File: api.md

package info (click to toggle)
fmtlib 11.1.1%2Bds1-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 1,772 kB
  • sloc: cpp: 22,591; ansic: 758; python: 504; sh: 53; makefile: 16; javascript: 4
file content (673 lines) | stat: -rw-r--r-- 19,867 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
# API Reference

The {fmt} library API consists of the following components:

- [`fmt/base.h`](#base-api): the base API providing main formatting functions
  for `char`/UTF-8 with C++20 compile-time checks and minimal dependencies
- [`fmt/format.h`](#format-api): `fmt::format` and other formatting functions
  as well as locale support
- [`fmt/ranges.h`](#ranges-api): formatting of ranges and tuples
- [`fmt/chrono.h`](#chrono-api): date and time formatting
- [`fmt/std.h`](#std-api): formatters for standard library types
- [`fmt/compile.h`](#compile-api): format string compilation
- [`fmt/color.h`](#color-api): terminal colors and text styles
- [`fmt/os.h`](#os-api): system APIs
- [`fmt/ostream.h`](#ostream-api): `std::ostream` support
- [`fmt/args.h`](#args-api): dynamic argument lists
- [`fmt/printf.h`](#printf-api): safe `printf`
- [`fmt/xchar.h`](#xchar-api): optional `wchar_t` support

All functions and types provided by the library reside in namespace `fmt`
and macros have prefix `FMT_`.

## Base API

`fmt/base.h` defines the base API which provides main formatting functions
for `char`/UTF-8 with C++20 compile-time checks. It has minimal include
dependencies for better compile times. This header is only beneficial when
using {fmt} as a library (the default) and not in the header-only mode.
It also provides `formatter` specializations for the following types:

- `int`, `long long`,
- `unsigned`, `unsigned long long`
- `float`, `double`, `long double`
- `bool`
- `char`
- `const char*`, [`fmt::string_view`](#basic_string_view)
- `const void*`

The following functions use [format string syntax](syntax.md) similar to that
of [str.format](https://docs.python.org/3/library/stdtypes.html#str.format)
in Python. They take *fmt* and *args* as arguments.

*fmt* is a format string that contains literal text and replacement fields
surrounded by braces `{}`. The fields are replaced with formatted arguments
in the resulting string. [`fmt::format_string`](#format_string) is a format
string which can be implicitly constructed from a string literal or a
`constexpr` string and is checked at compile time in C++20. To pass a runtime
format string wrap it in [`fmt::runtime`](#runtime).

*args* is an argument list representing objects to be formatted.

I/O errors are reported as [`std::system_error`](
https://en.cppreference.com/w/cpp/error/system_error) exceptions unless
specified otherwise.

::: print(format_string<T...>, T&&...)

::: print(FILE*, format_string<T...>, T&&...)

::: println(format_string<T...>, T&&...)

::: println(FILE*, format_string<T...>, T&&...)

::: format_to(OutputIt&&, format_string<T...>, T&&...)

::: format_to_n(OutputIt, size_t, format_string<T...>, T&&...)

::: format_to_n_result

::: formatted_size(format_string<T...>, T&&...)

<a id="udt"></a>
### Formatting User-Defined Types

The {fmt} library provides formatters for many standard C++ types.
See [`fmt/ranges.h`](#ranges-api) for ranges and tuples including standard
containers such as `std::vector`, [`fmt/chrono.h`](#chrono-api) for date and
time formatting and [`fmt/std.h`](#std-api) for other standard library types.

There are two ways to make a user-defined type formattable: providing a
`format_as` function or specializing the `formatter` struct template.

Use `format_as` if you want to make your type formattable as some other
type with the same format specifiers. The `format_as` function should
take an object of your type and return an object of a formattable type.
It should be defined in the same namespace as your type.

