1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
|
// Formatting library for C++ - formatting library implementation tests
//
// Copyright (c) 2012 - present, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
#include <algorithm>
#include <cstring>
// clang-format off
#include "test-assert.h"
// clang-format on
#include "fmt/format.h"
#include "gmock/gmock.h"
#include "util.h"
using fmt::detail::bigint;
using fmt::detail::fp;
using fmt::detail::max_value;
static_assert(!std::is_copy_constructible<bigint>::value, "");
static_assert(!std::is_copy_assignable<bigint>::value, "");
TEST(bigint_test, construct) {
EXPECT_EQ(fmt::to_string(bigint()), "");
EXPECT_EQ(fmt::to_string(bigint(0x42)), "42");
EXPECT_EQ(fmt::to_string(bigint(0x123456789abcedf0)), "123456789abcedf0");
}
TEST(bigint_test, compare) {
bigint n1(42);
bigint n2(42);
EXPECT_EQ(compare(n1, n2), 0);
n2 <<= 32;
EXPECT_LT(compare(n1, n2), 0);
bigint n3(43);
EXPECT_LT(compare(n1, n3), 0);
EXPECT_GT(compare(n3, n1), 0);
bigint n4(42 * 0x100000001);
EXPECT_LT(compare(n2, n4), 0);
EXPECT_GT(compare(n4, n2), 0);
}
TEST(bigint_test, add_compare) {
EXPECT_LT(
add_compare(bigint(0xffffffff), bigint(0xffffffff), bigint(1) <<= 64), 0);
EXPECT_LT(add_compare(bigint(1) <<= 32, bigint(1), bigint(1) <<= 96), 0);
EXPECT_GT(add_compare(bigint(1) <<= 32, bigint(0), bigint(0xffffffff)), 0);
EXPECT_GT(add_compare(bigint(0), bigint(1) <<= 32, bigint(0xffffffff)), 0);
EXPECT_GT(add_compare(bigint(42), bigint(1), bigint(42)), 0);
EXPECT_GT(add_compare(bigint(0xffffffff), bigint(1), bigint(0xffffffff)), 0);
EXPECT_LT(add_compare(bigint(10), bigint(10), bigint(22)), 0);
EXPECT_LT(add_compare(bigint(0x100000010), bigint(0x100000010),
bigint(0x300000010)),
0);
EXPECT_GT(add_compare(bigint(0x1ffffffff), bigint(0x100000002),
bigint(0x300000000)),
0);
EXPECT_EQ(add_compare(bigint(0x1ffffffff), bigint(0x100000002),
bigint(0x300000001)),
0);
EXPECT_LT(add_compare(bigint(0x1ffffffff), bigint(0x100000002),
bigint(0x300000002)),
0);
EXPECT_LT(add_compare(bigint(0x1ffffffff), bigint(0x100000002),
bigint(0x300000003)),
0);
}
TEST(bigint_test, shift_left) {
bigint n(0x42);
n <<= 0;
EXPECT_EQ(fmt::to_string(n), "42");
n <<= 1;
EXPECT_EQ(fmt::to_string(n), "84");
n <<= 25;
EXPECT_EQ(fmt::to_string(n), "108000000");
}
TEST(bigint_test, multiply) {
bigint n(0x42);
EXPECT_THROW(n *= 0, assertion_failure);
n *= 1;
EXPECT_EQ(fmt::to_string(n), "42");
n *= 2;
EXPECT_EQ(fmt::to_string(n), "84");
n *= 0x12345678;
EXPECT_EQ(fmt::to_string(n), "962fc95e0");
bigint bigmax(max_value<uint32_t>());
bigmax *= max_value<uint32_t>();
EXPECT_EQ(fmt::to_string(bigmax), "fffffffe00000001");
const auto max64 = max_value<uint64_t>();
bigmax = max64;
bigmax *= max64;
EXPECT_EQ(fmt::to_string(bigmax), "fffffffffffffffe0000000000000001");
const auto max128 = (fmt::detail::uint128_t(max64) << 64) | max64;
bigmax = max128;
bigmax *= max128;
EXPECT_EQ(fmt::to_string(bigmax),
"fffffffffffffffffffffffffffffffe00000000000000000000000000000001");
}
TEST(bigint_test, square) {
bigint n0(0);
n0.square();
EXPECT_EQ(fmt::to_string(n0), "0");
bigint n1(0x100);
n1.square();
EXPECT_EQ(fmt::to_string(n1), "10000");
bigint n2(0xfffffffff);
n2.square();
EXPECT_EQ(fmt::to_string(n2), "ffffffffe000000001");
bigint n3(max_value<uint64_t>());
n3.square();
EXPECT_EQ(fmt::to_string(n3), "fffffffffffffffe0000000000000001");
bigint n4;
n4.assign_pow10(10);
EXPECT_EQ(fmt::to_string(n4), "2540be400");
}
