File: base.h

package info (click to toggle)
fmtlib 11.1.1%2Bds1-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 1,772 kB
  • sloc: cpp: 22,591; ansic: 758; python: 504; sh: 53; makefile: 16; javascript: 4
file content (2954 lines) | stat: -rw-r--r-- 102,366 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
// Formatting library for C++ - the base API for char/UTF-8
//
// Copyright (c) 2012 - present, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.

#ifndef FMT_BASE_H_
#define FMT_BASE_H_

#if defined(FMT_IMPORT_STD) && !defined(FMT_MODULE)
#  define FMT_MODULE
#endif

#ifndef FMT_MODULE
#  include <limits.h>  // CHAR_BIT
#  include <stdio.h>   // FILE
#  include <string.h>  // memcmp

#  include <type_traits>  // std::enable_if
#endif

// The fmt library version in the form major * 10000 + minor * 100 + patch.
#define FMT_VERSION 110101

// Detect compiler versions.
#if defined(__clang__) && !defined(__ibmxl__)
#  define FMT_CLANG_VERSION (__clang_major__ * 100 + __clang_minor__)
#else
#  define FMT_CLANG_VERSION 0
#endif
#if defined(__GNUC__) && !defined(__clang__) && !defined(__INTEL_COMPILER)
#  define FMT_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
#else
#  define FMT_GCC_VERSION 0
#endif
#if defined(__ICL)
#  define FMT_ICC_VERSION __ICL
#elif defined(__INTEL_COMPILER)
#  define FMT_ICC_VERSION __INTEL_COMPILER
#else
#  define FMT_ICC_VERSION 0
#endif
#if defined(_MSC_VER)
#  define FMT_MSC_VERSION _MSC_VER
#else
#  define FMT_MSC_VERSION 0
#endif

// Detect standard library versions.
#ifdef _GLIBCXX_RELEASE
#  define FMT_GLIBCXX_RELEASE _GLIBCXX_RELEASE
#else
#  define FMT_GLIBCXX_RELEASE 0
#endif
#ifdef _LIBCPP_VERSION
#  define FMT_LIBCPP_VERSION _LIBCPP_VERSION
#else
#  define FMT_LIBCPP_VERSION 0
#endif

#ifdef _MSVC_LANG
#  define FMT_CPLUSPLUS _MSVC_LANG
#else
#  define FMT_CPLUSPLUS __cplusplus
#endif

// Detect __has_*.
#ifdef __has_feature
#  define FMT_HAS_FEATURE(x) __has_feature(x)
#else
#  define FMT_HAS_FEATURE(x) 0
#endif
#ifdef __has_include
#  define FMT_HAS_INCLUDE(x) __has_include(x)
#else
#  define FMT_HAS_INCLUDE(x) 0
#endif
#ifdef __has_builtin
#  define FMT_HAS_BUILTIN(x) __has_builtin(x)
#else
#  define FMT_HAS_BUILTIN(x) 0
#endif
#ifdef __has_cpp_attribute
#  define FMT_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x)
#else
#  define FMT_HAS_CPP_ATTRIBUTE(x) 0
#endif

#define FMT_HAS_CPP14_ATTRIBUTE(attribute) \
  (FMT_CPLUSPLUS >= 201402L && FMT_HAS_CPP_ATTRIBUTE(attribute))

#define FMT_HAS_CPP17_ATTRIBUTE(attribute) \
  (FMT_CPLUSPLUS >= 201703L && FMT_HAS_CPP_ATTRIBUTE(attribute))

// Detect C++14 relaxed constexpr.
#ifdef FMT_USE_CONSTEXPR
// Use the provided definition.
#elif FMT_GCC_VERSION >= 600 && FMT_CPLUSPLUS >= 201402L
// GCC only allows throw in constexpr since version 6:
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67371.
#  define FMT_USE_CONSTEXPR 1
#elif FMT_ICC_VERSION
#  define FMT_USE_CONSTEXPR 0  // https://github.com/fmtlib/fmt/issues/1628
#elif FMT_HAS_FEATURE(cxx_relaxed_constexpr) || FMT_MSC_VERSION >= 1912
#  define FMT_USE_CONSTEXPR 1
#else
#  define FMT_USE_CONSTEXPR 0
#endif
#if FMT_USE_CONSTEXPR
#  define FMT_CONSTEXPR constexpr
#else
#  define FMT_CONSTEXPR
#endif

// Detect consteval, C++20 constexpr extensions and std::is_constant_evaluated.
#if !defined(__cpp_lib_is_constant_evaluated)
#  define FMT_USE_CONSTEVAL 0
#elif FMT_CPLUSPLUS < 201709L
#  define FMT_USE_CONSTEVAL 0
#elif FMT_GLIBCXX_RELEASE && FMT_GLIBCXX_RELEASE < 10
#  define FMT_USE_CONSTEVAL 0
#elif FMT_LIBCPP_VERSION && FMT_LIBCPP_VERSION < 10000
#  define FMT_USE_CONSTEVAL 0
#elif defined(__apple_build_version__) && __apple_build_version__ < 14000029L
#  define FMT_USE_CONSTEVAL 0  // consteval is broken in Apple clang < 14.
#elif FMT_MSC_VERSION && FMT_MSC_VERSION < 1929
#  define FMT_USE_CONSTEVAL 0  // consteval is broken in MSVC VS2019 < 16.10.
#elif defined(__cpp_consteval)
#  define FMT_USE_CONSTEVAL 1
#elif FMT_GCC_VERSION >= 1002 || FMT_CLANG_VERSION >= 1101
#  define FMT_USE_CONSTEVAL 1
#else
#  define FMT_USE_CONSTEVAL 0
#endif
#if FMT_USE_CONSTEVAL
#  define FMT_CONSTEVAL consteval
#  define FMT_CONSTEXPR20 constexpr
#else
#  define FMT_CONSTEVAL
#  define FMT_CONSTEXPR20
#endif

// Check if exceptions are disabled.
#ifdef FMT_USE_EXCEPTIONS
// Use the provided definition.
#elif defined(__GNUC__) && !defined(__EXCEPTIONS)
#  define FMT_USE_EXCEPTIONS 0
#elif defined(__clang__) && !defined(__cpp_exceptions)
#  define FMT_USE_EXCEPTIONS 0
#elif FMT_MSC_VERSION && !_HAS_EXCEPTIONS
#  define FMT_USE_EXCEPTIONS 0
#else
#  define FMT_USE_EXCEPTIONS 1
#endif
#if FMT_USE_EXCEPTIONS
#  define FMT_TRY try
#  define FMT_CATCH(x) catch (x)
#else
#  define FMT_TRY if (true)
#  define FMT_CATCH(x) if (false)
#endif

#ifdef FMT_NO_UNIQUE_ADDRESS
// Use the provided definition.
#elif FMT_CPLUSPLUS < 202002L
// Not supported.
#elif FMT_HAS_CPP_ATTRIBUTE(no_unique_address)
#  define FMT_NO_UNIQUE_ADDRESS [[no_unique_address]]
// VS2019 v16.10 and later except clang-cl (https://reviews.llvm.org/D110485).
#elif FMT_MSC_VERSION >= 1929 && !FMT_CLANG_VERSION
#  define FMT_NO_UNIQUE_ADDRESS [[msvc::no_unique_address]]
#endif
#ifndef FMT_NO_UNIQUE_ADDRESS
#  define FMT_NO_UNIQUE_ADDRESS
#endif

#if FMT_HAS_CPP17_ATTRIBUTE(fallthrough)
#  define FMT_FALLTHROUGH [[fallthrough]]
#elif defined(__clang__)
#  define FMT_FALLTHROUGH [[clang::fallthrough]]
#elif FMT_GCC_VERSION >= 700 && \
    (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= 520)
#  define FMT_FALLTHROUGH [[gnu::fallthrough]]
#else
#  define FMT_FALLTHROUGH
#endif

// Disable [[noreturn]] on MSVC/NVCC because of bogus unreachable code warnings.
#if FMT_HAS_CPP_ATTRIBUTE(noreturn) && !FMT_MSC_VERSION && !defined(__NVCC__)
#  define FMT_NORETURN [[noreturn]]
#else
#  define FMT_NORETURN
#endif

#ifdef FMT_NODISCARD
// Use the provided definition.
#elif FMT_HAS_CPP17_ATTRIBUTE(nodiscard)
#  define FMT_NODISCARD [[nodiscard]]
#else
#  define FMT_NODISCARD
#endif

#ifdef FMT_DEPRECATED
// Use the provided definition.
#elif FMT_HAS_CPP14_ATTRIBUTE(deprecated)
#  define FMT_DEPRECATED [[deprecated]]
#else
#  define FMT_DEPRECATED /* deprecated */
#endif

#ifdef FMT_ALWAYS_INLINE
// Use the provided definition.
#elif FMT_GCC_VERSION || FMT_CLANG_VERSION
#  define FMT_ALWAYS_INLINE inline __attribute__((always_inline))
#else
#  define FMT_ALWAYS_INLINE inline
#endif
// A version of FMT_ALWAYS_INLINE to prevent code bloat in debug mode.
#ifdef NDEBUG
#  define FMT_INLINE FMT_ALWAYS_INLINE
#else
#  define FMT_INLINE inline
#endif

#if FMT_GCC_VERSION || FMT_CLANG_VERSION
#  define FMT_VISIBILITY(value) __attribute__((visibility(value)))
#else
#  define FMT_VISIBILITY(value)
#endif

// Detect pragmas.
#define FMT_PRAGMA_IMPL(x) _Pragma(#x)
#if FMT_GCC_VERSION >= 504 && !defined(__NVCOMPILER)
// Workaround a _Pragma bug https://gcc.gnu.org/bugzilla/show_bug.cgi?id=59884
// and an nvhpc warning: https://github.com/fmtlib/fmt/pull/2582.
#  define FMT_PRAGMA_GCC(x) FMT_PRAGMA_IMPL(GCC x)
#else
#  define FMT_PRAGMA_GCC(x)
#endif
#if FMT_CLANG_VERSION
#  define FMT_PRAGMA_CLANG(x) FMT_PRAGMA_IMPL(clang x)
#else
#  define FMT_PRAGMA_CLANG(x)
#endif
#if FMT_MSC_VERSION
#  define FMT_MSC_WARNING(...) __pragma(warning(__VA_ARGS__))
#else
#  define FMT_MSC_WARNING(...)
#endif

#ifndef FMT_BEGIN_NAMESPACE
#  define FMT_BEGIN_NAMESPACE \
    namespace fmt {           \
    inline namespace v11 {
#  define FMT_END_NAMESPACE \
    }                       \
    }
#endif

#ifndef FMT_EXPORT
#  define FMT_EXPORT
#  define FMT_BEGIN_EXPORT
#  define FMT_END_EXPORT
#endif

#ifdef _WIN32
#  define FMT_WIN32 1
#else
#  define FMT_WIN32 0
#endif

#if !defined(FMT_HEADER_ONLY) && FMT_WIN32
#  if defined(FMT_LIB_EXPORT)
#    define FMT_API __declspec(dllexport)
#  elif defined(FMT_SHARED)
#    define FMT_API __declspec(dllimport)
#  endif
#elif defined(FMT_LIB_EXPORT) || defined(FMT_SHARED)
#  define FMT_API FMT_VISIBILITY("default")
#endif
#ifndef FMT_API
#  define FMT_API
#endif

#ifndef FMT_OPTIMIZE_SIZE
#  define FMT_OPTIMIZE_SIZE 0
#endif

// FMT_BUILTIN_TYPE=0 may result in smaller library size at the cost of higher
// per-call binary size by passing built-in types through the extension API.
#ifndef FMT_BUILTIN_TYPES
#  define FMT_BUILTIN_TYPES 1
#endif

#define FMT_APPLY_VARIADIC(expr) \
  using ignore = int[];          \
  (void)ignore { 0, (expr, 0)... }

// Enable minimal optimizations for more compact code in debug mode.
FMT_PRAGMA_GCC(push_options)
#if !defined(__OPTIMIZE__) && !defined(__CUDACC__)
FMT_PRAGMA_GCC(optimize("Og"))
#endif
FMT_PRAGMA_CLANG(diagnostic push)

FMT_BEGIN_NAMESPACE

// Implementations of enable_if_t and other metafunctions for older systems.
template <bool B, typename T = void>
using enable_if_t = typename std::enable_if<B, T>::type;
template <bool B, typename T, typename F>
using conditional_t = typename std::conditional<B, T, F>::type;
template <bool B> using bool_constant = std::integral_constant<bool, B>;
template <typename T>
using remove_reference_t = typename std::remove_reference<T>::type;
template <typename T>
using remove_const_t = typename std::remove_const<T>::type;
template <typename T>
using remove_cvref_t = typename std::remove_cv<remove_reference_t<T>>::type;
template <typename T>
using make_unsigned_t = typename std::make_unsigned<T>::type;
template <typename T>
using underlying_t = typename std::underlying_type<T>::type;
template <typename T> using decay_t = typename std::decay<T>::type;
using nullptr_t = decltype(nullptr);

#if FMT_GCC_VERSION && FMT_GCC_VERSION < 500
// A workaround for gcc 4.9 to make void_t work in a SFINAE context.
template <typename...> struct void_t_impl {
  using type = void;
};
template <typename... T> using void_t = typename void_t_impl<T...>::type;
#else
template <typename...> using void_t = void;
#endif

struct monostate {
  constexpr monostate() {}
};