Example ([run](https://godbolt.org/z/nvME4arz8)):

    #include <fmt/format.h>

    namespace kevin_namespacy {

    enum class film {
      house_of_cards, american_beauty, se7en = 7
    };

    auto format_as(film f) { return fmt::underlying(f); }

    }

    int main() {
      fmt::print("{}\n", kevin_namespacy::film::se7en); // Output: 7
    }

Using specialization is more complex but gives you full control over
parsing and formatting. To use this method specialize the `formatter`
struct template for your type and implement `parse` and `format`
methods.

The recommended way of defining a formatter is by reusing an existing
one via inheritance or composition. This way you can support standard
format specifiers without implementing them yourself. For example:

```c++
// color.h:
#include <fmt/base.h>

enum class color {red, green, blue};

template <> struct fmt::formatter<color>: formatter<string_view> {
  // parse is inherited from formatter<string_view>.

  auto format(color c, format_context& ctx) const
    -> format_context::iterator;
};
```

```c++
// color.cc:
#include "color.h"
#include <fmt/format.h>

auto fmt::formatter<color>::format(color c, format_context& ctx) const
    -> format_context::iterator {
  string_view name = "unknown";
  switch (c) {
  case color::red:   name = "red"; break;
  case color::green: name = "green"; break;
  case color::blue:  name = "blue"; break;
  }
  return formatter<string_view>::format(name, ctx);
}
```

Note that `formatter<string_view>::format` is defined in `fmt/format.h`
so it has to be included in the source file. Since `parse` is inherited
from `formatter<string_view>` it will recognize all string format
specifications, for example

```c++
fmt::format("{:>10}", color::blue)
```

will return `"      blue"`.

<!-- The experimental `nested_formatter` provides an easy way of applying a
formatter to one or more subobjects.

For example:

    #include <fmt/format.h>

    struct point {
      double x, y;
    };

    template <>
    struct fmt::formatter<point> : nested_formatter<double> {
      auto format(point p, format_context& ctx) const {
        return write_padded(ctx, [=](auto out) {
          return format_to(out, "({}, {})", this->nested(p.x),
                           this->nested(p.y));
        });
      }
    };

    int main() {
      fmt::print("[{:>20.2f}]", point{1, 2});
    }

prints:

    [          (1.00, 2.00)]

Notice that fill, align and width are applied to the whole object which
is the recommended behavior while the remaining specifiers apply to
elements. -->

In general the formatter has the following form:

    template <> struct fmt::formatter<T> {
      // Parses format specifiers and stores them in the formatter.
      //
      // [ctx.begin(), ctx.end()) is a, possibly empty, character range that
      // contains a part of the format string starting from the format
      // specifications to be parsed, e.g. in
      //
      //   fmt::format("{:f} continued", ...);
      //
      // the range will contain "f} continued". The formatter should parse
      // specifiers until '}' or the end of the range. In this example the
      // formatter should parse the 'f' specifier and return an iterator
      // pointing to '}'.
      constexpr auto parse(format_parse_context& ctx)
        -> format_parse_context::iterator;

      // Formats value using the parsed format specification stored in this
      // formatter and writes the output to ctx.out().
      auto format(const T& value, format_context& ctx) const
        -> format_context::iterator;
    };

It is recommended to at least support fill, align and width that apply
to the whole object and have the same semantics as in standard
formatters.

You can also write a formatter for a hierarchy of classes:

```c++
// demo.h:
#include <type_traits>
#include <fmt/core.h>

struct A {
  virtual ~A() {}
  virtual std::string name() const { return "A"; }
};

struct B : A {
  virtual std::string name() const { return "B"; }
};

template <typename T>
struct fmt::formatter<T, std::enable_if_t<std::is_base_of_v<A, T>, char>> :
    fmt::formatter<std::string> {
  auto format(const A& a, format_context& ctx) const {
    return formatter<std::string>::format(a.name(), ctx);
  }
};
```

```c++
// demo.cc:
#include "demo.h"
#include <fmt/format.h>

int main() {
  B b;
  A& a = b;
  fmt::print("{}", a); // Output: B
}
```

Providing both a `formatter` specialization and a `format_as` overload is
disallowed.

