File: CombedFT.cpp

package info (click to toggle)
fmit 1.3.2-0.1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,356 kB
  • sloc: cpp: 9,515; sh: 69; makefile: 12
file content (201 lines) | stat: -rw-r--r-- 5,324 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
// Copyright 2007 "Gilles Degottex"

// This file is part of "Music"

// "Music" is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation; either version 2.1 of the License, or
// (at your option) any later version.
//
// "Music" is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

#include "CombedFT.h"

#include <assert.h>
#include <iostream>
using namespace std;
using namespace Math;
#include "Music.h"
#include "SPWindow.h"
#include "FreqAnalysis.h"

#include <QTextStream>

namespace Music
{
	CombedFT::CombedFT()
	{
		m_use_audibility_treshold = false;
		m_audib_ratio = 0.1;

		m_zp_factor = 1.0;
		m_window_factor = 1.0;

		init();
	}
	void CombedFT::setZeroPaddingFactor(double zp)
	{
		if(zp!=m_zp_factor)
		{
			m_zp_factor = zp;
			init();
		}
	}
	void CombedFT::setWindowFactor(double wf)
	{
		if(wf!=m_window_factor)
		{
			m_window_factor = wf;
			init();
		}
	}

	void CombedFT::init()
	{
		if(GetSamplingRate()<=0)	return;

		m_f0 = 0.0;

		int win_size = int(m_window_factor*GetSamplingRate()/h2f(GetSemitoneMin()));// at least m_window_factor period of the lowest freq

		int best_size = 2;
		while(best_size<int(win_size))
			best_size *= 2;

		m_win = hann(best_size);

		while(best_size<int(m_zp_factor*win_size))
			best_size *= 2;

        cout << "CombedFT: INFO: window size=" << win_size << " FFT size=" << best_size << " window size factor=" << m_window_factor << " zero padding factor=" << m_zp_factor << endl;

		m_plan.resize(best_size);
		m_components.resize(m_plan.size()/2);
		m_comb.resize(m_plan.size()/2);
	}
	int CombedFT::getSampleAlgoLatency() const
	{
        return 1000*int(m_win.size())/GetSamplingRate();
	}
	int CombedFT::getMinSize() const
	{
        return int(m_win.size());
	}
	double CombedFT::getFondamentalFreq() const
	{
		return m_f0;
	}

	void CombedFT::apply(const deque<double>& buff)
	{
// 		cout << getAmplitudeTreshold() << " " << getComponentTreshold() << " " << m_audib_ratio << endl;

		if(int(buff.size())<getMinSize() || m_win.empty())	return;

		m_max_amplitude = 0.0;
		for(size_t i=0; i<m_win.size(); i++)
		{
			m_plan.in[i] = buff[i]*m_win[i];

			if(abs(buff[i])>m_max_amplitude)
				m_max_amplitude = abs(buff[i]);
		}
        for(int i=int(m_win.size()); i<int(m_plan.size()); i++)			// padd with zeros
			m_plan.in[i] = 0.0;

		m_plan.execute();

		for(size_t i=0; i<m_comb.in.size() && i<m_plan.out.size(); i++)
			m_comb.in[i] = mod(m_plan.out[i]);

		// compute max with respect of the bounds
		m_components_max = 0.0;
		int max_index = -1;
		double fmin = h2f(GetSemitoneMin());
		double fmax = h2f(GetSemitoneMax());
		for(size_t i=0; i<m_components.size(); i++)
		{
			double fi = i*double(GetSamplingRate())/m_plan.size();
			if(fmin<=fi && fi<=fmax
						&& m_comb.in[i]>m_components_max)
			{
				max_index = i;
				m_components_max = m_comb.in[i];
			}
		}

		m_f0 = 0.0;

		if(m_components_max>getComponentTreshold())
		{
			m_f0 = PeakRefinementLogParabola(m_plan.out, max_index)*double(GetSamplingRate())/m_plan.size();

			// TODO TEST *win[i]; // me semble qu'une trans de harm signal n'est pas trop discontinue aux extrémités
			m_comb.execute();

			for(size_t i=0; i<m_components.size(); i++)
				m_components[i] = 0.0;

			for(size_t i=0; i<m_comb.out.size()/2; i++)
				m_components[i] = real(m_comb.out[i]);

			// avg is not interesting
			m_components[0] = 0.0;

			// frequencies between 1 and g_res_factor are virtuals
// 			for(int i=m_comb.out.size()-(g_res_factor-1); i<m_comb.out.size(); i++)
// 				m_components[i] = 0.0;

			double step = (m_plan.size()/max_index)/2;
			// hyp: the fund freq is not greater than the max amplitude harmonic
 			// keep only multiples of the max amplitude harmonic
			for(int i=1; i<int(m_components.size())/step; i++)
				m_components[i] = m_components[int(step*i)];
			for(int i=int(m_components.size()/step); i<int(m_components.size()); i++)
				m_components[i] = 0.0;

			if(m_use_audibility_treshold)
			{
				for(int i=1; i<int(m_components.size()/step); i++)
					m_components[i] /= (1+m_audib_ratio*(i-1));
			}
			else
			{
				vector<double> temp_comp(int(m_components.size()/step), 0.0);
				for(int i=1; i<int(temp_comp.size()); i++)
					temp_comp[i] =	(m_components[i]-m_components[i-1]) +
									(m_components[i]-m_components[i+1]);
				for(int i=1; i<int(temp_comp.size()); i++)
					m_components[i] = temp_comp[i];
			}

			// find the max
			double max_amp = 0.0;
			max_index = -1;
			for(size_t i=0; i<m_components.size(); i++)
			{
// 				double fi = i*double(GetSamplingRate())/m_win.size();
				if(m_components[i]>max_amp)
				{
					max_index = i;
					max_amp = m_components[i];
				}
			}

			if(max_index>0)
	 			m_f0 /= max_index;
		}

// 		cout << " final: " << GetSamplingRate() << ":" << m_f0 << endl;
	}
	CombedFT::~CombedFT()
	{
	}
}