// An enable_if helper to be used in template parameters which results in much
// shorter symbols: https://godbolt.org/z/sWw4vP. Extra parentheses are needed
// to workaround a bug in MSVC 2019 (see #1140 and #1186).
#ifdef FMT_DOC
#  define FMT_ENABLE_IF(...)
#else
#  define FMT_ENABLE_IF(...) fmt::enable_if_t<(__VA_ARGS__), int> = 0
#endif

template <typename T> constexpr auto min_of(T a, T b) -> T {
  return a < b ? a : b;
}
template <typename T> constexpr auto max_of(T a, T b) -> T {
  return a > b ? a : b;
}

namespace detail {
// Suppresses "unused variable" warnings with the method described in
// https://herbsutter.com/2009/10/18/mailbag-shutting-up-compiler-warnings/.
// (void)var does not work on many Intel compilers.
template <typename... T> FMT_CONSTEXPR void ignore_unused(const T&...) {}

constexpr auto is_constant_evaluated(bool default_value = false) noexcept
    -> bool {
// Workaround for incompatibility between clang 14 and libstdc++ consteval-based
// std::is_constant_evaluated: https://github.com/fmtlib/fmt/issues/3247.
#if FMT_CPLUSPLUS >= 202002L && FMT_GLIBCXX_RELEASE >= 12 && \
    (FMT_CLANG_VERSION >= 1400 && FMT_CLANG_VERSION < 1500)
  ignore_unused(default_value);
  return __builtin_is_constant_evaluated();
#elif defined(__cpp_lib_is_constant_evaluated)
  ignore_unused(default_value);
  return std::is_constant_evaluated();
#else
  return default_value;
#endif
}

// Suppresses "conditional expression is constant" warnings.
template <typename T> FMT_ALWAYS_INLINE constexpr auto const_check(T val) -> T {
  return val;
}

FMT_NORETURN FMT_API void assert_fail(const char* file, int line,
                                      const char* message);

#if defined(FMT_ASSERT)
// Use the provided definition.
#elif defined(NDEBUG)
// FMT_ASSERT is not empty to avoid -Wempty-body.
#  define FMT_ASSERT(condition, message) \
    fmt::detail::ignore_unused((condition), (message))
#else
#  define FMT_ASSERT(condition, message)                                    \
    ((condition) /* void() fails with -Winvalid-constexpr on clang 4.0.1 */ \
         ? (void)0                                                          \
         : fmt::detail::assert_fail(__FILE__, __LINE__, (message)))
#endif

#ifdef FMT_USE_INT128
// Use the provided definition.
#elif defined(__SIZEOF_INT128__) && !defined(__NVCC__) && \
    !(FMT_CLANG_VERSION && FMT_MSC_VERSION)
#  define FMT_USE_INT128 1
using int128_opt = __int128_t;  // An optional native 128-bit integer.
using uint128_opt = __uint128_t;
inline auto map(int128_opt x) -> int128_opt { return x; }
inline auto map(uint128_opt x) -> uint128_opt { return x; }
#else
#  define FMT_USE_INT128 0
#endif
#if !FMT_USE_INT128
enum class int128_opt {};
enum class uint128_opt {};
// Reduce template instantiations.
inline auto map(int128_opt) -> monostate { return {}; }
inline auto map(uint128_opt) -> monostate { return {}; }
#endif

#ifndef FMT_USE_BITINT
#  define FMT_USE_BITINT (FMT_CLANG_VERSION >= 1500)
#endif

#if FMT_USE_BITINT
FMT_PRAGMA_CLANG(diagnostic ignored "-Wbit-int-extension")
template <int N> using bitint = _BitInt(N);
template <int N> using ubitint = unsigned _BitInt(N);
#else
template <int N> struct bitint {};
template <int N> struct ubitint {};
#endif  // FMT_USE_BITINT

// Casts a nonnegative integer to unsigned.
template <typename Int>
FMT_CONSTEXPR auto to_unsigned(Int value) -> make_unsigned_t<Int> {
  FMT_ASSERT(std::is_unsigned<Int>::value || value >= 0, "negative value");
  return static_cast<make_unsigned_t<Int>>(value);
}

template <typename Char>
using unsigned_char = conditional_t<sizeof(Char) == 1, unsigned char, unsigned>;

// A heuristic to detect std::string and std::[experimental::]string_view.
// It is mainly used to avoid dependency on <[experimental/]string_view>.
template <typename T, typename Enable = void>
struct is_std_string_like : std::false_type {};
template <typename T>
struct is_std_string_like<T, void_t<decltype(std::declval<T>().find_first_of(
                                 typename T::value_type(), 0))>>
    : std::is_convertible<decltype(std::declval<T>().data()),
                          const typename T::value_type*> {};

// Check if the literal encoding is UTF-8.
enum { is_utf8_enabled = "\u00A7"[1] == '\xA7' };
enum { use_utf8 = !FMT_WIN32 || is_utf8_enabled };

#ifndef FMT_UNICODE
#  define FMT_UNICODE 1
#endif

static_assert(!FMT_UNICODE || use_utf8,
              "Unicode support requires compiling with /utf-8");

template <typename T> constexpr const char* narrow(const T*) { return nullptr; }
constexpr FMT_ALWAYS_INLINE const char* narrow(const char* s) { return s; }

template <typename Char>
FMT_CONSTEXPR auto compare(const Char* s1, const Char* s2, std::size_t n)
    -> int {
  if (!is_constant_evaluated() && sizeof(Char) == 1) return memcmp(s1, s2, n);
  for (; n != 0; ++s1, ++s2, --n) {
    if (*s1 < *s2) return -1;
    if (*s1 > *s2) return 1;
  }
  return 0;
}

namespace adl {
using namespace std;

template <typename Container>
auto invoke_back_inserter()
    -> decltype(back_inserter(std::declval<Container&>()));
}  // namespace adl

template <typename It, typename Enable = std::true_type>
struct is_back_insert_iterator : std::false_type {};

template <typename It>
struct is_back_insert_iterator<
    It, bool_constant<std::is_same<
            decltype(adl::invoke_back_inserter<typename It::container_type>()),
            It>::value>> : std::true_type {};

// Extracts a reference to the container from *insert_iterator.
template <typename OutputIt>
inline FMT_CONSTEXPR20 auto get_container(OutputIt it) ->
    typename OutputIt::container_type& {
  struct accessor : OutputIt {
    FMT_CONSTEXPR20 accessor(OutputIt base) : OutputIt(base) {}
    using OutputIt::container;
  };
  return *accessor(it).container;
}
}  // namespace detail

// Parsing-related public API and forward declarations.
FMT_BEGIN_EXPORT

/**
 * An implementation of `std::basic_string_view` for pre-C++17. It provides a
 * subset of the API. `fmt::basic_string_view` is used for format strings even
 * if `std::basic_string_view` is available to prevent issues when a library is
 * compiled with a different `-std` option than the client code (which is not
 * recommended).
 */
template <typename Char> class basic_string_view {
 private:
  const Char* data_;
  size_t size_;

 public:
  using value_type = Char;
  using iterator = const Char*;

  constexpr basic_string_view() noexcept : data_(nullptr), size_(0) {}

  /// Constructs a string reference object from a C string and a size.
  constexpr basic_string_view(const Char* s, size_t count) noexcept
      : data_(s), size_(count) {}

  constexpr basic_string_view(nullptr_t) = delete;

  /// Constructs a string reference object from a C string.
#if FMT_GCC_VERSION
  FMT_ALWAYS_INLINE
#endif
  FMT_CONSTEXPR20 basic_string_view(const Char* s) : data_(s) {
#if FMT_HAS_BUILTIN(__buitin_strlen) || FMT_GCC_VERSION || FMT_CLANG_VERSION
    if (std::is_same<Char, char>::value) {
      size_ = __builtin_strlen(detail::narrow(s));
      return;
    }
#endif
    size_t len = 0;
    while (*s++) ++len;
    size_ = len;
  }

  /// Constructs a string reference from a `std::basic_string` or a
  /// `std::basic_string_view` object.
  template <typename S,
            FMT_ENABLE_IF(detail::is_std_string_like<S>::value&& std::is_same<
                          typename S::value_type, Char>::value)>
  FMT_CONSTEXPR basic_string_view(const S& s) noexcept
      : data_(s.data()), size_(s.size()) {}

  /// Returns a pointer to the string data.
  constexpr auto data() const noexcept -> const Char* { return data_; }

  /// Returns the string size.
  constexpr auto size() const noexcept -> size_t { return size_; }

  constexpr auto begin() const noexcept -> iterator { return data_; }
  constexpr auto end() const noexcept -> iterator { return data_ + size_; }

  constexpr auto operator[](size_t pos) const noexcept -> const Char& {
    return data_[pos];
  }

  FMT_CONSTEXPR void remove_prefix(size_t n) noexcept {
    data_ += n;
    size_ -= n;
  }

  FMT_CONSTEXPR auto starts_with(basic_string_view<Char> sv) const noexcept
      -> bool {
    return size_ >= sv.size_ && detail::compare(data_, sv.data_, sv.size_) == 0;
  }
  FMT_CONSTEXPR auto starts_with(Char c) const noexcept -> bool {
    return size_ >= 1 && *data_ == c;
  }
  FMT_CONSTEXPR auto starts_with(const Char* s) const -> bool {
    return starts_with(basic_string_view<Char>(s));
  }

  // Lexicographically compare this string reference to other.
  FMT_CONSTEXPR auto compare(basic_string_view other) const -> int {
    int result =
        detail::compare(data_, other.data_, min_of(size_, other.size_));
    if (result != 0) return result;
    return size_ == other.size_ ? 0 : (size_ < other.size_ ? -1 : 1);
  }

  FMT_CONSTEXPR friend auto operator==(basic_string_view lhs,
                                       basic_string_view rhs) -> bool {
    return lhs.compare(rhs) == 0;
  }
  friend auto operator!=(basic_string_view lhs, basic_string_view rhs) -> bool {
    return lhs.compare(rhs) != 0;
  }
  friend auto operator<(basic_string_view lhs, basic_string_view rhs) -> bool {
    return lhs.compare(rhs) < 0;
  }
  friend auto operator<=(basic_string_view lhs, basic_string_view rhs) -> bool {
    return lhs.compare(rhs) <= 0;
  }
  friend auto operator>(basic_string_view lhs, basic_string_view rhs) -> bool {
    return lhs.compare(rhs) > 0;
  }
  friend auto operator>=(basic_string_view lhs, basic_string_view rhs) -> bool {
    return lhs.compare(rhs) >= 0;
  }
};

using string_view = basic_string_view<char>;

/// Specifies if `T` is an extended character type. Can be specialized by users.
template <typename T> struct is_xchar : std::false_type {};
template <> struct is_xchar<wchar_t> : std::true_type {};
template <> struct is_xchar<char16_t> : std::true_type {};
template <> struct is_xchar<char32_t> : std::true_type {};
#ifdef __cpp_char8_t
template <> struct is_xchar<char8_t> : std::true_type {};
#endif

// DEPRECATED! Will be replaced with an alias to prevent specializations.
template <typename T> struct is_char : is_xchar<T> {};
template <> struct is_char<char> : std::true_type {};

template <typename T> class basic_appender;
using appender = basic_appender<char>;

// Checks whether T is a container with contiguous storage.
template <typename T> struct is_contiguous : std::false_type {};

class context;
template <typename OutputIt, typename Char> class generic_context;
template <typename Char> class parse_context;

// Longer aliases for C++20 compatibility.
template <typename Char> using basic_format_parse_context = parse_context<Char>;
using format_parse_context = parse_context<char>;
template <typename OutputIt, typename Char>
using basic_format_context =
    conditional_t<std::is_same<OutputIt, appender>::value, context,
                  generic_context<OutputIt, Char>>;
using format_context = context;

template <typename Char>
using buffered_context =
    conditional_t<std::is_same<Char, char>::value, context,
                  generic_context<basic_appender<Char>, Char>>;

template <typename Context> class basic_format_arg;
template <typename Context> class basic_format_args;

// A separate type would result in shorter symbols but break ABI compatibility
// between clang and gcc on ARM (#1919).
using format_args = basic_format_args<context>;

// A formatter for objects of type T.
template <typename T, typename Char = char, typename Enable = void>
struct formatter {
  // A deleted default constructor indicates a disabled formatter.
  formatter() = delete;
};

/// Reports a format error at compile time or, via a `format_error` exception,
/// at runtime.
// This function is intentionally not constexpr to give a compile-time error.
FMT_NORETURN FMT_API void report_error(const char* message);

enum class presentation_type : unsigned char {
  // Common specifiers:
  none = 0,
  debug = 1,   // '?'
  string = 2,  // 's' (string, bool)

  // Integral, bool and character specifiers:
  dec = 3,  // 'd'
  hex,      // 'x' or 'X'
  oct,      // 'o'
  bin,      // 'b' or 'B'
  chr,      // 'c'

  // String and pointer specifiers:
  pointer = 3,  // 'p'

  // Floating-point specifiers:
  exp = 1,  // 'e' or 'E' (1 since there is no FP debug presentation)
  fixed,    // 'f' or 'F'
  general,  // 'g' or 'G'
  hexfloat  // 'a' or 'A'
};

enum class align { none, left, right, center, numeric };
enum class sign { none, minus, plus, space };
enum class arg_id_kind { none, index, name };

// Basic format specifiers for built-in and string types.
class basic_specs {
 private:
  // Data is arranged as follows:
  //
  //  0                   1                   2                   3
  //  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  // |type |align| w | p | s |u|#|L|  f  |          unused           |
  // +-----+-----+---+---+---+-+-+-+-----+---------------------------+
  //
  //   w - dynamic width info
  //   p - dynamic precision info
  //   s - sign
  //   u - uppercase (e.g. 'X' for 'x')
  //   # - alternate form ('#')
  //   L - localized
  //   f - fill size
  //
  // Bitfields are not used because of compiler bugs such as gcc bug 61414.
  enum : unsigned {
    type_mask = 0x00007,
    align_mask = 0x00038,
    width_mask = 0x000C0,
    precision_mask = 0x00300,
    sign_mask = 0x00C00,
    uppercase_mask = 0x01000,
    alternate_mask = 0x02000,
    localized_mask = 0x04000,
    fill_size_mask = 0x38000,

    align_shift = 3,
    width_shift = 6,
    precision_shift = 8,
    sign_shift = 10,
    fill_size_shift = 15,

    max_fill_size = 4
  };

  size_t data_ = 1 << fill_size_shift;

