File: TimeAnalysis.cpp

package info (click to toggle)
fmit 1.3.2-0.1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,356 kB
  • sloc: cpp: 9,515; sh: 69; makefile: 12
file content (286 lines) | stat: -rw-r--r-- 7,491 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
// Copyright 2004 "Gilles Degottex"

// This file is part of "Music"

// "Music" is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation; either version 2.1 of the License, or
// (at your option) any later version.
//
// "Music" is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA


#include "TimeAnalysis.h"

#include <cassert>
#include <cmath>
#include <deque>
#include <iostream>
#include <algorithm>
#include <limits>
using namespace std;
#include <CppAddons/CAMath.h>
using namespace Math;

#include "Music.h"

namespace Music
{
	double InterpolatedPeriod(const std::deque<double>& queue, int left, int right)
	{
		double l = left - queue[left]/(queue[left+1]-queue[left]);

		double r = right - queue[right]/(queue[right+1]-queue[right]);

		return r - l;
	}

	/*
	 * on peut imaginer des cas qui mettent en échec cette procédure:
	 *	on selectionne un zéro qui n'en n'est pas un une periode plus
	 *	tard et si un autre zéro se trouve dans la zone de tolérance la longeur
	 *	ainsi calculée entre ces deux zéro (qui ne se correspondent donc pas) sera fausse.
	 *	example: une fréquence très basse avec une seule harmonique très très
	 *	haute.
	 *	- il faut utiliser des zéros significatifs ... et ... et ... et voil .
	 *	- ou encore carter les solutions trop lognes de la moyenne
	 */
	double GetAveragePeriodFromApprox(const std::deque<double>& queue, int approx, int n)
	{
		if(GetAFreq()<=0.0 || GetSamplingRate()<=0.0 || int(queue.size())<approx)
			return 0.0;

		deque<int> ups;									// the upper peeks

		// parse the whole buffer, for n zeros
		for(int i=0; int(ups.size())<n && i+1<int(queue.size()); i++)
			if(queue[i]<0 && queue[i+1]>0)				// if it cross the axis
				ups.push_back(i);

// 		cout << "approx=" << approx << " ups.size()=" << ups.size();
		if(ups.empty())
			return 0.0;

		double ht = f2hf(double(GetSamplingRate())/approx);
		int period_low_bound = int(GetSamplingRate()/h2f(ht+1))-2;
		int period_high_bound = int(GetSamplingRate()/h2f(ht-1))+2;

// 		cout << " ht=" << ht << " lb=" << period_low_bound << " rb=" << period_high_bound;

// 		cout << " periods=(";

		double period = 0.0;
		int count = 0;

		for(int i=0; i<int(ups.size()) && count<n; i++)
		{
			int i_seek = ups[i] + approx;

			int lower_i_seek = i_seek;
			int low_bound = ups[i] + period_low_bound;
			int higher_i_seek = i_seek;
            int high_bound = std::min(int(queue.size())-1, ups[i]+period_high_bound);

// 			cout << "{" << low_bound << ":" << i_seek << ":" << high_bound << "}";

			if(low_bound+1>=int(queue.size()))
				i = ups.size();										// stop loop
			else
			{
				if(!(queue[i_seek]<=0.0 && queue[i_seek+1]>0.0))
				{
					while(lower_i_seek>low_bound &&
						!(queue[lower_i_seek]<=0.0 && queue[lower_i_seek+1]>0.0))
						lower_i_seek--;

					while(higher_i_seek<high_bound &&
						!(queue[higher_i_seek]<=0.0 && queue[higher_i_seek+1]>0.0))
						higher_i_seek++;

					if(i_seek-lower_i_seek < higher_i_seek-i_seek)	// take the nearest to i_seek
						i_seek = lower_i_seek;
					else
						i_seek = higher_i_seek;
				}

// 				cout << i_seek << "=>";

				if(low_bound<i_seek && i_seek<high_bound)
				{
					double per = InterpolatedPeriod(queue, ups[i], i_seek);

// 					cout << "f=" << GetSamplingRate()/per << " ";

					period += per;
					count++;
				}
			}
		}

		if(count==0)
			return 0.0;

		period /= count;