TEST(bigint_test, divmod_assign_zero_divisor) {
bigint zero(0);
EXPECT_THROW(bigint(0).divmod_assign(zero), assertion_failure);
EXPECT_THROW(bigint(42).divmod_assign(zero), assertion_failure);
}
TEST(bigint_test, divmod_assign_self) {
bigint n(100);
EXPECT_THROW(n.divmod_assign(n), assertion_failure);
}
TEST(bigint_test, divmod_assign_unaligned) {
// (42 << 340) / pow(10, 100):
bigint n1(42);
n1 <<= 340;
bigint n2;
n2.assign_pow10(100);
int result = n1.divmod_assign(n2);
EXPECT_EQ(result, 9406);
EXPECT_EQ(fmt::to_string(n1),
"10f8353019583bfc29ffc8f564e1b9f9d819dbb4cf783e4507eca1539220p96");
}
TEST(bigint_test, divmod_assign) {
// 100 / 10:
bigint n1(100);
int result = n1.divmod_assign(bigint(10));
EXPECT_EQ(result, 10);
EXPECT_EQ(fmt::to_string(n1), "0");
// pow(10, 100) / (42 << 320):
n1.assign_pow10(100);
result = n1.divmod_assign(bigint(42) <<= 320);
EXPECT_EQ(result, 111);
EXPECT_EQ(fmt::to_string(n1),
"13ad2594c37ceb0b2784c4ce0bf38ace408e211a7caab24308a82e8f10p96");
// 42 / 100:
bigint n2(42);
n1.assign_pow10(2);
result = n2.divmod_assign(n1);
EXPECT_EQ(result, 0);
EXPECT_EQ(fmt::to_string(n2), "2a");
}
template <bool is_iec559> void run_double_tests() {
fmt::print("warning: double is not IEC559, skipping FP tests\n");
}
template <> void run_double_tests<true>() {
// Construct from double.
EXPECT_EQ(fp(1.23), fp(0x13ae147ae147aeu, -52));
}
TEST(fp_test, double_tests) {
run_double_tests<std::numeric_limits<double>::is_iec559>();
}
TEST(fp_test, normalize) {
const auto v = fp(0xbeef, 42);
auto normalized = normalize(v);
EXPECT_EQ(normalized.f, 0xbeef000000000000);
EXPECT_EQ(normalized.e, -6);
}
TEST(fp_test, multiply) {
auto v = fp(123ULL << 32, 4) * fp(56ULL << 32, 7);
EXPECT_EQ(v.f, 123u * 56u);
EXPECT_EQ(v.e, 4 + 7 + 64);
v = fp(123ULL << 32, 4) * fp(567ULL << 31, 8);
EXPECT_EQ(v.f, (123 * 567 + 1u) / 2);
EXPECT_EQ(v.e, 4 + 8 + 64);
}
TEST(fp_test, dragonbox_max_k) {
using fmt::detail::dragonbox::floor_log10_pow2;
using float_info = fmt::detail::dragonbox::float_info<float>;
EXPECT_EQ(
fmt::detail::const_check(float_info::max_k),
float_info::kappa -
floor_log10_pow2(std::numeric_limits<float>::min_exponent -
fmt::detail::num_significand_bits<float>() - 1));
using double_info = fmt::detail::dragonbox::float_info<double>;
EXPECT_EQ(fmt::detail::const_check(double_info::max_k),
double_info::kappa -
floor_log10_pow2(
std::numeric_limits<double>::min_exponent -
2 * fmt::detail::num_significand_bits<double>() - 1));
}
TEST(format_impl_test, format_error_code) {
std::string msg = "error 42", sep = ": ";
{
auto buffer = fmt::memory_buffer();
fmt::format_to(fmt::appender(buffer), "garbage");
fmt::detail::format_error_code(buffer, 42, "test");
EXPECT_EQ(to_string(buffer), "test: " + msg);
}
{
auto buffer = fmt::memory_buffer();
auto prefix =
std::string(fmt::inline_buffer_size - msg.size() - sep.size() + 1, 'x');
fmt::detail::format_error_code(buffer, 42, prefix);
EXPECT_EQ(msg, to_string(buffer));
}
int codes[] = {42, -1};
for (size_t i = 0, n = sizeof(codes) / sizeof(*codes); i < n; ++i) {
// Test maximum buffer size.
msg = fmt::format("error {}", codes[i]);
fmt::memory_buffer buffer;
auto prefix =
std::string(fmt::inline_buffer_size - msg.size() - sep.size(), 'x');
fmt::detail::format_error_code(buffer, codes[i], prefix);
EXPECT_EQ(prefix + sep + msg, to_string(buffer));
size_t size = fmt::inline_buffer_size;
EXPECT_EQ(size, buffer.size());
buffer.resize(0);
// Test with a message that doesn't fit into the buffer.