  // Character (code unit) type is erased to prevent template bloat.
  char fill_data_[max_fill_size] = {' '};

  FMT_CONSTEXPR void set_fill_size(size_t size) {
    data_ = (data_ & ~fill_size_mask) | (size << fill_size_shift);
  }

 public:
  constexpr auto type() const -> presentation_type {
    return static_cast<presentation_type>(data_ & type_mask);
  }
  FMT_CONSTEXPR void set_type(presentation_type t) {
    data_ = (data_ & ~type_mask) | static_cast<unsigned>(t);
  }

  constexpr auto align() const -> align {
    return static_cast<fmt::align>((data_ & align_mask) >> align_shift);
  }
  FMT_CONSTEXPR void set_align(fmt::align a) {
    data_ = (data_ & ~align_mask) | (static_cast<unsigned>(a) << align_shift);
  }

  constexpr auto dynamic_width() const -> arg_id_kind {
    return static_cast<arg_id_kind>((data_ & width_mask) >> width_shift);
  }
  FMT_CONSTEXPR void set_dynamic_width(arg_id_kind w) {
    data_ = (data_ & ~width_mask) | (static_cast<unsigned>(w) << width_shift);
  }

  FMT_CONSTEXPR auto dynamic_precision() const -> arg_id_kind {
    return static_cast<arg_id_kind>((data_ & precision_mask) >>
                                    precision_shift);
  }
  FMT_CONSTEXPR void set_dynamic_precision(arg_id_kind p) {
    data_ = (data_ & ~precision_mask) |
            (static_cast<unsigned>(p) << precision_shift);
  }

  constexpr bool dynamic() const {
    return (data_ & (width_mask | precision_mask)) != 0;
  }

  constexpr auto sign() const -> sign {
    return static_cast<fmt::sign>((data_ & sign_mask) >> sign_shift);
  }
  FMT_CONSTEXPR void set_sign(fmt::sign s) {
    data_ = (data_ & ~sign_mask) | (static_cast<unsigned>(s) << sign_shift);
  }

  constexpr auto upper() const -> bool { return (data_ & uppercase_mask) != 0; }
  FMT_CONSTEXPR void set_upper() { data_ |= uppercase_mask; }

  constexpr auto alt() const -> bool { return (data_ & alternate_mask) != 0; }
  FMT_CONSTEXPR void set_alt() { data_ |= alternate_mask; }
  FMT_CONSTEXPR void clear_alt() { data_ &= ~alternate_mask; }

  constexpr auto localized() const -> bool {
    return (data_ & localized_mask) != 0;
  }
  FMT_CONSTEXPR void set_localized() { data_ |= localized_mask; }

  constexpr auto fill_size() const -> size_t {
    return (data_ & fill_size_mask) >> fill_size_shift;
  }

  template <typename Char, FMT_ENABLE_IF(std::is_same<Char, char>::value)>
  constexpr auto fill() const -> const Char* {
    return fill_data_;
  }
  template <typename Char, FMT_ENABLE_IF(!std::is_same<Char, char>::value)>
  constexpr auto fill() const -> const Char* {
    return nullptr;
  }

  template <typename Char> constexpr auto fill_unit() const -> Char {
    using uchar = unsigned char;
    return static_cast<Char>(static_cast<uchar>(fill_data_[0]) |
                             (static_cast<uchar>(fill_data_[1]) << 8) |
                             (static_cast<uchar>(fill_data_[2]) << 16));
  }

  FMT_CONSTEXPR void set_fill(char c) {
    fill_data_[0] = c;
    set_fill_size(1);
  }

  template <typename Char>
  FMT_CONSTEXPR void set_fill(basic_string_view<Char> s) {
    auto size = s.size();
    set_fill_size(size);
    if (size == 1) {
      unsigned uchar = static_cast<detail::unsigned_char<Char>>(s[0]);
      fill_data_[0] = static_cast<char>(uchar);
      fill_data_[1] = static_cast<char>(uchar >> 8);
      fill_data_[2] = static_cast<char>(uchar >> 16);
      return;
    }
    FMT_ASSERT(size <= max_fill_size, "invalid fill");
    for (size_t i = 0; i < size; ++i)
      fill_data_[i & 3] = static_cast<char>(s[i]);
  }
};

// Format specifiers for built-in and string types.
struct format_specs : basic_specs {
  int width;
  int precision;

  constexpr format_specs() : width(0), precision(-1) {}
};

/**
 * Parsing context consisting of a format string range being parsed and an
 * argument counter for automatic indexing.
 */
template <typename Char = char> class parse_context {
 private:
  basic_string_view<Char> fmt_;
  int next_arg_id_;

  enum { use_constexpr_cast = !FMT_GCC_VERSION || FMT_GCC_VERSION >= 1200 };

  FMT_CONSTEXPR void do_check_arg_id(int arg_id);

 public:
  using char_type = Char;
  using iterator = const Char*;

  constexpr explicit parse_context(basic_string_view<Char> fmt,
                                   int next_arg_id = 0)
      : fmt_(fmt), next_arg_id_(next_arg_id) {}

  /// Returns an iterator to the beginning of the format string range being
  /// parsed.
  constexpr auto begin() const noexcept -> iterator { return fmt_.begin(); }

  /// Returns an iterator past the end of the format string range being parsed.
  constexpr auto end() const noexcept -> iterator { return fmt_.end(); }

  /// Advances the begin iterator to `it`.
  FMT_CONSTEXPR void advance_to(iterator it) {
    fmt_.remove_prefix(detail::to_unsigned(it - begin()));
  }

  /// Reports an error if using the manual argument indexing; otherwise returns
  /// the next argument index and switches to the automatic indexing.
  FMT_CONSTEXPR auto next_arg_id() -> int {
    if (next_arg_id_ < 0) {
      report_error("cannot switch from manual to automatic argument indexing");
      return 0;
    }
    int id = next_arg_id_++;
    do_check_arg_id(id);
    return id;
  }

  /// Reports an error if using the automatic argument indexing; otherwise
  /// switches to the manual indexing.
  FMT_CONSTEXPR void check_arg_id(int id) {
    if (next_arg_id_ > 0) {
      report_error("cannot switch from automatic to manual argument indexing");
      return;
    }
    next_arg_id_ = -1;
    do_check_arg_id(id);
  }
  FMT_CONSTEXPR void check_arg_id(basic_string_view<Char>) {
    next_arg_id_ = -1;
  }
  FMT_CONSTEXPR void check_dynamic_spec(int arg_id);
};

FMT_END_EXPORT

namespace detail {

// Constructs fmt::basic_string_view<Char> from types implicitly convertible
// to it, deducing Char. Explicitly convertible types such as the ones returned
// from FMT_STRING are intentionally excluded.
template <typename Char, FMT_ENABLE_IF(is_char<Char>::value)>
constexpr auto to_string_view(const Char* s) -> basic_string_view<Char> {
  return s;
}
template <typename T, FMT_ENABLE_IF(is_std_string_like<T>::value)>
constexpr auto to_string_view(const T& s)
    -> basic_string_view<typename T::value_type> {
  return s;
}
template <typename Char>
constexpr auto to_string_view(basic_string_view<Char> s)
    -> basic_string_view<Char> {
  return s;
}

template <typename T, typename Enable = void>
struct has_to_string_view : std::false_type {};
// detail:: is intentional since to_string_view is not an extension point.
template <typename T>
struct has_to_string_view<
    T, void_t<decltype(detail::to_string_view(std::declval<T>()))>>
    : std::true_type {};

/// String's character (code unit) type. detail:: is intentional to prevent ADL.
template <typename S,
          typename V = decltype(detail::to_string_view(std::declval<S>()))>
using char_t = typename V::value_type;

enum class type {
  none_type,
  // Integer types should go first,
  int_type,
  uint_type,
  long_long_type,
  ulong_long_type,
  int128_type,
  uint128_type,
  bool_type,
  char_type,
  last_integer_type = char_type,
  // followed by floating-point types.
  float_type,
  double_type,
  long_double_type,
  last_numeric_type = long_double_type,
  cstring_type,
  string_type,
  pointer_type,
  custom_type
};

// Maps core type T to the corresponding type enum constant.
template <typename T, typename Char>
struct type_constant : std::integral_constant<type, type::custom_type> {};

#define FMT_TYPE_CONSTANT(Type, constant) \
  template <typename Char>                \
  struct type_constant<Type, Char>        \
      : std::integral_constant<type, type::constant> {}

FMT_TYPE_CONSTANT(int, int_type);
FMT_TYPE_CONSTANT(unsigned, uint_type);
FMT_TYPE_CONSTANT(long long, long_long_type);
FMT_TYPE_CONSTANT(unsigned long long, ulong_long_type);
FMT_TYPE_CONSTANT(int128_opt, int128_type);
FMT_TYPE_CONSTANT(uint128_opt, uint128_type);
FMT_TYPE_CONSTANT(bool, bool_type);
FMT_TYPE_CONSTANT(Char, char_type);
FMT_TYPE_CONSTANT(float, float_type);
FMT_TYPE_CONSTANT(double, double_type);
FMT_TYPE_CONSTANT(long double, long_double_type);
FMT_TYPE_CONSTANT(const Char*, cstring_type);
FMT_TYPE_CONSTANT(basic_string_view<Char>, string_type);
FMT_TYPE_CONSTANT(const void*, pointer_type);

constexpr auto is_integral_type(type t) -> bool {
  return t > type::none_type && t <= type::last_integer_type;
}
constexpr auto is_arithmetic_type(type t) -> bool {
  return t > type::none_type && t <= type::last_numeric_type;
}

constexpr auto set(type rhs) -> int { return 1 << static_cast<int>(rhs); }
constexpr auto in(type t, int set) -> bool {
  return ((set >> static_cast<int>(t)) & 1) != 0;
}

// Bitsets of types.
enum {
  sint_set =
      set(type::int_type) | set(type::long_long_type) | set(type::int128_type),
  uint_set = set(type::uint_type) | set(type::ulong_long_type) |
             set(type::uint128_type),
  bool_set = set(type::bool_type),
  char_set = set(type::char_type),
  float_set = set(type::float_type) | set(type::double_type) |
              set(type::long_double_type),
  string_set = set(type::string_type),
  cstring_set = set(type::cstring_type),
  pointer_set = set(type::pointer_type)
};

struct view {};

template <typename Char, typename T> struct named_arg;
template <typename T> struct is_named_arg : std::false_type {};
template <typename T> struct is_static_named_arg : std::false_type {};

template <typename Char, typename T>
struct is_named_arg<named_arg<Char, T>> : std::true_type {};

template <typename Char, typename T> struct named_arg : view {
  const Char* name;
  const T& value;

  named_arg(const Char* n, const T& v) : name(n), value(v) {}
  static_assert(!is_named_arg<T>::value, "nested named arguments");
};

template <bool B = false> constexpr auto count() -> int { return B ? 1 : 0; }
template <bool B1, bool B2, bool... Tail> constexpr auto count() -> int {
  return (B1 ? 1 : 0) + count<B2, Tail...>();
}

template <typename... Args> constexpr auto count_named_args() -> int {
  return count<is_named_arg<Args>::value...>();
}
template <typename... Args> constexpr auto count_static_named_args() -> int {
  return count<is_static_named_arg<Args>::value...>();
}

template <typename Char> struct named_arg_info {
  const Char* name;
  int id;
};

template <typename Char, typename T, FMT_ENABLE_IF(!is_named_arg<T>::value)>
void init_named_arg(named_arg_info<Char>*, int& arg_index, int&, const T&) {
  ++arg_index;
}
template <typename Char, typename T, FMT_ENABLE_IF(is_named_arg<T>::value)>
void init_named_arg(named_arg_info<Char>* named_args, int& arg_index,
                    int& named_arg_index, const T& arg) {
  named_args[named_arg_index++] = {arg.name, arg_index++};
}

template <typename T, typename Char,
          FMT_ENABLE_IF(!is_static_named_arg<T>::value)>
FMT_CONSTEXPR void init_static_named_arg(named_arg_info<Char>*, int& arg_index,
                                         int&) {
  ++arg_index;
}
template <typename T, typename Char,
          FMT_ENABLE_IF(is_static_named_arg<T>::value)>
FMT_CONSTEXPR void init_static_named_arg(named_arg_info<Char>* named_args,
                                         int& arg_index, int& named_arg_index) {
  named_args[named_arg_index++] = {T::name, arg_index++};
}

// To minimize the number of types we need to deal with, long is translated
// either to int or to long long depending on its size.
enum { long_short = sizeof(long) == sizeof(int) };
using long_type = conditional_t<long_short, int, long long>;
using ulong_type = conditional_t<long_short, unsigned, unsigned long long>;

template <typename T>
using format_as_result =
    remove_cvref_t<decltype(format_as(std::declval<const T&>()))>;
template <typename T>
using format_as_member_result =
    remove_cvref_t<decltype(formatter<T>::format_as(std::declval<const T&>()))>;

template <typename T, typename Enable = std::true_type>
struct use_format_as : std::false_type {};
// format_as member is only used to avoid injection into the std namespace.
template <typename T, typename Enable = std::true_type>
struct use_format_as_member : std::false_type {};

// Only map owning types because mapping views can be unsafe.
template <typename T>
struct use_format_as<
    T, bool_constant<std::is_arithmetic<format_as_result<T>>::value>>
    : std::true_type {};
template <typename T>
struct use_format_as_member<
    T, bool_constant<std::is_arithmetic<format_as_member_result<T>>::value>>
    : std::true_type {};

template <typename T, typename U = remove_const_t<T>>
using use_formatter =
    bool_constant<(std::is_class<T>::value || std::is_enum<T>::value ||
                   std::is_union<T>::value || std::is_array<T>::value) &&
                  !has_to_string_view<T>::value && !is_named_arg<T>::value &&
                  !use_format_as<T>::value && !use_format_as_member<T>::value>;

template <typename Char, typename T, typename U = remove_const_t<T>>
auto has_formatter_impl(T* p, buffered_context<Char>* ctx = nullptr)
    -> decltype(formatter<U, Char>().format(*p, *ctx), std::true_type());
template <typename Char> auto has_formatter_impl(...) -> std::false_type;