::: basic_format_parse_context

::: context

::: format_context

### Compile-Time Checks

Compile-time format string checks are enabled by default on compilers
that support C++20 `consteval`. On older compilers you can use the
[FMT_STRING](#legacy-checks) macro defined in `fmt/format.h` instead.

Unused arguments are allowed as in Python's `str.format` and ordinary functions.

See [Type Erasure](#type-erasure) for an example of how to enable compile-time
checks in your own functions with `fmt::format_string` while avoiding template
bloat.

::: fstring

::: format_string

::: runtime(string_view)

### Type Erasure

You can create your own formatting function with compile-time checks and
small binary footprint, for example ([run](https://godbolt.org/z/b9Pbasvzc)):

```c++
#include <fmt/format.h>

void vlog(const char* file, int line,
          fmt::string_view fmt, fmt::format_args args) {
  fmt::print("{}: {}: {}", file, line, fmt::vformat(fmt, args));
}

template <typename... T>
void log(const char* file, int line,
         fmt::format_string<T...> fmt, T&&... args) {
  vlog(file, line, fmt, fmt::make_format_args(args...));
}

#define MY_LOG(fmt, ...) log(__FILE__, __LINE__, fmt, __VA_ARGS__)

MY_LOG("invalid squishiness: {}", 42);
```

Note that `vlog` is not parameterized on argument types which improves
compile times and reduces binary code size compared to a fully
parameterized version.

::: make_format_args(T&...)

::: basic_format_args

::: format_args

::: basic_format_arg

### Named Arguments

::: arg(const Char*, const T&)

Named arguments are not supported in compile-time checks at the moment.

### Compatibility

::: basic_string_view

::: string_view

## Format API

`fmt/format.h` defines the full format API providing additional
formatting functions and locale support.

<a id="format"></a>
::: format(format_string<T...>, T&&...)

::: vformat(string_view, format_args)

::: operator""_a()

### Utilities

::: ptr(T)

::: underlying(Enum)

::: to_string(const T&)

::: group_digits(T)

::: detail::buffer

::: basic_memory_buffer

### System Errors

{fmt} does not use `errno` to communicate errors to the user, but it may
call system functions which set `errno`. Users should not make any
assumptions about the value of `errno` being preserved by library
functions.

::: system_error

::: format_system_error

### Custom Allocators

The {fmt} library supports custom dynamic memory allocators. A custom
allocator class can be specified as a template argument to
[`fmt::basic_memory_buffer`](#basic_memory_buffer):

    using custom_memory_buffer = 
      fmt::basic_memory_buffer<char, fmt::inline_buffer_size, custom_allocator>;

It is also possible to write a formatting function that uses a custom
allocator:

    using custom_string =
      std::basic_string<char, std::char_traits<char>, custom_allocator>;

    auto vformat(custom_allocator alloc, fmt::string_view fmt,
                 fmt::format_args args) -> custom_string {
      auto buf = custom_memory_buffer(alloc);
      fmt::vformat_to(std::back_inserter(buf), fmt, args);
      return custom_string(buf.data(), buf.size(), alloc);
    }

    template <typename ...Args>
    auto format(custom_allocator alloc, fmt::string_view fmt,
                const Args& ... args) -> custom_string {
      return vformat(alloc, fmt, fmt::make_format_args(args...));
    }

The allocator will be used for the output container only. Formatting
functions normally don't do any allocations for built-in and string
types except for non-default floating-point formatting that occasionally
falls back on `sprintf`.

### Locale

All formatting is locale-independent by default. Use the `'L'` format
specifier to insert the appropriate number separator characters from the
locale:

    #include <fmt/core.h>
    #include <locale>

    std::locale::global(std::locale("en_US.UTF-8"));
    auto s = fmt::format("{:L}", 1000000);  // s == "1,000,000"

`fmt/format.h` provides the following overloads of formatting functions
that take `std::locale` as a parameter. The locale type is a template
parameter to avoid the expensive `<locale>` include.

::: format(detail::locale_ref, format_string<T...>, T&&...)