prefix += 'x';
fmt::detail::format_error_code(buffer, codes[i], prefix);
EXPECT_EQ(to_string(buffer), msg);
}
}
TEST(format_impl_test, compute_width) {
EXPECT_EQ(4,
fmt::detail::compute_width(
fmt::basic_string_view<fmt::detail::char8_type>(
reinterpret_cast<const fmt::detail::char8_type*>("ёжик"))));
}
// Tests fmt::detail::count_digits for integer type Int.
template <typename Int> void test_count_digits() {
for (Int i = 0; i < 10; ++i) EXPECT_EQ(1u, fmt::detail::count_digits(i));
for (Int i = 1, n = 1, end = max_value<Int>() / 10; n <= end; ++i) {
n *= 10;
EXPECT_EQ(fmt::detail::count_digits(n - 1), i);
EXPECT_EQ(fmt::detail::count_digits(n), i + 1);
}
}
TEST(format_impl_test, count_digits) {
test_count_digits<uint32_t>();
test_count_digits<uint64_t>();
}
TEST(format_impl_test, countl_zero) {
constexpr auto num_bits = fmt::detail::num_bits<uint32_t>();
uint32_t n = 1u;
for (int i = 1; i < num_bits - 1; i++) {
n <<= 1;
EXPECT_EQ(fmt::detail::countl_zero(n - 1), num_bits - i);
EXPECT_EQ(fmt::detail::countl_zero(n), num_bits - i - 1);
}
}
#if FMT_USE_FLOAT128
TEST(format_impl_test, write_float128) {
auto s = std::string();
fmt::detail::write<char>(std::back_inserter(s), __float128(42));
EXPECT_EQ(s, "42");
}
#endif
struct double_double {
double a;
double b;
explicit constexpr double_double(double a_val = 0, double b_val = 0)
: a(a_val), b(b_val) {}
operator double() const { return a + b; }
auto operator-() const -> double_double { return double_double(-a, -b); }
};
auto format_as(double_double d) -> double { return d; }
bool operator>=(const double_double& lhs, const double_double& rhs) {
return lhs.a + lhs.b >= rhs.a + rhs.b;
}
struct slow_float {
float value;
explicit constexpr slow_float(float val = 0) : value(val) {}
operator float() const { return value; }
auto operator-() const -> slow_float { return slow_float(-value); }
};
auto format_as(slow_float f) -> float { return f; }
namespace std {
template <> struct is_floating_point<double_double> : std::true_type {};
template <> struct numeric_limits<double_double> {
// is_iec559 is true for double-double in libstdc++.
static constexpr bool is_iec559 = true;
static constexpr int digits = 106;
};
template <> struct is_floating_point<slow_float> : std::true_type {};
template <> struct numeric_limits<slow_float> : numeric_limits<float> {};
} // namespace std
FMT_BEGIN_NAMESPACE
namespace detail {
template <> struct is_fast_float<slow_float> : std::false_type {};
namespace dragonbox {
template <> struct float_info<slow_float> {
using carrier_uint = uint32_t;
static const int exponent_bits = 8;
};
} // namespace dragonbox
} // namespace detail
FMT_END_NAMESPACE
TEST(format_impl_test, write_double_double) {
auto s = std::string();
fmt::detail::write<char>(std::back_inserter(s), double_double(42), {});
// Specializing is_floating_point is broken in MSVC.
if (!FMT_MSC_VERSION) EXPECT_EQ(s, "42");
}
TEST(format_impl_test, write_dragon_even) {
auto s = std::string();
fmt::detail::write<char>(std::back_inserter(s), slow_float(33554450.0f), {});
// Specializing is_floating_point is broken in MSVC.