// T can be const-qualified to check if it is const-formattable.
template <typename T, typename Char> constexpr auto has_formatter() -> bool {
  return decltype(has_formatter_impl<Char>(static_cast<T*>(nullptr)))::value;
}

// Maps formatting argument types to natively supported types or user-defined
// types with formatters. Returns void on errors to be SFINAE-friendly.
template <typename Char> struct type_mapper {
  static auto map(signed char) -> int;
  static auto map(unsigned char) -> unsigned;
  static auto map(short) -> int;
  static auto map(unsigned short) -> unsigned;
  static auto map(int) -> int;
  static auto map(unsigned) -> unsigned;
  static auto map(long) -> long_type;
  static auto map(unsigned long) -> ulong_type;
  static auto map(long long) -> long long;
  static auto map(unsigned long long) -> unsigned long long;
  static auto map(int128_opt) -> int128_opt;
  static auto map(uint128_opt) -> uint128_opt;
  static auto map(bool) -> bool;

  template <int N>
  static auto map(bitint<N>) -> conditional_t<N <= 64, long long, void>;
  template <int N>
  static auto map(ubitint<N>)
      -> conditional_t<N <= 64, unsigned long long, void>;

  template <typename T, FMT_ENABLE_IF(is_char<T>::value)>
  static auto map(T) -> conditional_t<
      std::is_same<T, char>::value || std::is_same<T, Char>::value, Char, void>;

  static auto map(float) -> float;
  static auto map(double) -> double;
  static auto map(long double) -> long double;

  static auto map(Char*) -> const Char*;
  static auto map(const Char*) -> const Char*;
  template <typename T, typename C = char_t<T>,
            FMT_ENABLE_IF(!std::is_pointer<T>::value)>
  static auto map(const T&) -> conditional_t<std::is_same<C, Char>::value,
                                             basic_string_view<C>, void>;

  static auto map(void*) -> const void*;
  static auto map(const void*) -> const void*;
  static auto map(volatile void*) -> const void*;
  static auto map(const volatile void*) -> const void*;
  static auto map(nullptr_t) -> const void*;
  template <typename T, FMT_ENABLE_IF(std::is_pointer<T>::value ||
                                      std::is_member_pointer<T>::value)>
  static auto map(const T&) -> void;

  template <typename T, FMT_ENABLE_IF(use_format_as<T>::value)>
  static auto map(const T& x) -> decltype(map(format_as(x)));
  template <typename T, FMT_ENABLE_IF(use_format_as_member<T>::value)>
  static auto map(const T& x) -> decltype(map(formatter<T>::format_as(x)));

  template <typename T, FMT_ENABLE_IF(use_formatter<T>::value)>
  static auto map(T&) -> conditional_t<has_formatter<T, Char>(), T&, void>;

  template <typename T, FMT_ENABLE_IF(is_named_arg<T>::value)>
  static auto map(const T& named_arg) -> decltype(map(named_arg.value));
};

// detail:: is used to workaround a bug in MSVC 2017.
template <typename T, typename Char>
using mapped_t = decltype(detail::type_mapper<Char>::map(std::declval<T&>()));

// A type constant after applying type_mapper.
template <typename T, typename Char = char>
using mapped_type_constant = type_constant<mapped_t<T, Char>, Char>;

template <typename T, typename Context,
          type TYPE =
              mapped_type_constant<T, typename Context::char_type>::value>
using stored_type_constant = std::integral_constant<
    type, Context::builtin_types || TYPE == type::int_type ? TYPE
                                                           : type::custom_type>;
// A parse context with extra data used only in compile-time checks.
template <typename Char>
class compile_parse_context : public parse_context<Char> {
 private:
  int num_args_;
  const type* types_;
  using base = parse_context<Char>;

 public:
  FMT_CONSTEXPR explicit compile_parse_context(basic_string_view<Char> fmt,
                                               int num_args, const type* types,
                                               int next_arg_id = 0)
      : base(fmt, next_arg_id), num_args_(num_args), types_(types) {}

  constexpr auto num_args() const -> int { return num_args_; }
  constexpr auto arg_type(int id) const -> type { return types_[id]; }

  FMT_CONSTEXPR auto next_arg_id() -> int {
    int id = base::next_arg_id();
    if (id >= num_args_) report_error("argument not found");
    return id;
  }

  FMT_CONSTEXPR void check_arg_id(int id) {
    base::check_arg_id(id);
    if (id >= num_args_) report_error("argument not found");
  }
  using base::check_arg_id;

  FMT_CONSTEXPR void check_dynamic_spec(int arg_id) {
    ignore_unused(arg_id);
    if (arg_id < num_args_ && types_ && !is_integral_type(types_[arg_id]))
      report_error("width/precision is not integer");
  }
};

// An argument reference.
template <typename Char> union arg_ref {
  FMT_CONSTEXPR arg_ref(int idx = 0) : index(idx) {}
  FMT_CONSTEXPR arg_ref(basic_string_view<Char> n) : name(n) {}

  int index;
  basic_string_view<Char> name;
};

// Format specifiers with width and precision resolved at formatting rather
// than parsing time to allow reusing the same parsed specifiers with
// different sets of arguments (precompilation of format strings).
template <typename Char = char> struct dynamic_format_specs : format_specs {
  arg_ref<Char> width_ref;
  arg_ref<Char> precision_ref;
};

// Converts a character to ASCII. Returns '\0' on conversion failure.
template <typename Char, FMT_ENABLE_IF(std::is_integral<Char>::value)>
constexpr auto to_ascii(Char c) -> char {
  return c <= 0xff ? static_cast<char>(c) : '\0';
}

// Returns the number of code units in a code point or 1 on error.
template <typename Char>
FMT_CONSTEXPR auto code_point_length(const Char* begin) -> int {
  if (const_check(sizeof(Char) != 1)) return 1;
  auto c = static_cast<unsigned char>(*begin);
  return static_cast<int>((0x3a55000000000000ull >> (2 * (c >> 3))) & 3) + 1;
}

// Parses the range [begin, end) as an unsigned integer. This function assumes
// that the range is non-empty and the first character is a digit.
template <typename Char>
FMT_CONSTEXPR auto parse_nonnegative_int(const Char*& begin, const Char* end,
                                         int error_value) noexcept -> int {
  FMT_ASSERT(begin != end && '0' <= *begin && *begin <= '9', "");
  unsigned value = 0, prev = 0;
  auto p = begin;
  do {
    prev = value;
    value = value * 10 + unsigned(*p - '0');
    ++p;
  } while (p != end && '0' <= *p && *p <= '9');
  auto num_digits = p - begin;
  begin = p;
  int digits10 = static_cast<int>(sizeof(int) * CHAR_BIT * 3 / 10);
  if (num_digits <= digits10) return static_cast<int>(value);
  // Check for overflow.
  unsigned max = INT_MAX;
  return num_digits == digits10 + 1 &&
                 prev * 10ull + unsigned(p[-1] - '0') <= max
             ? static_cast<int>(value)
             : error_value;
}

FMT_CONSTEXPR inline auto parse_align(char c) -> align {
  switch (c) {
  case '<': return align::left;
  case '>': return align::right;
  case '^': return align::center;
  }
  return align::none;
}

template <typename Char> constexpr auto is_name_start(Char c) -> bool {
  return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || c == '_';
}

template <typename Char, typename Handler>
FMT_CONSTEXPR auto parse_arg_id(const Char* begin, const Char* end,
                                Handler&& handler) -> const Char* {
  Char c = *begin;
  if (c >= '0' && c <= '9') {
    int index = 0;
    if (c != '0')
      index = parse_nonnegative_int(begin, end, INT_MAX);
    else
      ++begin;
    if (begin == end || (*begin != '}' && *begin != ':'))
      report_error("invalid format string");
    else
      handler.on_index(index);
    return begin;
  }
  if (FMT_OPTIMIZE_SIZE > 1 || !is_name_start(c)) {
    report_error("invalid format string");
    return begin;
  }
  auto it = begin;
  do {
    ++it;
  } while (it != end && (is_name_start(*it) || ('0' <= *it && *it <= '9')));
  handler.on_name({begin, to_unsigned(it - begin)});
  return it;
}

template <typename Char> struct dynamic_spec_handler {
  parse_context<Char>& ctx;
  arg_ref<Char>& ref;
  arg_id_kind& kind;

  FMT_CONSTEXPR void on_index(int id) {
    ref = id;
    kind = arg_id_kind::index;
    ctx.check_arg_id(id);
    ctx.check_dynamic_spec(id);
  }
  FMT_CONSTEXPR void on_name(basic_string_view<Char> id) {
    ref = id;
    kind = arg_id_kind::name;
    ctx.check_arg_id(id);
  }
};

template <typename Char> struct parse_dynamic_spec_result {
  const Char* end;
  arg_id_kind kind;
};

// Parses integer | "{" [arg_id] "}".
template <typename Char>
FMT_CONSTEXPR auto parse_dynamic_spec(const Char* begin, const Char* end,
                                      int& value, arg_ref<Char>& ref,
                                      parse_context<Char>& ctx)
    -> parse_dynamic_spec_result<Char> {
  FMT_ASSERT(begin != end, "");
  auto kind = arg_id_kind::none;
  if ('0' <= *begin && *begin <= '9') {
    int val = parse_nonnegative_int(begin, end, -1);
    if (val == -1) report_error("number is too big");
    value = val;
  } else {
    if (*begin == '{') {
      ++begin;
      if (begin != end) {
        Char c = *begin;
        if (c == '}' || c == ':') {
          int id = ctx.next_arg_id();
          ref = id;
          kind = arg_id_kind::index;
          ctx.check_dynamic_spec(id);
        } else {
          begin = parse_arg_id(begin, end,
                               dynamic_spec_handler<Char>{ctx, ref, kind});
        }
      }
      if (begin != end && *begin == '}') return {++begin, kind};
    }
    report_error("invalid format string");
  }
  return {begin, kind};
}

template <typename Char>
FMT_CONSTEXPR auto parse_width(const Char* begin, const Char* end,
                               format_specs& specs, arg_ref<Char>& width_ref,
                               parse_context<Char>& ctx) -> const Char* {
  auto result = parse_dynamic_spec(begin, end, specs.width, width_ref, ctx);
  specs.set_dynamic_width(result.kind);
  return result.end;
}

template <typename Char>
FMT_CONSTEXPR auto parse_precision(const Char* begin, const Char* end,
                                   format_specs& specs,
                                   arg_ref<Char>& precision_ref,
                                   parse_context<Char>& ctx) -> const Char* {
  ++begin;
  if (begin == end) {
    report_error("invalid precision");
    return begin;
  }
  auto result =
      parse_dynamic_spec(begin, end, specs.precision, precision_ref, ctx);
  specs.set_dynamic_precision(result.kind);
  return result.end;
}

enum class state { start, align, sign, hash, zero, width, precision, locale };

// Parses standard format specifiers.
template <typename Char>
FMT_CONSTEXPR auto parse_format_specs(const Char* begin, const Char* end,
                                      dynamic_format_specs<Char>& specs,
                                      parse_context<Char>& ctx, type arg_type)
    -> const Char* {
  auto c = '\0';
  if (end - begin > 1) {
    auto next = to_ascii(begin[1]);
    c = parse_align(next) == align::none ? to_ascii(*begin) : '\0';
  } else {
    if (begin == end) return begin;
    c = to_ascii(*begin);
  }

  struct {
    state current_state = state::start;
    FMT_CONSTEXPR void operator()(state s, bool valid = true) {
      if (current_state >= s || !valid)
        report_error("invalid format specifier");
      current_state = s;
    }
  } enter_state;

  using pres = presentation_type;
  constexpr auto integral_set = sint_set | uint_set | bool_set | char_set;
  struct {
    const Char*& begin;
    format_specs& specs;
    type arg_type;