::: format_to(OutputIt, detail::locale_ref, format_string<T...>, T&&...)

::: formatted_size(detail::locale_ref, format_string<T...>, T&&...)

<a id="legacy-checks"></a>
### Legacy Compile-Time Checks

`FMT_STRING` enables compile-time checks on older compilers. It requires
C++14 or later and is a no-op in C++11.

::: FMT_STRING

To force the use of legacy compile-time checks, define the preprocessor
variable `FMT_ENFORCE_COMPILE_STRING`. When set, functions accepting
`FMT_STRING` will fail to compile with regular strings.

<a id="ranges-api"></a>
## Range and Tuple Formatting

`fmt/ranges.h` provides formatting support for ranges and tuples:

    #include <fmt/ranges.h>

    fmt::print("{}", std::tuple<char, int>{'a', 42});
    // Output: ('a', 42)

Using `fmt::join`, you can separate tuple elements with a custom separator:

    #include <fmt/ranges.h>

    auto t = std::tuple<int, char>{1, 'a'};
    fmt::print("{}", fmt::join(t, ", "));
    // Output: 1, a

::: join(Range&&, string_view)

::: join(It, Sentinel, string_view)

::: join(std::initializer_list<T>, string_view)

<a id="chrono-api"></a>
## Date and Time Formatting

`fmt/chrono.h` provides formatters for

- [`std::chrono::duration`](https://en.cppreference.com/w/cpp/chrono/duration)
- [`std::chrono::time_point`](
  https://en.cppreference.com/w/cpp/chrono/time_point)
- [`std::tm`](https://en.cppreference.com/w/cpp/chrono/c/tm)

The format syntax is described in [Chrono Format Specifications](syntax.md#
chrono-format-specifications).

**Example**:

    #include <fmt/chrono.h>

    int main() {
      std::time_t t = std::time(nullptr);

      fmt::print("The date is {:%Y-%m-%d}.", fmt::localtime(t));
      // Output: The date is 2020-11-07.
      // (with 2020-11-07 replaced by the current date)

      using namespace std::literals::chrono_literals;

      fmt::print("Default format: {} {}\n", 42s, 100ms);
      // Output: Default format: 42s 100ms

      fmt::print("strftime-like format: {:%H:%M:%S}\n", 3h + 15min + 30s);
      // Output: strftime-like format: 03:15:30
    }

::: localtime(std::time_t)

::: gmtime(std::time_t)

<a id="std-api"></a>
## Standard Library Types Formatting

`fmt/std.h` provides formatters for:

- [`std::atomic`](https://en.cppreference.com/w/cpp/atomic/atomic)
- [`std::atomic_flag`](https://en.cppreference.com/w/cpp/atomic/atomic_flag)
- [`std::bitset`](https://en.cppreference.com/w/cpp/utility/bitset)
- [`std::error_code`](https://en.cppreference.com/w/cpp/error/error_code)
- [`std::exception`](https://en.cppreference.com/w/cpp/error/exception)
- [`std::filesystem::path`](https://en.cppreference.com/w/cpp/filesystem/path)
- [`std::monostate`](
  https://en.cppreference.com/w/cpp/utility/variant/monostate)
- [`std::optional`](https://en.cppreference.com/w/cpp/utility/optional)
- [`std::source_location`](
  https://en.cppreference.com/w/cpp/utility/source_location)
- [`std::thread::id`](https://en.cppreference.com/w/cpp/thread/thread/id)
- [`std::variant`](https://en.cppreference.com/w/cpp/utility/variant/variant)

::: ptr(const std::unique_ptr<T, Deleter>&)

::: ptr(const std::shared_ptr<T>&)

### Variants

A `std::variant` is only formattable if every variant alternative is
formattable, and requires the `__cpp_lib_variant` [library
feature](https://en.cppreference.com/w/cpp/feature_test).

