_real_t UnipolarConcaveMid = ((-200.0 * 2 / FLUID_PEAK_ATTENUATION) * std::log(((FLUID_VEL_CB_SIZE - 1) - 64) / (FLUID_VEL_CB_SIZE - 1.0)) / static_cast<double>(FLUID_M_LN10));
constexpr fluid_real_t BipolarConvexMid = 0.0f;
constexpr fluid_real_t BipolarConcaveMid = 0.0f;
constexpr std::array<int, 4> Mapping = {FLUID_MOD_SWITCH, FLUID_MOD_LINEAR, FLUID_MOD_CONCAVE, FLUID_MOD_CONVEX};
constexpr std::array<int, 2> Polar = {FLUID_MOD_UNIPOLAR, FLUID_MOD_BIPOLAR};
constexpr std::array<int, 2> Direction = {FLUID_MOD_POSITIVE, FLUID_MOD_NEGATIVE};
static fluid_real_t get_mod_max(const fluid_mod_t *mod)
{
// The maximum mapped position is always 127/128, see section 9.5.3 of SF2.4
// For switches however, we keep sticking to fluidsynth historical limits of +-1.0
return ((mod->flags1 & FLUID_MOD_MAP_MASK) == FLUID_MOD_SWITCH) ? 1.0f : (Range-1)/Range;
}
static void test_mod_source_mapping(fluid_mod_t *mod)
{
fluid_real_t v1, tmp;
for(unsigned int i = 0; i < Mapping.size(); i++)
{
// Test unipolar positive mappings
{
static const fluid_real_t mid = 64.0/128.0;
fluid_mod_set_source1(mod,
FLUID_MOD_VELOCITY,
FLUID_MOD_GC
| Mapping[i]
| FLUID_MOD_UNIPOLAR
| FLUID_MOD_POSITIVE
);
v1 = fluid_mod_transform_source_value(mod, 0, Range, true);
TEST_ASSERT(v1 == 0.0f);
// skip midpoint validation for concave and convex since we're not checking correctness of concave and convex implementations here
if(Mapping[i] != FLUID_MOD_CONCAVE && Mapping[i] != FLUID_MOD_CONVEX)
{
v1 = fluid_mod_transform_source_value(mod, 64, Range, true);
tmp = ((mod->flags1 & FLUID_MOD_MAP_MASK) == FLUID_MOD_SWITCH) ? 1.0f : mid;
TEST_ASSERT(v1 == tmp);
}
else if(Mapping[i] == FLUID_MOD_CONVEX)
{
v1 = fluid_mod_transform_source_value(mod, 64, Range, true);
TEST_ASSERT(std::fabs(v1 - UnipolarConvexMid) <= 1e-6);
}
else if(Mapping[i] == FLUID_MOD_CONCAVE)
{
v1 = fluid_mod_transform_source_value(mod, 64, Range, true);
TEST_ASSERT(std::fabs(v1 - UnipolarConcaveMid) <= 1e-6);
}
v1 = fluid_mod_transform_source_value(mod, 127, Range, true);
tmp = get_mod_max(mod);
TEST_ASSERT(v1 == tmp);
}
// Test unipolar negative mappings
{
static const fluid_real_t mid = (64-1)/128.0;
fluid_mod_set_source1(mod,
FLUID_MOD_VELOCITY,
FLUID_MOD_GC
| Mapping[i]
| FLUID_MOD_UNIPOLAR
| FLUID_MOD_NEGATIVE
);
v1 = fluid_mod_transform_source_value(mod, 127, Range, true);
TEST_ASSERT(v1 == 0.0f);
if(Mapping[i] != FLUID_MOD_CONCAVE && Mapping[i] != FLUID_MOD_CONVEX)
{
v1 = fluid_mod_transform_source_value(mod, 64, Range, true);
tmp = ((mod->flags1 & FLUID_MOD_MAP_MASK) == FLUID_MOD_SWITCH) ? 0.0f : mid;
TEST_ASSERT(v1 == tmp);
}
else if(Mapping[i] == FLUID_MOD_CONVEX)
{
v1 = fluid_mod_transform_source_value(mod, 64-1, Range, true);
TEST_ASSERT(std::fabs(v1 - UnipolarConvexMid) <= 1e-6);
}
else if(Mapping[i] == FLUID_MOD_CONCAVE)
{
v1 = fluid_mod_transform_source_value(mod, 64-1, Range, true);
TEST_ASSERT(std::fabs(v1 - UnipolarConcaveMid) <= 1e-6);
}
v1 = fluid_mod_transform_source_value(mod, 0, Range, true);
tmp = get_mod_max(mod);
TEST_ASSERT(v1 == tmp);
}
// Test bipolar positive mappings
{
static const fluid_real_t mid = 0;
fluid_mod_set_source1(mod,
FLUID_MOD_VELOCITY,
FLUID_MOD_GC
| Mapping[i]
| FLUID_MOD_BIPOLAR
| FLUID_MOD_POSITIVE
);
v1 = fluid_mod_transform_source_value(mod, 0, Range, true);
TEST_ASSERT(v1 == -1.0f);
if(Mapping[i] != FLUID_MOD_CONCAVE && Mapping[i] != FLUID_MOD_CONVEX)
{