    FMT_CONSTEXPR auto operator()(pres pres_type, int set) -> const Char* {
      if (!in(arg_type, set)) report_error("invalid format specifier");
      specs.set_type(pres_type);
      return begin + 1;
    }
  } parse_presentation_type{begin, specs, arg_type};

  for (;;) {
    switch (c) {
    case '<':
    case '>':
    case '^':
      enter_state(state::align);
      specs.set_align(parse_align(c));
      ++begin;
      break;
    case '+':
    case ' ':
      specs.set_sign(c == ' ' ? sign::space : sign::plus);
      FMT_FALLTHROUGH;
    case '-':
      enter_state(state::sign, in(arg_type, sint_set | float_set));
      ++begin;
      break;
    case '#':
      enter_state(state::hash, is_arithmetic_type(arg_type));
      specs.set_alt();
      ++begin;
      break;
    case '0':
      enter_state(state::zero);
      if (!is_arithmetic_type(arg_type))
        report_error("format specifier requires numeric argument");
      if (specs.align() == align::none) {
        // Ignore 0 if align is specified for compatibility with std::format.
        specs.set_align(align::numeric);
        specs.set_fill('0');
      }
      ++begin;
      break;
      // clang-format off
    case '1': case '2': case '3': case '4': case '5':
    case '6': case '7': case '8': case '9': case '{':
      // clang-format on
      enter_state(state::width);
      begin = parse_width(begin, end, specs, specs.width_ref, ctx);
      break;
    case '.':
      enter_state(state::precision,
                  in(arg_type, float_set | string_set | cstring_set));
      begin = parse_precision(begin, end, specs, specs.precision_ref, ctx);
      break;
    case 'L':
      enter_state(state::locale, is_arithmetic_type(arg_type));
      specs.set_localized();
      ++begin;
      break;
    case 'd': return parse_presentation_type(pres::dec, integral_set);
    case 'X': specs.set_upper(); FMT_FALLTHROUGH;
    case 'x': return parse_presentation_type(pres::hex, integral_set);
    case 'o': return parse_presentation_type(pres::oct, integral_set);
    case 'B': specs.set_upper(); FMT_FALLTHROUGH;
    case 'b': return parse_presentation_type(pres::bin, integral_set);
    case 'E': specs.set_upper(); FMT_FALLTHROUGH;
    case 'e': return parse_presentation_type(pres::exp, float_set);
    case 'F': specs.set_upper(); FMT_FALLTHROUGH;
    case 'f': return parse_presentation_type(pres::fixed, float_set);
    case 'G': specs.set_upper(); FMT_FALLTHROUGH;
    case 'g': return parse_presentation_type(pres::general, float_set);
    case 'A': specs.set_upper(); FMT_FALLTHROUGH;
    case 'a': return parse_presentation_type(pres::hexfloat, float_set);
    case 'c':
      if (arg_type == type::bool_type) report_error("invalid format specifier");
      return parse_presentation_type(pres::chr, integral_set);
    case 's':
      return parse_presentation_type(pres::string,
                                     bool_set | string_set | cstring_set);
    case 'p':
      return parse_presentation_type(pres::pointer, pointer_set | cstring_set);
    case '?':
      return parse_presentation_type(pres::debug,
                                     char_set | string_set | cstring_set);
    case '}': return begin;
    default:  {
      if (*begin == '}') return begin;
      // Parse fill and alignment.
      auto fill_end = begin + code_point_length(begin);
      if (end - fill_end <= 0) {
        report_error("invalid format specifier");
        return begin;
      }
      if (*begin == '{') {
        report_error("invalid fill character '{'");
        return begin;
      }
      auto alignment = parse_align(to_ascii(*fill_end));
      enter_state(state::align, alignment != align::none);
      specs.set_fill(
          basic_string_view<Char>(begin, to_unsigned(fill_end - begin)));
      specs.set_align(alignment);
      begin = fill_end + 1;
    }
    }
    if (begin == end) return begin;
    c = to_ascii(*begin);
  }
}

template <typename Char, typename Handler>
FMT_CONSTEXPR FMT_INLINE auto parse_replacement_field(const Char* begin,
                                                      const Char* end,
                                                      Handler&& handler)
    -> const Char* {
  ++begin;
  if (begin == end) {
    handler.on_error("invalid format string");
    return end;
  }
  int arg_id = 0;
  switch (*begin) {
  case '}':
    handler.on_replacement_field(handler.on_arg_id(), begin);
    return begin + 1;
  case '{': handler.on_text(begin, begin + 1); return begin + 1;
  case ':': arg_id = handler.on_arg_id(); break;
  default:  {
    struct id_adapter {
      Handler& handler;
      int arg_id;

      FMT_CONSTEXPR void on_index(int id) { arg_id = handler.on_arg_id(id); }
      FMT_CONSTEXPR void on_name(basic_string_view<Char> id) {
        arg_id = handler.on_arg_id(id);
      }
    } adapter = {handler, 0};
    begin = parse_arg_id(begin, end, adapter);
    arg_id = adapter.arg_id;
    Char c = begin != end ? *begin : Char();
    if (c == '}') {
      handler.on_replacement_field(arg_id, begin);
      return begin + 1;
    }
    if (c != ':') {
      handler.on_error("missing '}' in format string");
      return end;
    }
    break;
  }
  }
  begin = handler.on_format_specs(arg_id, begin + 1, end);
  if (begin == end || *begin != '}')
    return handler.on_error("unknown format specifier"), end;
  return begin + 1;
}

template <typename Char, typename Handler>
FMT_CONSTEXPR void parse_format_string(basic_string_view<Char> fmt,
                                       Handler&& handler) {
  auto begin = fmt.data(), end = begin + fmt.size();
  auto p = begin;
  while (p != end) {
    auto c = *p++;
    if (c == '{') {
      handler.on_text(begin, p - 1);
      begin = p = parse_replacement_field(p - 1, end, handler);
    } else if (c == '}') {
      if (p == end || *p != '}')
        return handler.on_error("unmatched '}' in format string");
      handler.on_text(begin, p);
      begin = ++p;
    }
  }
  handler.on_text(begin, end);
}

// Checks char specs and returns true iff the presentation type is char-like.
FMT_CONSTEXPR inline auto check_char_specs(const format_specs& specs) -> bool {
  auto type = specs.type();
  if (type != presentation_type::none && type != presentation_type::chr &&
      type != presentation_type::debug) {
    return false;
  }
  if (specs.align() == align::numeric || specs.sign() != sign::none ||
      specs.alt()) {
    report_error("invalid format specifier for char");
  }
  return true;
}

// A base class for compile-time strings.
struct compile_string {};

template <typename T, typename Char>
FMT_VISIBILITY("hidden")  // Suppress an ld warning on macOS (#3769).
FMT_CONSTEXPR auto invoke_parse(parse_context<Char>& ctx) -> const Char* {
  using mapped_type = remove_cvref_t<mapped_t<T, Char>>;
  constexpr bool formattable =
      std::is_constructible<formatter<mapped_type, Char>>::value;
  if (!formattable) return ctx.begin();  // Error is reported in the value ctor.
  using formatted_type = conditional_t<formattable, mapped_type, int>;
  return formatter<formatted_type, Char>().parse(ctx);
}

template <typename... T> struct arg_pack {};

template <typename Char, int NUM_ARGS, int NUM_NAMED_ARGS, bool DYNAMIC_NAMES>
class format_string_checker {
 private:
  type types_[max_of(1, NUM_ARGS)];
  named_arg_info<Char> named_args_[max_of(1, NUM_NAMED_ARGS)];
  compile_parse_context<Char> context_;

  using parse_func = auto (*)(parse_context<Char>&) -> const Char*;
  parse_func parse_funcs_[max_of(1, NUM_ARGS)];

 public:
  template <typename... T>
  FMT_CONSTEXPR explicit format_string_checker(basic_string_view<Char> fmt,
                                               arg_pack<T...>)
      : types_{mapped_type_constant<T, Char>::value...},
        named_args_{},
        context_(fmt, NUM_ARGS, types_),
        parse_funcs_{&invoke_parse<T, Char>...} {
    int arg_index = 0, named_arg_index = 0;
    FMT_APPLY_VARIADIC(
        init_static_named_arg<T>(named_args_, arg_index, named_arg_index));
    ignore_unused(arg_index, named_arg_index);
  }

  FMT_CONSTEXPR void on_text(const Char*, const Char*) {}

  FMT_CONSTEXPR auto on_arg_id() -> int { return context_.next_arg_id(); }
  FMT_CONSTEXPR auto on_arg_id(int id) -> int {
    context_.check_arg_id(id);
    return id;
  }
  FMT_CONSTEXPR auto on_arg_id(basic_string_view<Char> id) -> int {
    for (int i = 0; i < NUM_NAMED_ARGS; ++i) {
      if (named_args_[i].name == id) return named_args_[i].id;
    }
    if (!DYNAMIC_NAMES) on_error("argument not found");
    return -1;
  }

  FMT_CONSTEXPR void on_replacement_field(int id, const Char* begin) {
    on_format_specs(id, begin, begin);  // Call parse() on empty specs.
  }

  FMT_CONSTEXPR auto on_format_specs(int id, const Char* begin, const Char* end)
      -> const Char* {
    context_.advance_to(begin);
    if (id >= 0 && id < NUM_ARGS) return parse_funcs_[id](context_);
    while (begin != end && *begin != '}') ++begin;
    return begin;
  }

  FMT_NORETURN FMT_CONSTEXPR void on_error(const char* message) {
    report_error(message);
  }
};

/// A contiguous memory buffer with an optional growing ability. It is an
/// internal class and shouldn't be used directly, only via `memory_buffer`.
template <typename T> class buffer {
 private:
  T* ptr_;
  size_t size_;
  size_t capacity_;

  using grow_fun = void (*)(buffer& buf, size_t capacity);
  grow_fun grow_;

 protected:
  // Don't initialize ptr_ since it is not accessed to save a few cycles.
  FMT_MSC_WARNING(suppress : 26495)
  FMT_CONSTEXPR buffer(grow_fun grow, size_t sz) noexcept
      : size_(sz), capacity_(sz), grow_(grow) {}

  constexpr buffer(grow_fun grow, T* p = nullptr, size_t sz = 0,
                   size_t cap = 0) noexcept
      : ptr_(p), size_(sz), capacity_(cap), grow_(grow) {}

  FMT_CONSTEXPR20 ~buffer() = default;
  buffer(buffer&&) = default;

  /// Sets the buffer data and capacity.
  FMT_CONSTEXPR void set(T* buf_data, size_t buf_capacity) noexcept {
    ptr_ = buf_data;
    capacity_ = buf_capacity;
  }

 public:
  using value_type = T;
  using const_reference = const T&;

  buffer(const buffer&) = delete;
  void operator=(const buffer&) = delete;

  auto begin() noexcept -> T* { return ptr_; }
  auto end() noexcept -> T* { return ptr_ + size_; }

  auto begin() const noexcept -> const T* { return ptr_; }
  auto end() const noexcept -> const T* { return ptr_ + size_; }

  /// Returns the size of this buffer.
  constexpr auto size() const noexcept -> size_t { return size_; }

  /// Returns the capacity of this buffer.
  constexpr auto capacity() const noexcept -> size_t { return capacity_; }

  /// Returns a pointer to the buffer data (not null-terminated).
  FMT_CONSTEXPR auto data() noexcept -> T* { return ptr_; }
  FMT_CONSTEXPR auto data() const noexcept -> const T* { return ptr_; }

  /// Clears this buffer.
  FMT_CONSTEXPR void clear() { size_ = 0; }

  // Tries resizing the buffer to contain `count` elements. If T is a POD type
  // the new elements may not be initialized.
  FMT_CONSTEXPR void try_resize(size_t count) {
    try_reserve(count);
    size_ = min_of(count, capacity_);
  }

  // Tries increasing the buffer capacity to `new_capacity`. It can increase the
  // capacity by a smaller amount than requested but guarantees there is space
  // for at least one additional element either by increasing the capacity or by
  // flushing the buffer if it is full.
  FMT_CONSTEXPR void try_reserve(size_t new_capacity) {
    if (new_capacity > capacity_) grow_(*this, new_capacity);
  }

  FMT_CONSTEXPR void push_back(const T& value) {
    try_reserve(size_ + 1);
    ptr_[size_++] = value;
  }

  /// Appends data to the end of the buffer.
  template <typename U>
// Workaround for MSVC2019 to fix error C2893: Failed to specialize function
// template 'void fmt::v11::detail::buffer<T>::append(const U *,const U *)'.
#if !FMT_MSC_VERSION || FMT_MSC_VERSION >= 1940
  FMT_CONSTEXPR20
#endif
      void
      append(const U* begin, const U* end) {
    while (begin != end) {
      auto count = to_unsigned(end - begin);
      try_reserve(size_ + count);
      auto free_cap = capacity_ - size_;
      if (free_cap < count) count = free_cap;
      // A loop is faster than memcpy on small sizes.
      T* out = ptr_ + size_;
      for (size_t i = 0; i < count; ++i) out[i] = begin[i];
      size_ += count;
      begin += count;
    }
  }

  template <typename Idx> FMT_CONSTEXPR auto operator[](Idx index) -> T& {
    return ptr_[index];
  }
  template <typename Idx>
  FMT_CONSTEXPR auto operator[](Idx index) const -> const T& {
    return ptr_[index];
  }
};

struct buffer_traits {
  constexpr explicit buffer_traits(size_t) {}
  constexpr auto count() const -> size_t { return 0; }
  constexpr auto limit(size_t size) const -> size_t { return size; }
};

class fixed_buffer_traits {
 private:
  size_t count_ = 0;
  size_t limit_;

 public:
  constexpr explicit fixed_buffer_traits(size_t limit) : limit_(limit) {}
  constexpr auto count() const -> size_t { return count_; }
  FMT_CONSTEXPR auto limit(size_t size) -> size_t {
    size_t n = limit_ > count_ ? limit_ - count_ : 0;
    count_ += size;
    return min_of(size, n);
  }
};