// 		cout << ")=" << GetSamplingRate()/period << "(" << count << ")" << endl;

		return period;
	}

	void GetWaveSample(const std::deque<double>& queue, size_t wave_length, std::deque<double>& sample)
	{
		assert(wave_length>0);
		if(queue.size()<2*wave_length)	return;

		// find the highest peek in the second period
		int left = 0;
		double min_vol = 0;
		for(int i=int(wave_length); i<int(queue.size()) && i<int(2*wave_length); i++)
		{
			if(queue[i]<min_vol)
			{
				min_vol = queue[i];
				left = i;
			}
		}

		// adjust the right bound to the nearest minima
		int left_right = int(left + 0.9*wave_length);
		int right_right = int(left + wave_length/0.9);

		int right = int(left + wave_length);				// init to a default value

		if(right_right>=int(queue.size()))
			return;

		min_vol = 0.0;
		for(int i=left_right; i<=right_right; i++)
		{
			if(queue[i]<min_vol)
			{
				min_vol = queue[i];
				right = i;
			}
		}

		// fill in the sample
		sample.clear();
		for(int i=left; i<int(queue.size()) && i<right; i++)
			sample.push_back(queue[i]);
	}

	double GetAverageWaveLengthFromApproxEnergy(const std::deque<double>& queue, double approx, int n)
	{
		assert(GetSamplingRate()>0);

		if(queue.size()<approx*1.5)
			return 0.0;

// 		cout << queue.size() << "=>" << approx << " n=" << n << endl;

		double wave_length = 0.0;
		int count = 0;
		int seek = 0;
		while(count<n && seek<int(queue.size()) && seek!=-1)
		{
// 			cout << "new " << flush;

			// in one period, compute the energy over approx/4
			int w = int(approx/4);		// TODO ptr un peu long
			if(w<4) w=4;
			vector<double> en;
			for(int i=0; i<w/2; i++)
				en.push_back(0.0);
			for(int i=w/2; int(en.size())<int(1.25*approx); i++)
			{
				en.push_back(0.0);
				for(int j=-w/2; j<=w/2 && seek+i+j<int(queue.size()); j++)
					en.back() += queue[seek+i+j];	//*queue[seek+i+j]
			}

			// find the highest energy peak
			int i_max = 0;
			double en_max = 0.0;
			for(int i=0; i<int(en.size()); i++)
			{
				if(en[i]>en_max)
				{
					en_max = en[i];
					i_max = i;
				}
			}
			seek += i_max;

// 			cout << "max-seek=" << seek << " " << flush;

			int old_seek=seek;
			// go back to the previous zero
			while(seek>=0 && !(queue[seek]<=0 && queue[seek+1]>0) && seek>old_seek-approx/2)
				seek--;

// 			cout << "zero-seek=" << seek << " " << flush;

			if(seek<0 || seek<=old_seek-approx/2)
			{
				seek += int(approx);
// 				cout << endl;
				continue;
			}

			int left = seek;
			int right = int(left + approx);
			int sright = right;
			int downlimit = int(left + 0.75*approx);
			int bright = right;
			int uplimit = int(left + 1.25*approx);

			// look for the nearest zero of right
			while(sright+1<int(queue.size()) && sright>downlimit &&
						   !(queue[sright]<=0 && queue[sright+1]>0))
				sright--;
			while(bright+1<int(queue.size()) && bright<uplimit &&
						   !(queue[bright]<=0 && queue[bright+1]>0))
				bright++;

			if(sright>=int(queue.size()) || bright>=int(queue.size()))
			{
				seek = -1;
// 				cout << endl;
				continue;
			}

			double sw = InterpolatedPeriod(queue, left, sright);
			double bw = InterpolatedPeriod(queue, left, bright);
			// keep the nearest one after approx
			double wl = 0.0;
			if(abs(sw-approx)<abs(bw-approx))	wl = sw;
			else								wl = bw;

// 			cout << "wl=" << wl << flush;

			wave_length += wl;
			count++;

			seek += int(0.9*approx);

// 			cout << endl;
		}

// 		cout << "("<<count<<")"<< flush;

		if(count==0)	return 0.0;

		wave_length /= count;

// 		cout << GetSamplingRate()/wave_length << endl;

		return wave_length;
	}
}