v1 = fluid_mod_transform_source_value(mod, 64, Range, true);
tmp = ((mod->flags1 & FLUID_MOD_MAP_MASK) == FLUID_MOD_SWITCH) ? 1.0f : mid;
TEST_ASSERT(v1 == tmp);
}
else if(Mapping[i] == FLUID_MOD_CONVEX)
{
// v1 should be zero exactly
v1 = fluid_mod_transform_source_value(mod, 64, Range, true);
TEST_ASSERT(v1 == BipolarConvexMid);
}
else if(Mapping[i] == FLUID_MOD_CONCAVE)
{
// v1 should be zero exactly
v1 = fluid_mod_transform_source_value(mod, 64, Range, true);
TEST_ASSERT(v1 == BipolarConcaveMid);
}
v1 = fluid_mod_transform_source_value(mod, 127, Range, true);
tmp = get_mod_max(mod);
TEST_ASSERT(v1 == tmp);
}
// Test bipolar negative mappings
{
static const fluid_real_t mid = -1/64.0;
fluid_mod_set_source1(mod,
FLUID_MOD_VELOCITY,
FLUID_MOD_GC
| Mapping[i]
| FLUID_MOD_BIPOLAR
| FLUID_MOD_NEGATIVE
);
v1 = fluid_mod_transform_source_value(mod, 127, Range, true);
TEST_ASSERT(v1 == -1.0f);
if(Mapping[i] != FLUID_MOD_CONCAVE && Mapping[i] != FLUID_MOD_CONVEX)
{
v1 = fluid_mod_transform_source_value(mod, 64, Range, true);
tmp = ((mod->flags1 & FLUID_MOD_MAP_MASK) == FLUID_MOD_SWITCH) ? -1.0f : mid;
TEST_ASSERT(v1 == tmp);
}
else if(Mapping[i] == FLUID_MOD_CONVEX)
{
// v1 should be zero exactly
v1 = fluid_mod_transform_source_value(mod, 64-1, Range, true);
TEST_ASSERT(v1 == BipolarConvexMid);
}
else if(Mapping[i] == FLUID_MOD_CONCAVE)
{
// v1 should be zero exactly
v1 = fluid_mod_transform_source_value(mod, 64-1, Range, true);
TEST_ASSERT(v1 == BipolarConcaveMid);
}
v1 = fluid_mod_transform_source_value(mod, 0, Range, true);
tmp = get_mod_max(mod);
TEST_ASSERT(v1 == tmp);
}
}
}
static void test_mod_no_source(fluid_mod_t *mod)
{
fluid_mod_set_dest(mod, GEN_ATTENUATION);
fluid_mod_set_amount(mod, 1);
fluid_real_t tmp, v1;
for (unsigned int i = 0; i < Mapping.size(); i++)
{
for (unsigned int j = 0; j < Polar.size(); j++)
{
for (unsigned int k = 0; k < Direction.size(); k++)
{
fluid_mod_set_source2(mod, FLUID_MOD_NONE, Mapping[i] | Polar[j] | Direction[k]);
// No secondary source given, result must be one
tmp = Range;
v1 = fluid_mod_get_source_value(mod->src2, mod->flags2, &tmp, nullptr);
TEST_ASSERT(tmp == Range);
TEST_ASSERT(v1 == Range);
v1 = fluid_mod_transform_source_value(mod, v1, Range, false);
TEST_ASSERT(v1 == 1.0f);
}
}
}
fluid_mod_set_source2(mod, FLUID_MOD_VELOCITY, FLUID_MOD_GC | FLUID_MOD_SIN);
tmp = Range;
v1 = fluid_mod_get_source_value(mod->src2, mod->flags2, &tmp, nullptr);
TEST_ASSERT(tmp == Range);
TEST_ASSERT(v1 == Range);
v1 = fluid_mod_transform_source_value(mod, v1, Range, false);
TEST_ASSERT(v1 == 1.0f);
}
static void test_custom_mapping(fluid_mod_t *mod)
{
fluid_mod_set_source2(mod, FLUID_MOD_VELOCITY, FLUID_MOD_CUSTOM);
fluid_real_t v;
fluid_mod_set_custom_mapping(mod, [](const fluid_mod_t*, int value, int range, int is_src1, void* data)
{
fluid_real_t v = *(fluid_real_t*)data;
TEST_ASSERT(value == (int)v);
TEST_ASSERT(range == (int)Range);
TEST_ASSERT(!is_src1);
return value * 1.0 / range;
}, &v);
for(int i = 0; i <= Range; i++)
{
v = i;
v = fluid_mod_transform_source_value(mod, v, Range, false);
TEST_ASSERT(-1. <= v && v <= 1. && v == (i*1.)/Range);
}
}
// this tests ensures that samples with invalid SfSampleType flag combinations are rejected
int main(void)
{
fluid_mod_t* mod = new_fluid_mod();
test_mod_no_source(mod);
test_mod_source_mapping(mod);
test_custom_mapping(mod);
delete_fluid_mod(mod);
return EXIT_SUCCESS;
}
|