// A buffer that writes to an output iterator when flushed.
template <typename OutputIt, typename T, typename Traits = buffer_traits>
class iterator_buffer : public Traits, public buffer<T> {
 private:
  OutputIt out_;
  enum { buffer_size = 256 };
  T data_[buffer_size];

  static FMT_CONSTEXPR void grow(buffer<T>& buf, size_t) {
    if (buf.size() == buffer_size) static_cast<iterator_buffer&>(buf).flush();
  }

  void flush() {
    auto size = this->size();
    this->clear();
    const T* begin = data_;
    const T* end = begin + this->limit(size);
    while (begin != end) *out_++ = *begin++;
  }

 public:
  explicit iterator_buffer(OutputIt out, size_t n = buffer_size)
      : Traits(n), buffer<T>(grow, data_, 0, buffer_size), out_(out) {}
  iterator_buffer(iterator_buffer&& other) noexcept
      : Traits(other),
        buffer<T>(grow, data_, 0, buffer_size),
        out_(other.out_) {}
  ~iterator_buffer() {
    // Don't crash if flush fails during unwinding.
    FMT_TRY { flush(); }
    FMT_CATCH(...) {}
  }

  auto out() -> OutputIt {
    flush();
    return out_;
  }
  auto count() const -> size_t { return Traits::count() + this->size(); }
};

template <typename T>
class iterator_buffer<T*, T, fixed_buffer_traits> : public fixed_buffer_traits,
                                                    public buffer<T> {
 private:
  T* out_;
  enum { buffer_size = 256 };
  T data_[buffer_size];

  static FMT_CONSTEXPR void grow(buffer<T>& buf, size_t) {
    if (buf.size() == buf.capacity())
      static_cast<iterator_buffer&>(buf).flush();
  }

  void flush() {
    size_t n = this->limit(this->size());
    if (this->data() == out_) {
      out_ += n;
      this->set(data_, buffer_size);
    }
    this->clear();
  }

 public:
  explicit iterator_buffer(T* out, size_t n = buffer_size)
      : fixed_buffer_traits(n), buffer<T>(grow, out, 0, n), out_(out) {}
  iterator_buffer(iterator_buffer&& other) noexcept
      : fixed_buffer_traits(other),
        buffer<T>(static_cast<iterator_buffer&&>(other)),
        out_(other.out_) {
    if (this->data() != out_) {
      this->set(data_, buffer_size);
      this->clear();
    }
  }
  ~iterator_buffer() { flush(); }

  auto out() -> T* {
    flush();
    return out_;
  }
  auto count() const -> size_t {
    return fixed_buffer_traits::count() + this->size();
  }
};

template <typename T> class iterator_buffer<T*, T> : public buffer<T> {
 public:
  explicit iterator_buffer(T* out, size_t = 0)
      : buffer<T>([](buffer<T>&, size_t) {}, out, 0, ~size_t()) {}

  auto out() -> T* { return &*this->end(); }
};

template <typename Container>
class container_buffer : public buffer<typename Container::value_type> {
 private:
  using value_type = typename Container::value_type;

  static FMT_CONSTEXPR void grow(buffer<value_type>& buf, size_t capacity) {
    auto& self = static_cast<container_buffer&>(buf);
    self.container.resize(capacity);
    self.set(&self.container[0], capacity);
  }

 public:
  Container& container;

  explicit container_buffer(Container& c)
      : buffer<value_type>(grow, c.size()), container(c) {}
};

// A buffer that writes to a container with the contiguous storage.
template <typename OutputIt>
class iterator_buffer<
    OutputIt,
    enable_if_t<is_back_insert_iterator<OutputIt>::value &&
                    is_contiguous<typename OutputIt::container_type>::value,
                typename OutputIt::container_type::value_type>>
    : public container_buffer<typename OutputIt::container_type> {
 private:
  using base = container_buffer<typename OutputIt::container_type>;

 public:
  explicit iterator_buffer(typename OutputIt::container_type& c) : base(c) {}
  explicit iterator_buffer(OutputIt out, size_t = 0)
      : base(get_container(out)) {}

  auto out() -> OutputIt { return OutputIt(this->container); }
};

// A buffer that counts the number of code units written discarding the output.
template <typename T = char> class counting_buffer : public buffer<T> {
 private:
  enum { buffer_size = 256 };
  T data_[buffer_size];
  size_t count_ = 0;

  static FMT_CONSTEXPR void grow(buffer<T>& buf, size_t) {
    if (buf.size() != buffer_size) return;
    static_cast<counting_buffer&>(buf).count_ += buf.size();
    buf.clear();
  }

 public:
  FMT_CONSTEXPR counting_buffer() : buffer<T>(grow, data_, 0, buffer_size) {}

  constexpr auto count() const noexcept -> size_t {
    return count_ + this->size();
  }
};

template <typename T>
struct is_back_insert_iterator<basic_appender<T>> : std::true_type {};

template <typename OutputIt, typename InputIt, typename = void>
struct has_back_insert_iterator_container_append : std::false_type {};
template <typename OutputIt, typename InputIt>
struct has_back_insert_iterator_container_append<
    OutputIt, InputIt,
    void_t<decltype(get_container(std::declval<OutputIt>())
                        .append(std::declval<InputIt>(),
                                std::declval<InputIt>()))>> : std::true_type {};

// An optimized version of std::copy with the output value type (T).
template <typename T, typename InputIt, typename OutputIt,
          FMT_ENABLE_IF(is_back_insert_iterator<OutputIt>::value&&
                            has_back_insert_iterator_container_append<
                                OutputIt, InputIt>::value)>
FMT_CONSTEXPR20 auto copy(InputIt begin, InputIt end, OutputIt out)
    -> OutputIt {
  get_container(out).append(begin, end);
  return out;
}

template <typename T, typename InputIt, typename OutputIt,
          FMT_ENABLE_IF(is_back_insert_iterator<OutputIt>::value &&
                        !has_back_insert_iterator_container_append<
                            OutputIt, InputIt>::value)>
FMT_CONSTEXPR20 auto copy(InputIt begin, InputIt end, OutputIt out)
    -> OutputIt {
  auto& c = get_container(out);
  c.insert(c.end(), begin, end);
  return out;
}

template <typename T, typename InputIt, typename OutputIt,
          FMT_ENABLE_IF(!is_back_insert_iterator<OutputIt>::value)>
FMT_CONSTEXPR auto copy(InputIt begin, InputIt end, OutputIt out) -> OutputIt {
  while (begin != end) *out++ = static_cast<T>(*begin++);
  return out;
}

template <typename T, typename V, typename OutputIt>
FMT_CONSTEXPR auto copy(basic_string_view<V> s, OutputIt out) -> OutputIt {
  return copy<T>(s.begin(), s.end(), out);
}

template <typename It, typename Enable = std::true_type>
struct is_buffer_appender : std::false_type {};
template <typename It>
struct is_buffer_appender<
    It, bool_constant<
            is_back_insert_iterator<It>::value &&
            std::is_base_of<buffer<typename It::container_type::value_type>,
                            typename It::container_type>::value>>
    : std::true_type {};

// Maps an output iterator to a buffer.
template <typename T, typename OutputIt,
          FMT_ENABLE_IF(!is_buffer_appender<OutputIt>::value)>
auto get_buffer(OutputIt out) -> iterator_buffer<OutputIt, T> {
  return iterator_buffer<OutputIt, T>(out);
}
template <typename T, typename OutputIt,
          FMT_ENABLE_IF(is_buffer_appender<OutputIt>::value)>
auto get_buffer(OutputIt out) -> buffer<T>& {
  return get_container(out);
}

template <typename Buf, typename OutputIt>
auto get_iterator(Buf& buf, OutputIt) -> decltype(buf.out()) {
  return buf.out();
}
template <typename T, typename OutputIt>
auto get_iterator(buffer<T>&, OutputIt out) -> OutputIt {
  return out;
}

// This type is intentionally undefined, only used for errors.
template <typename T, typename Char> struct type_is_unformattable_for;

template <typename Char> struct string_value {
  const Char* data;
  size_t size;
  auto str() const -> basic_string_view<Char> { return {data, size}; }
};

template <typename Context> struct custom_value {
  using char_type = typename Context::char_type;
  void* value;
  void (*format)(void* arg, parse_context<char_type>& parse_ctx, Context& ctx);
};

template <typename Char> struct named_arg_value {
  const named_arg_info<Char>* data;
  size_t size;
};

struct custom_tag {};

#if !FMT_BUILTIN_TYPES
#  define FMT_BUILTIN , monostate
#else
#  define FMT_BUILTIN
#endif

// A formatting argument value.
template <typename Context> class value {
 public:
  using char_type = typename Context::char_type;

  union {
    monostate no_value;
    int int_value;
    unsigned uint_value;
    long long long_long_value;
    unsigned long long ulong_long_value;
    int128_opt int128_value;
    uint128_opt uint128_value;
    bool bool_value;
    char_type char_value;
    float float_value;
    double double_value;
    long double long_double_value;
    const void* pointer;
    string_value<char_type> string;
    custom_value<Context> custom;
    named_arg_value<char_type> named_args;
  };

  constexpr FMT_INLINE value() : no_value() {}
  constexpr FMT_INLINE value(signed char x) : int_value(x) {}
  constexpr FMT_INLINE value(unsigned char x FMT_BUILTIN) : uint_value(x) {}
  constexpr FMT_INLINE value(signed short x) : int_value(x) {}
  constexpr FMT_INLINE value(unsigned short x FMT_BUILTIN) : uint_value(x) {}
  constexpr FMT_INLINE value(int x) : int_value(x) {}
  constexpr FMT_INLINE value(unsigned x FMT_BUILTIN) : uint_value(x) {}
  FMT_CONSTEXPR FMT_INLINE value(long x FMT_BUILTIN) : value(long_type(x)) {}
  FMT_CONSTEXPR FMT_INLINE value(unsigned long x FMT_BUILTIN)
      : value(ulong_type(x)) {}
  constexpr FMT_INLINE value(long long x FMT_BUILTIN) : long_long_value(x) {}
  constexpr FMT_INLINE value(unsigned long long x FMT_BUILTIN)
      : ulong_long_value(x) {}
  FMT_INLINE value(int128_opt x FMT_BUILTIN) : int128_value(x) {}
  FMT_INLINE value(uint128_opt x FMT_BUILTIN) : uint128_value(x) {}
  constexpr FMT_INLINE value(bool x FMT_BUILTIN) : bool_value(x) {}

  template <int N>
  constexpr FMT_INLINE value(bitint<N> x FMT_BUILTIN) : long_long_value(x) {
    static_assert(N <= 64, "unsupported _BitInt");
  }
  template <int N>
  constexpr FMT_INLINE value(ubitint<N> x FMT_BUILTIN) : ulong_long_value(x) {
    static_assert(N <= 64, "unsupported _BitInt");
  }

  template <typename T, FMT_ENABLE_IF(is_char<T>::value)>
  constexpr FMT_INLINE value(T x FMT_BUILTIN) : char_value(x) {
    static_assert(
        std::is_same<T, char>::value || std::is_same<T, char_type>::value,
        "mixing character types is disallowed");
  }

  constexpr FMT_INLINE value(float x FMT_BUILTIN) : float_value(x) {}
  constexpr FMT_INLINE value(double x FMT_BUILTIN) : double_value(x) {}
  FMT_INLINE value(long double x FMT_BUILTIN) : long_double_value(x) {}

  FMT_CONSTEXPR FMT_INLINE value(char_type* x FMT_BUILTIN) {
    string.data = x;
    if (is_constant_evaluated()) string.size = 0;
  }
  FMT_CONSTEXPR FMT_INLINE value(const char_type* x FMT_BUILTIN) {
    string.data = x;
    if (is_constant_evaluated()) string.size = 0;
  }
  template <typename T, typename C = char_t<T>,
            FMT_ENABLE_IF(!std::is_pointer<T>::value)>
  FMT_CONSTEXPR value(const T& x FMT_BUILTIN) {
    static_assert(std::is_same<C, char_type>::value,
                  "mixing character types is disallowed");
    auto sv = to_string_view(x);
    string.data = sv.data();
    string.size = sv.size();
  }
  FMT_INLINE value(void* x FMT_BUILTIN) : pointer(x) {}
  FMT_INLINE value(const void* x FMT_BUILTIN) : pointer(x) {}
  FMT_INLINE value(volatile void* x FMT_BUILTIN)
      : pointer(const_cast<const void*>(x)) {}
  FMT_INLINE value(const volatile void* x FMT_BUILTIN)
      : pointer(const_cast<const void*>(x)) {}
  FMT_INLINE value(nullptr_t) : pointer(nullptr) {}

  template <typename T, FMT_ENABLE_IF(std::is_pointer<T>::value ||
                                      std::is_member_pointer<T>::value)>
  value(const T&) {
    // Formatting of arbitrary pointers is disallowed. If you want to format a
    // pointer cast it to `void*` or `const void*`. In particular, this forbids
    // formatting of `[const] volatile char*` printed as bool by iostreams.
    static_assert(sizeof(T) == 0,
                  "formatting of non-void pointers is disallowed");
  }

  template <typename T, FMT_ENABLE_IF(use_format_as<T>::value)>
  value(const T& x) : value(format_as(x)) {}
  template <typename T, FMT_ENABLE_IF(use_format_as_member<T>::value)>
  value(const T& x) : value(formatter<T>::format_as(x)) {}

  template <typename T, FMT_ENABLE_IF(is_named_arg<T>::value)>
  value(const T& named_arg) : value(named_arg.value) {}

  template <typename T,
            FMT_ENABLE_IF(use_formatter<T>::value || !FMT_BUILTIN_TYPES)>
  FMT_CONSTEXPR20 FMT_INLINE value(T& x) : value(x, custom_tag()) {}

  FMT_ALWAYS_INLINE value(const named_arg_info<char_type>* args, size_t size)
      : named_args{args, size} {}

 private:
  template <typename T, FMT_ENABLE_IF(has_formatter<T, char_type>())>
  FMT_CONSTEXPR value(T& x, custom_tag) {
    using value_type = remove_const_t<T>;
    // T may overload operator& e.g. std::vector<bool>::reference in libc++.
    if (!is_constant_evaluated()) {
      custom.value =
          const_cast<char*>(&reinterpret_cast<const volatile char&>(x));
    } else {
      custom.value = nullptr;
#if defined(__cpp_if_constexpr)
      if constexpr (std::is_same<decltype(&x), remove_reference_t<T>*>::value)
        custom.value = const_cast<value_type*>(&x);
#endif
    }
    custom.format = format_custom<value_type, formatter<value_type, char_type>>;
  }

  template <typename T, FMT_ENABLE_IF(!has_formatter<T, char_type>())>
  FMT_CONSTEXPR value(const T&, custom_tag) {
    // Cannot format an argument; to make type T formattable provide a
    // formatter<T> specialization: https://fmt.dev/latest/api.html#udt.
    type_is_unformattable_for<T, char_type> _;
  }