if (!FMT_MSC_VERSION) EXPECT_EQ(s, "33554450");
}
#ifdef _WIN32
# include <windows.h>
TEST(format_impl_test, write_console_signature) {
decltype(::WriteConsoleW)* p = fmt::detail::WriteConsoleW;
(void)p;
}
#endif
// A public domain branchless UTF-8 decoder by Christopher Wellons:
// https://github.com/skeeto/branchless-utf8
constexpr bool unicode_is_surrogate(uint32_t c) {
return c >= 0xD800U && c <= 0xDFFFU;
}
FMT_CONSTEXPR char* utf8_encode(char* s, uint32_t c) {
if (c >= (1UL << 16)) {
s[0] = static_cast<char>(0xf0 | (c >> 18));
s[1] = static_cast<char>(0x80 | ((c >> 12) & 0x3f));
s[2] = static_cast<char>(0x80 | ((c >> 6) & 0x3f));
s[3] = static_cast<char>(0x80 | ((c >> 0) & 0x3f));
return s + 4;
} else if (c >= (1UL << 11)) {
s[0] = static_cast<char>(0xe0 | (c >> 12));
s[1] = static_cast<char>(0x80 | ((c >> 6) & 0x3f));
s[2] = static_cast<char>(0x80 | ((c >> 0) & 0x3f));
return s + 3;
} else if (c >= (1UL << 7)) {
s[0] = static_cast<char>(0xc0 | (c >> 6));
s[1] = static_cast<char>(0x80 | ((c >> 0) & 0x3f));
return s + 2;
} else {
s[0] = static_cast<char>(c);
return s + 1;
}
}
// Make sure it can decode every character
TEST(format_impl_test, utf8_decode_decode_all) {
for (uint32_t i = 0; i < 0x10ffff; i++) {
if (!unicode_is_surrogate(i)) {
int e;
uint32_t c;
char buf[8] = {0};
char* end = utf8_encode(buf, i);
const char* res = fmt::detail::utf8_decode(buf, &c, &e);
EXPECT_EQ(end, res);
EXPECT_EQ(c, i);
EXPECT_EQ(e, 0);
}
}
}
// Reject everything outside of U+0000..U+10FFFF
TEST(format_impl_test, utf8_decode_out_of_range) {
for (uint32_t i = 0x110000; i < 0x1fffff; i++) {
int e;
uint32_t c;
char buf[8] = {0};
utf8_encode(buf, i);
const char* end = fmt::detail::utf8_decode(buf, &c, &e);
EXPECT_NE(e, 0);
EXPECT_EQ(end - buf, 4);
}
}
// Does it reject all surrogate halves?
TEST(format_impl_test, utf8_decode_surrogate_halves) {
for (uint32_t i = 0xd800; i <= 0xdfff; i++) {
int e;
uint32_t c;
char buf[8] = {0};
utf8_encode(buf, i);
fmt::detail::utf8_decode(buf, &c, &e);
EXPECT_NE(e, 0);
}
}
// How about non-canonical encodings?
TEST(format_impl_test, utf8_decode_non_canonical_encodings) {
int e;
uint32_t c;
const char* end;
char buf2[8] = {char(0xc0), char(0xA4)};
end = fmt::detail::utf8_decode(buf2, &c, &e);
EXPECT_NE(e, 0); // non-canonical len 2
EXPECT_EQ(end, buf2 + 2); // non-canonical recover 2
char buf3[8] = {char(0xe0), char(0x80), char(0xA4)};
end = fmt::detail::utf8_decode(buf3, &c, &e);
EXPECT_NE(e, 0); // non-canonical len 3
EXPECT_EQ(end, buf3 + 3); // non-canonical recover 3
char buf4[8] = {char(0xf0), char(0x80), char(0x80), char(0xA4)};
end = fmt::detail::utf8_decode(buf4, &c, &e);
EXPECT_NE(e, 0); // non-canonical encoding len 4
EXPECT_EQ(end, buf4 + 4); // non-canonical recover 4
}
// Let's try some bogus byte sequences
TEST(format_impl_test, utf8_decode_bogus_byte_sequences) {
int e;
uint32_t c;
// Invalid first byte
char buf0[4] = {char(0xff)};
auto len = fmt::detail::utf8_decode(buf0, &c, &e) - buf0;
EXPECT_NE(e, 0); // "bogus [ff] 0x%02x U+%04lx", e, (unsigned long)c);
EXPECT_EQ(len, 1); // "bogus [ff] recovery %d", len);
// Invalid first byte
char buf1[4] = {char(0x80)};
len = fmt::detail::utf8_decode(buf1, &c, &e) - buf1;
EXPECT_NE(e, 0); // "bogus [80] 0x%02x U+%04lx", e, (unsigned long)c);
EXPECT_EQ(len, 1); // "bogus [80] recovery %d", len);
// Looks like a two-byte sequence but second byte is wrong
char buf2[4] = {char(0xc0), char(0x0a)};
len = fmt::detail::utf8_decode(buf2, &c, &e) - buf2;
EXPECT_NE(e, 0); // "bogus [c0 0a] 0x%02x U+%04lx", e, (unsigned long)c
EXPECT_EQ(len, 2); // "bogus [c0 0a] recovery %d", len);
}
TEST(format_impl_test, to_utf8) {
auto s = std::string("ёжик");
auto u = fmt::detail::to_utf8<wchar_t>(L"\x0451\x0436\x0438\x043A");
EXPECT_EQ(s, u.str());
EXPECT_EQ(s.size(), u.size());
}
|