**Example**:

    #include <fmt/std.h>

    fmt::print("{}", std::variant<char, float>('x'));
    // Output: variant('x')

    fmt::print("{}", std::variant<std::monostate, char>());
    // Output: variant(monostate)

## Bit-Fields and Packed Structs

To format a bit-field or a field of a struct with `__attribute__((packed))`
applied to it, you need to convert it to the underlying or compatible type via
a cast or a unary `+` ([godbolt](https://www.godbolt.org/z/3qKKs6T5Y)):

```c++
struct smol {
  int bit : 1;
};

auto s = smol();
fmt::print("{}", +s.bit);
```

This is a known limitation of "perfect" forwarding in C++.

<a id="compile-api"></a>
## Format String Compilation

`fmt/compile.h` provides format string compilation and compile-time
(`constexpr`) formatting enabled via the `FMT_COMPILE` macro or the `_cf`
user-defined literal defined in namespace `fmt::literals`. Format strings
marked with `FMT_COMPILE` or `_cf` are parsed, checked and converted into
efficient formatting code at compile-time. This supports arguments of built-in
and string types as well as user-defined types with `format` functions taking
the format context type as a template parameter in their `formatter`
specializations. For example:

    template <> struct fmt::formatter<point> {
      constexpr auto parse(format_parse_context& ctx);

      template <typename FormatContext>
      auto format(const point& p, FormatContext& ctx) const;
    };

Format string compilation can generate more binary code compared to the
default API and is only recommended in places where formatting is a
performance bottleneck.

::: FMT_COMPILE

::: operator""_cf

<a id="color-api"></a>
## Terminal Colors and Text Styles

`fmt/color.h` provides support for terminal color and text style output.

::: print(const text_style&, format_string<T...>, T&&...)

::: fg(detail::color_type)

::: bg(detail::color_type)

::: styled(const T&, text_style)

<a id="os-api"></a>
## System APIs

::: ostream

::: windows_error

<a id="ostream-api"></a>
## `std::ostream` Support

`fmt/ostream.h` provides `std::ostream` support including formatting of
user-defined types that have an overloaded insertion operator
(`operator<<`). In order to make a type formattable via `std::ostream`
you should provide a `formatter` specialization inherited from
`ostream_formatter`:

    #include <fmt/ostream.h>

    struct date {
      int year, month, day;

      friend std::ostream& operator<<(std::ostream& os, const date& d) {
        return os << d.year << '-' << d.month << '-' << d.day;
      }
    };

    template <> struct fmt::formatter<date> : ostream_formatter {};

    std::string s = fmt::format("The date is {}", date{2012, 12, 9});
    // s == "The date is 2012-12-9"

::: streamed(const T&)

::: print(std::ostream&, format_string<T...>, T&&...)

<a id="args-api"></a>
## Dynamic Argument Lists

The header `fmt/args.h` provides `dynamic_format_arg_store`, a builder-like API
that can be used to construct format argument lists dynamically.

::: dynamic_format_arg_store

<a id="printf-api"></a>
## Safe `printf`

The header `fmt/printf.h` provides `printf`-like formatting
functionality. The following functions use [printf format string
syntax](https://pubs.opengroup.org/onlinepubs/009695399/functions/fprintf.html)
with the POSIX extension for positional arguments. Unlike their standard
counterparts, the `fmt` functions are type-safe and throw an exception
if an argument type doesn't match its format specification.

::: printf(string_view, const T&...)

::: fprintf(std::FILE*, const S&, const T&...)

::: sprintf(const S&, const T&...)

<a id="xchar-api"></a>
## Wide Strings

The optional header `fmt/xchar.h` provides support for `wchar_t` and
exotic character types.

::: is_char

::: wstring_view

::: wformat_context

::: to_wstring(const T&)

## Compatibility with C++20 `std::format`

{fmt} implements nearly all of the [C++20 formatting
library](https://en.cppreference.com/w/cpp/utility/format) with the
following differences:

- Names are defined in the `fmt` namespace instead of `std` to avoid
  collisions with standard library implementations.
- Width calculation doesn't use grapheme clusterization. The latter has
  been implemented in a separate branch but hasn't been integrated yet.