  // Formats an argument of a custom type, such as a user-defined class.
  template <typename T, typename Formatter>
  static void format_custom(void* arg, parse_context<char_type>& parse_ctx,
                            Context& ctx) {
    auto f = Formatter();
    parse_ctx.advance_to(f.parse(parse_ctx));
    using qualified_type =
        conditional_t<has_formatter<const T, char_type>(), const T, T>;
    // format must be const for compatibility with std::format and compilation.
    const auto& cf = f;
    ctx.advance_to(cf.format(*static_cast<qualified_type*>(arg), ctx));
  }
};

enum { packed_arg_bits = 4 };
// Maximum number of arguments with packed types.
enum { max_packed_args = 62 / packed_arg_bits };
enum : unsigned long long { is_unpacked_bit = 1ULL << 63 };
enum : unsigned long long { has_named_args_bit = 1ULL << 62 };

template <typename It, typename T, typename Enable = void>
struct is_output_iterator : std::false_type {};

template <> struct is_output_iterator<appender, char> : std::true_type {};

template <typename It, typename T>
struct is_output_iterator<
    It, T,
    void_t<decltype(*std::declval<decay_t<It>&>()++ = std::declval<T>())>>
    : std::true_type {};

#ifndef FMT_USE_LOCALE
#  define FMT_USE_LOCALE (FMT_OPTIMIZE_SIZE <= 1)
#endif

// A type-erased reference to an std::locale to avoid a heavy <locale> include.
struct locale_ref {
#if FMT_USE_LOCALE
 private:
  const void* locale_;  // A type-erased pointer to std::locale.

 public:
  constexpr locale_ref() : locale_(nullptr) {}

  template <typename Locale, FMT_ENABLE_IF(sizeof(Locale::collate) != 0)>
  locale_ref(const Locale& loc);

  inline explicit operator bool() const noexcept { return locale_ != nullptr; }
#endif  // FMT_USE_LOCALE

  template <typename Locale> auto get() const -> Locale;
};

template <typename> constexpr auto encode_types() -> unsigned long long {
  return 0;
}

template <typename Context, typename Arg, typename... Args>
constexpr auto encode_types() -> unsigned long long {
  return static_cast<unsigned>(stored_type_constant<Arg, Context>::value) |
         (encode_types<Context, Args...>() << packed_arg_bits);
}

template <typename Context, typename... T, size_t NUM_ARGS = sizeof...(T)>
constexpr auto make_descriptor() -> unsigned long long {
  return NUM_ARGS <= max_packed_args ? encode_types<Context, T...>()
                                     : is_unpacked_bit | NUM_ARGS;
}

template <typename Context, int NUM_ARGS>
using arg_t = conditional_t<NUM_ARGS <= max_packed_args, value<Context>,
                            basic_format_arg<Context>>;

template <typename Context, int NUM_ARGS, int NUM_NAMED_ARGS,
          unsigned long long DESC>
struct named_arg_store {
  // args_[0].named_args points to named_args to avoid bloating format_args.
  arg_t<Context, NUM_ARGS> args[1 + NUM_ARGS];
  named_arg_info<typename Context::char_type> named_args[NUM_NAMED_ARGS];

  template <typename... T>
  FMT_CONSTEXPR FMT_ALWAYS_INLINE named_arg_store(T&... values)
      : args{{named_args, NUM_NAMED_ARGS}, values...} {
    int arg_index = 0, named_arg_index = 0;
    FMT_APPLY_VARIADIC(
        init_named_arg(named_args, arg_index, named_arg_index, values));
  }

  named_arg_store(named_arg_store&& rhs) {
    args[0] = {named_args, NUM_NAMED_ARGS};
    for (size_t i = 1; i < sizeof(args) / sizeof(*args); ++i)
      args[i] = rhs.args[i];
    for (size_t i = 0; i < NUM_NAMED_ARGS; ++i)
      named_args[i] = rhs.named_args[i];
  }

  named_arg_store(const named_arg_store& rhs) = delete;
  named_arg_store& operator=(const named_arg_store& rhs) = delete;
  named_arg_store& operator=(named_arg_store&& rhs) = delete;
  operator const arg_t<Context, NUM_ARGS>*() const { return args + 1; }
};

// An array of references to arguments. It can be implicitly converted to
// `basic_format_args` for passing into type-erased formatting functions
// such as `vformat`. It is a plain struct to reduce binary size in debug mode.
template <typename Context, int NUM_ARGS, int NUM_NAMED_ARGS,
          unsigned long long DESC>
struct format_arg_store {
  // +1 to workaround a bug in gcc 7.5 that causes duplicated-branches warning.
  using type =
      conditional_t<NUM_NAMED_ARGS == 0,
                    arg_t<Context, NUM_ARGS>[max_of(1, NUM_ARGS)],
                    named_arg_store<Context, NUM_ARGS, NUM_NAMED_ARGS, DESC>>;
  type args;
};

// TYPE can be different from type_constant<T>, e.g. for __float128.
template <typename T, typename Char, type TYPE> struct native_formatter {
 private:
  dynamic_format_specs<Char> specs_;

 public:
  using nonlocking = void;

  FMT_CONSTEXPR auto parse(parse_context<Char>& ctx) -> const Char* {
    if (ctx.begin() == ctx.end() || *ctx.begin() == '}') return ctx.begin();
    auto end = parse_format_specs(ctx.begin(), ctx.end(), specs_, ctx, TYPE);
    if (const_check(TYPE == type::char_type)) check_char_specs(specs_);
    return end;
  }

  template <type U = TYPE,
            FMT_ENABLE_IF(U == type::string_type || U == type::cstring_type ||
                          U == type::char_type)>
  FMT_CONSTEXPR void set_debug_format(bool set = true) {
    specs_.set_type(set ? presentation_type::debug : presentation_type::none);
  }

  FMT_PRAGMA_CLANG(diagnostic ignored "-Wundefined-inline")
  template <typename FormatContext>
  FMT_CONSTEXPR auto format(const T& val, FormatContext& ctx) const
      -> decltype(ctx.out());
};

template <typename T, typename Enable = void>
struct locking
    : bool_constant<mapped_type_constant<T>::value == type::custom_type> {};
template <typename T>
struct locking<T, void_t<typename formatter<remove_cvref_t<T>>::nonlocking>>
    : std::false_type {};

template <typename T = int> FMT_CONSTEXPR inline auto is_locking() -> bool {
  return locking<T>::value;
}
template <typename T1, typename T2, typename... Tail>
FMT_CONSTEXPR inline auto is_locking() -> bool {
  return locking<T1>::value || is_locking<T2, Tail...>();
}

FMT_API void vformat_to(buffer<char>& buf, string_view fmt, format_args args,
                        locale_ref loc = {});

#if FMT_WIN32
FMT_API void vprint_mojibake(FILE*, string_view, format_args, bool);
#else  // format_args is passed by reference since it is defined later.
inline void vprint_mojibake(FILE*, string_view, const format_args&, bool) {}
#endif
}  // namespace detail

// The main public API.

template <typename Char>
FMT_CONSTEXPR void parse_context<Char>::do_check_arg_id(int arg_id) {
  // Argument id is only checked at compile time during parsing because
  // formatting has its own validation.
  if (detail::is_constant_evaluated() && use_constexpr_cast) {
    auto ctx = static_cast<detail::compile_parse_context<Char>*>(this);
    if (arg_id >= ctx->num_args()) report_error("argument not found");
  }
}

template <typename Char>
FMT_CONSTEXPR void parse_context<Char>::check_dynamic_spec(int arg_id) {
  using detail::compile_parse_context;
  if (detail::is_constant_evaluated() && use_constexpr_cast)
    static_cast<compile_parse_context<Char>*>(this)->check_dynamic_spec(arg_id);
}

FMT_BEGIN_EXPORT

// An output iterator that appends to a buffer. It is used instead of
// back_insert_iterator to reduce symbol sizes and avoid <iterator> dependency.
template <typename T> class basic_appender {
 protected:
  detail::buffer<T>* container;

 public:
  using container_type = detail::buffer<T>;

  FMT_CONSTEXPR basic_appender(detail::buffer<T>& buf) : container(&buf) {}

  FMT_CONSTEXPR20 auto operator=(T c) -> basic_appender& {
    container->push_back(c);
    return *this;
  }
  FMT_CONSTEXPR20 auto operator*() -> basic_appender& { return *this; }
  FMT_CONSTEXPR20 auto operator++() -> basic_appender& { return *this; }
  FMT_CONSTEXPR20 auto operator++(int) -> basic_appender { return *this; }
};

// A formatting argument. Context is a template parameter for the compiled API
// where output can be unbuffered.
template <typename Context> class basic_format_arg {
 private:
  detail::value<Context> value_;
  detail::type type_;

  friend class basic_format_args<Context>;

  using char_type = typename Context::char_type;

 public:
  class handle {
   private:
    detail::custom_value<Context> custom_;

   public:
    explicit handle(detail::custom_value<Context> custom) : custom_(custom) {}

    void format(parse_context<char_type>& parse_ctx, Context& ctx) const {
      custom_.format(custom_.value, parse_ctx, ctx);
    }
  };

  constexpr basic_format_arg() : type_(detail::type::none_type) {}
  basic_format_arg(const detail::named_arg_info<char_type>* args, size_t size)
      : value_(args, size) {}
  template <typename T>
  basic_format_arg(T&& val)
      : value_(val), type_(detail::stored_type_constant<T, Context>::value) {}

  constexpr explicit operator bool() const noexcept {
    return type_ != detail::type::none_type;
  }
  auto type() const -> detail::type { return type_; }

  /**
   * Visits an argument dispatching to the appropriate visit method based on
   * the argument type. For example, if the argument type is `double` then
   * `vis(value)` will be called with the value of type `double`.
   */
  template <typename Visitor>
  FMT_CONSTEXPR FMT_INLINE auto visit(Visitor&& vis) const -> decltype(vis(0)) {
    using detail::map;
    switch (type_) {
    case detail::type::none_type:        break;
    case detail::type::int_type:         return vis(value_.int_value);
    case detail::type::uint_type:        return vis(value_.uint_value);
    case detail::type::long_long_type:   return vis(value_.long_long_value);
    case detail::type::ulong_long_type:  return vis(value_.ulong_long_value);
    case detail::type::int128_type:      return vis(map(value_.int128_value));
    case detail::type::uint128_type:     return vis(map(value_.uint128_value));
    case detail::type::bool_type:        return vis(value_.bool_value);
    case detail::type::char_type:        return vis(value_.char_value);
    case detail::type::float_type:       return vis(value_.float_value);
    case detail::type::double_type:      return vis(value_.double_value);
    case detail::type::long_double_type: return vis(value_.long_double_value);
    case detail::type::cstring_type:     return vis(value_.string.data);
    case detail::type::string_type:      return vis(value_.string.str());
    case detail::type::pointer_type:     return vis(value_.pointer);
    case detail::type::custom_type:      return vis(handle(value_.custom));
    }
    return vis(monostate());
  }

  auto format_custom(const char_type* parse_begin,
                     parse_context<char_type>& parse_ctx, Context& ctx)
      -> bool {
    if (type_ != detail::type::custom_type) return false;
    parse_ctx.advance_to(parse_begin);
    value_.custom.format(value_.custom.value, parse_ctx, ctx);
    return true;
  }
};

/**
 * A view of a collection of formatting arguments. To avoid lifetime issues it
 * should only be used as a parameter type in type-erased functions such as
 * `vformat`:
 *
 *     void vlog(fmt::string_view fmt, fmt::format_args args);  // OK
 *     fmt::format_args args = fmt::make_format_args();  // Dangling reference
 */
template <typename Context> class basic_format_args {
 private:
  // A descriptor that contains information about formatting arguments.
  // If the number of arguments is less or equal to max_packed_args then
  // argument types are passed in the descriptor. This reduces binary code size
  // per formatting function call.
  unsigned long long desc_;
  union {
    // If is_packed() returns true then argument values are stored in values_;
    // otherwise they are stored in args_. This is done to improve cache
    // locality and reduce compiled code size since storing larger objects
    // may require more code (at least on x86-64) even if the same amount of
    // data is actually copied to stack. It saves ~10% on the bloat test.
    const detail::value<Context>* values_;
    const basic_format_arg<Context>* args_;
  };

  constexpr auto is_packed() const -> bool {
    return (desc_ & detail::is_unpacked_bit) == 0;
  }
  constexpr auto has_named_args() const -> bool {
    return (desc_ & detail::has_named_args_bit) != 0;
  }

  FMT_CONSTEXPR auto type(int index) const -> detail::type {
    int shift = index * detail::packed_arg_bits;
    unsigned mask = (1 << detail::packed_arg_bits) - 1;
    return static_cast<detail::type>((desc_ >> shift) & mask);
  }

  template <int NUM_ARGS, int NUM_NAMED_ARGS, unsigned long long DESC>
  using store =
      detail::format_arg_store<Context, NUM_ARGS, NUM_NAMED_ARGS, DESC>;

 public:
  using format_arg = basic_format_arg<Context>;

  constexpr basic_format_args() : desc_(0), args_(nullptr) {}

  /// Constructs a `basic_format_args` object from `format_arg_store`.
  template <int NUM_ARGS, int NUM_NAMED_ARGS, unsigned long long DESC,
            FMT_ENABLE_IF(NUM_ARGS <= detail::max_packed_args)>
  constexpr FMT_ALWAYS_INLINE basic_format_args(
      const store<NUM_ARGS, NUM_NAMED_ARGS, DESC>& s)
      : desc_(DESC | (NUM_NAMED_ARGS != 0 ? +detail::has_named_args_bit : 0)),
        values_(s.args) {}

  template <int NUM_ARGS, int NUM_NAMED_ARGS, unsigned long long DESC,
            FMT_ENABLE_IF(NUM_ARGS > detail::max_packed_args)>
  constexpr basic_format_args(const store<NUM_ARGS, NUM_NAMED_ARGS, DESC>& s)
      : desc_(DESC | (NUM_NAMED_ARGS != 0 ? +detail::has_named_args_bit : 0)),
        args_(s.args) {}

  /// Constructs a `basic_format_args` object from a dynamic list of arguments.
  constexpr basic_format_args(const format_arg* args, int count,
                              bool has_named = false)
      : desc_(detail::is_unpacked_bit | detail::to_unsigned(count) |
              (has_named ? +detail::has_named_args_bit : 0)),
        args_(args) {}

  /// Returns the argument with the specified id.
  FMT_CONSTEXPR auto get(int id) const -> format_arg {
    auto arg = format_arg();
    if (!is_packed()) {
      if (id < max_size()) arg = args_[id];
      return arg;
    }
    if (static_cast<unsigned>(id) >= detail::max_packed_args) return arg;
    arg.type_ = type(id);
    if (arg.type_ != detail::type::none_type) arg.value_ = values_[id];
    return arg;
  }

  template <typename Char>
  auto get(basic_string_view<Char> name) const -> format_arg {
    int id = get_id(name);
    return id >= 0 ? get(id) : format_arg();
  }

  template <typename Char>
  FMT_CONSTEXPR auto get_id(basic_string_view<Char> name) const -> int {
    if (!has_named_args()) return -1;
    const auto& named_args =
        (is_packed() ? values_[-1] : args_[-1].value_).named_args;
    for (size_t i = 0; i < named_args.size; ++i) {
      if (named_args.data[i].name == name) return named_args.data[i].id;
    }
    return -1;
  }

  auto max_size() const -> int {
    unsigned long long max_packed = detail::max_packed_args;
    return static_cast<int>(is_packed() ? max_packed
                                        : desc_ & ~detail::is_unpacked_bit);
  }
};

// A formatting context.
class context {
 private:
  appender out_;
  format_args args_;
  FMT_NO_UNIQUE_ADDRESS detail::locale_ref loc_;

 public:
  /// The character type for the output.
  using char_type = char;

  using iterator = appender;
  using format_arg = basic_format_arg<context>;
  using parse_context_type FMT_DEPRECATED = parse_context<>;
  template <typename T> using formatter_type FMT_DEPRECATED = formatter<T>;
  enum { builtin_types = FMT_BUILTIN_TYPES };

  /// Constructs a `context` object. References to the arguments are stored
  /// in the object so make sure they have appropriate lifetimes.
  FMT_CONSTEXPR context(iterator out, format_args args,
                        detail::locale_ref loc = {})
      : out_(out), args_(args), loc_(loc) {}
  context(context&&) = default;
  context(const context&) = delete;
  void operator=(const context&) = delete;

  FMT_CONSTEXPR auto arg(int id) const -> format_arg { return args_.get(id); }
  inline auto arg(string_view name) const -> format_arg {
    return args_.get(name);
  }
  FMT_CONSTEXPR auto arg_id(string_view name) const -> int {
    return args_.get_id(name);
  }

  // Returns an iterator to the beginning of the output range.
  FMT_CONSTEXPR auto out() const -> iterator { return out_; }

  // Advances the begin iterator to `it`.
  FMT_CONSTEXPR void advance_to(iterator) {}

  FMT_CONSTEXPR auto locale() const -> detail::locale_ref { return loc_; }
};

template <typename Char = char> struct runtime_format_string {
  basic_string_view<Char> str;
};

/**
 * Creates a runtime format string.
 *
 * **Example**:
 *
 *     // Check format string at runtime instead of compile-time.
 *     fmt::print(fmt::runtime("{:d}"), "I am not a number");
 */
inline auto runtime(string_view s) -> runtime_format_string<> { return {{s}}; }

/// A compile-time format string. Use `format_string` in the public API to
/// prevent type deduction.
template <typename... T> struct fstring {
 private:
  static constexpr int num_static_named_args =
      detail::count_static_named_args<T...>();

  using checker = detail::format_string_checker<
      char, static_cast<int>(sizeof...(T)), num_static_named_args,
      num_static_named_args != detail::count_named_args<T...>()>;

  using arg_pack = detail::arg_pack<T...>;

 public:
  string_view str;
  using t = fstring;

  // Reports a compile-time error if S is not a valid format string for T.
  template <size_t N>
  FMT_CONSTEVAL FMT_ALWAYS_INLINE fstring(const char (&s)[N]) : str(s, N - 1) {
    using namespace detail;
    static_assert(count<(std::is_base_of<view, remove_reference_t<T>>::value &&
                         std::is_reference<T>::value)...>() == 0,
                  "passing views as lvalues is disallowed");
    if (FMT_USE_CONSTEVAL) parse_format_string<char>(s, checker(s, arg_pack()));
#ifdef FMT_ENFORCE_COMPILE_STRING
    static_assert(
        FMT_USE_CONSTEVAL && sizeof(s) != 0,
        "FMT_ENFORCE_COMPILE_STRING requires format strings to use FMT_STRING");
#endif
  }
  template <typename S,
            FMT_ENABLE_IF(std::is_convertible<const S&, string_view>::value)>
  FMT_CONSTEVAL FMT_ALWAYS_INLINE fstring(const S& s) : str(s) {
    auto sv = string_view(str);
    if (FMT_USE_CONSTEVAL)
      detail::parse_format_string<char>(sv, checker(sv, arg_pack()));
#ifdef FMT_ENFORCE_COMPILE_STRING
    static_assert(
        FMT_USE_CONSTEVAL && sizeof(s) != 0,
        "FMT_ENFORCE_COMPILE_STRING requires format strings to use FMT_STRING");
#endif
  }
  template <typename S,
            FMT_ENABLE_IF(std::is_base_of<detail::compile_string, S>::value&&
                              std::is_same<typename S::char_type, char>::value)>
  FMT_ALWAYS_INLINE fstring(const S&) : str(S()) {
    FMT_CONSTEXPR auto sv = string_view(S());
    FMT_CONSTEXPR int ignore =
        (parse_format_string(sv, checker(sv, arg_pack())), 0);
    detail::ignore_unused(ignore);
  }
  fstring(runtime_format_string<> fmt) : str(fmt.str) {}

  // Returning by reference generates better code in debug mode.
  FMT_ALWAYS_INLINE operator const string_view&() const { return str; }
  auto get() const -> string_view { return str; }
};

template <typename... T> using format_string = typename fstring<T...>::t;

template <typename T, typename Char = char>
using is_formattable = bool_constant<!std::is_same<
    detail::mapped_t<conditional_t<std::is_void<T>::value, int*, T>, Char>,
    void>::value>;
#ifdef __cpp_concepts
template <typename T, typename Char = char>
concept formattable = is_formattable<remove_reference_t<T>, Char>::value;
#endif

template <typename T, typename Char>
using has_formatter FMT_DEPRECATED = std::is_constructible<formatter<T, Char>>;

// A formatter specialization for natively supported types.
template <typename T, typename Char>
struct formatter<T, Char,
                 enable_if_t<detail::type_constant<T, Char>::value !=
                             detail::type::custom_type>>
    : detail::native_formatter<T, Char, detail::type_constant<T, Char>::value> {
};

/**
 * Constructs an object that stores references to arguments and can be
 * implicitly converted to `format_args`. `Context` can be omitted in which case
 * it defaults to `context`. See `arg` for lifetime considerations.
 */
// Take arguments by lvalue references to avoid some lifetime issues, e.g.
//   auto args = make_format_args(std::string());
template <typename Context = context, typename... T,
          int NUM_ARGS = sizeof...(T),
          int NUM_NAMED_ARGS = detail::count_named_args<T...>(),
          unsigned long long DESC = detail::make_descriptor<Context, T...>()>
constexpr FMT_ALWAYS_INLINE auto make_format_args(T&... args)
    -> detail::format_arg_store<Context, NUM_ARGS, NUM_NAMED_ARGS, DESC> {
  // Suppress warnings for pathological types convertible to detail::value.
  FMT_PRAGMA_GCC(diagnostic ignored "-Wconversion")
  return {{args...}};
}

template <typename... T>
using vargs =
    detail::format_arg_store<context, sizeof...(T),
                             detail::count_named_args<T...>(),
                             detail::make_descriptor<context, T...>()>;

/**
 * Returns a named argument to be used in a formatting function.
 * It should only be used in a call to a formatting function.
 *
 * **Example**:
 *
 *     fmt::print("The answer is {answer}.", fmt::arg("answer", 42));
 */
template <typename Char, typename T>
inline auto arg(const Char* name, const T& arg) -> detail::named_arg<Char, T> {
  return {name, arg};
}

/// Formats a string and writes the output to `out`.
template <typename OutputIt,
          FMT_ENABLE_IF(detail::is_output_iterator<remove_cvref_t<OutputIt>,
                                                   char>::value)>
auto vformat_to(OutputIt&& out, string_view fmt, format_args args)
    -> remove_cvref_t<OutputIt> {
  auto&& buf = detail::get_buffer<char>(out);
  detail::vformat_to(buf, fmt, args, {});
  return detail::get_iterator(buf, out);
}

/**
 * Formats `args` according to specifications in `fmt`, writes the result to
 * the output iterator `out` and returns the iterator past the end of the output
 * range. `format_to` does not append a terminating null character.
 *
 * **Example**:
 *
 *     auto out = std::vector<char>();
 *     fmt::format_to(std::back_inserter(out), "{}", 42);
 */
template <typename OutputIt, typename... T,
          FMT_ENABLE_IF(detail::is_output_iterator<remove_cvref_t<OutputIt>,
                                                   char>::value)>
FMT_INLINE auto format_to(OutputIt&& out, format_string<T...> fmt, T&&... args)
    -> remove_cvref_t<OutputIt> {
  return vformat_to(out, fmt.str, vargs<T...>{{args...}});
}

template <typename OutputIt> struct format_to_n_result {
  /// Iterator past the end of the output range.
  OutputIt out;
  /// Total (not truncated) output size.
  size_t size;
};

template <typename OutputIt, typename... T,
          FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value)>
auto vformat_to_n(OutputIt out, size_t n, string_view fmt, format_args args)
    -> format_to_n_result<OutputIt> {
  using traits = detail::fixed_buffer_traits;
  auto buf = detail::iterator_buffer<OutputIt, char, traits>(out, n);
  detail::vformat_to(buf, fmt, args, {});
  return {buf.out(), buf.count()};
}

/**
 * Formats `args` according to specifications in `fmt`, writes up to `n`
 * characters of the result to the output iterator `out` and returns the total
 * (not truncated) output size and the iterator past the end of the output
 * range. `format_to_n` does not append a terminating null character.
 */
template <typename OutputIt, typename... T,
          FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value)>
FMT_INLINE auto format_to_n(OutputIt out, size_t n, format_string<T...> fmt,
                            T&&... args) -> format_to_n_result<OutputIt> {
  return vformat_to_n(out, n, fmt.str, vargs<T...>{{args...}});
}

struct format_to_result {
  /// Pointer to just after the last successful write in the array.
  char* out;
  /// Specifies if the output was truncated.
  bool truncated;

  FMT_CONSTEXPR operator char*() const {
    // Report truncation to prevent silent data loss.
    if (truncated) report_error("output is truncated");
    return out;
  }
};

template <size_t N>
auto vformat_to(char (&out)[N], string_view fmt, format_args args)
    -> format_to_result {
  auto result = vformat_to_n(out, N, fmt, args);
  return {result.out, result.size > N};
}

template <size_t N, typename... T>
FMT_INLINE auto format_to(char (&out)[N], format_string<T...> fmt, T&&... args)
    -> format_to_result {
  auto result = vformat_to_n(out, N, fmt.str, vargs<T...>{{args...}});
  return {result.out, result.size > N};
}

/// Returns the number of chars in the output of `format(fmt, args...)`.
template <typename... T>
FMT_NODISCARD FMT_INLINE auto formatted_size(format_string<T...> fmt,
                                             T&&... args) -> size_t {
  auto buf = detail::counting_buffer<>();
  detail::vformat_to(buf, fmt.str, vargs<T...>{{args...}}, {});
  return buf.count();
}

FMT_API void vprint(string_view fmt, format_args args);
FMT_API void vprint(FILE* f, string_view fmt, format_args args);
FMT_API void vprintln(FILE* f, string_view fmt, format_args args);
FMT_API void vprint_buffered(FILE* f, string_view fmt, format_args args);

/**
 * Formats `args` according to specifications in `fmt` and writes the output
 * to `stdout`.
 *
 * **Example**:
 *
 *     fmt::print("The answer is {}.", 42);
 */
template <typename... T>
FMT_INLINE void print(format_string<T...> fmt, T&&... args) {
  vargs<T...> va = {{args...}};
  if (detail::const_check(!detail::use_utf8))
    return detail::vprint_mojibake(stdout, fmt.str, va, false);
  return detail::is_locking<T...>() ? vprint_buffered(stdout, fmt.str, va)
                                    : vprint(fmt.str, va);
}

/**
 * Formats `args` according to specifications in `fmt` and writes the
 * output to the file `f`.
 *
 * **Example**:
 *
 *     fmt::print(stderr, "Don't {}!", "panic");
 */
template <typename... T>
FMT_INLINE void print(FILE* f, format_string<T...> fmt, T&&... args) {
  vargs<T...> va = {{args...}};
  if (detail::const_check(!detail::use_utf8))
    return detail::vprint_mojibake(f, fmt.str, va, false);
  return detail::is_locking<T...>() ? vprint_buffered(f, fmt.str, va)
                                    : vprint(f, fmt.str, va);
}

/// Formats `args` according to specifications in `fmt` and writes the output
/// to the file `f` followed by a newline.
template <typename... T>
FMT_INLINE void println(FILE* f, format_string<T...> fmt, T&&... args) {
  vargs<T...> va = {{args...}};
  return detail::const_check(detail::use_utf8)
             ? vprintln(f, fmt.str, va)
             : detail::vprint_mojibake(f, fmt.str, va, true);
}

/// Formats `args` according to specifications in `fmt` and writes the output
/// to `stdout` followed by a newline.
template <typename... T>
FMT_INLINE void println(format_string<T...> fmt, T&&... args) {
  return fmt::println(stdout, fmt, static_cast<T&&>(args)...);
}

FMT_END_EXPORT
FMT_PRAGMA_CLANG(diagnostic pop)
FMT_PRAGMA_GCC(pop_options)
FMT_END_NAMESPACE

#ifdef FMT_HEADER_ONLY
#  include "format.h"
#endif
#endif  // FMT_BASE_H_