File: runit7A.R

package info (click to toggle)
fmultivar 240.10068-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 1,492 kB
  • ctags: 272
  • sloc: fortran: 1,128; ansic: 764; sh: 22; makefile: 1
file content (236 lines) | stat: -rw-r--r-- 6,928 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Library General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General
# Public License along with this library; if not, write to the
# Free Foundation, Inc., 59 Temple Place, Suite 330, Boston,
# MA  02111-1307  USA

# Copyrights (C)
# for this R-port: 
#   1999 - 2004, Diethelm Wuertz, GPL
#   Diethelm Wuertz <wuertz@itp.phys.ethz.ch>
#   info@rmetrics.org
#   www.rmetrics.org
# for the code accessed (or partly included) from other R-ports:
#   see R's copyright and license files
# for the code accessed (or partly included) from contributed R-ports
# and other sources
#   see Rmetrics's copyright file


################################################################################
# FUNCTION:             DESCRIPTION:
#  grid2d                Returns from two vectors x-y grid coordinates
#  density2d             Returns 2D Kernel Density Estimates
#  hist2d                Returns 2D Histogram Counts
#  integrate2d           Integrates over a two dimensional unit square
# FUNCTION:             BIVARIATE DISTRIBUTIONS:
#  pnorm2d               Computes bivariate Normal probability function
#  dnorm2d               Computes bivariate Normal density function
#  rnorm2d               Generates bivariate normal random deviates
#  pcauchy2d             Computes bivariate Cauchy probability function
#  dcauchy2d             Computes bivariate Cauchy density function
#  rcauchy2d             Generates bivariate Cauchy random deviates
#  pt2d                  Computes bivariate Student-t probability function
#  dt2d                  Computes bivariate Student-t density function
#  rt2d                  Generates bivariate Student-t random deviates
# FUNCTION:             ELLIPTICAL DISTRIBUTIONS:
#  delliptical2d         Computes density for elliptical distributions
#  .gfunc2d              Generator Function for elliptical distributions
#  .delliptical2dSlider  Slider for bivariate densities
################################################################################


### Uncomplete - Under Development ###


test.helpFile = 
function()
{
    # Help File:
    helpFile = function() { 
        example(BivariateTools); return() }
    checkIdentical(
        target = class(try(helpFile())),
        current = "NULL")

    # Return Value:
    return()    
}


# ------------------------------------------------------------------------------


test.density =
function()
{
    # Data:
    z = rnorm2d(1000)
    
    # Density:
    D = density2d(x = z[, 1], y = z[, 2])
    .perspPlot(D)
    .contourPlot(D)
    
    # Histogram:
    H = hist2d(x = z[, 1], y = z[, 2])
    .perspPlot(H)
    .contourPlot(H)
    
    # Probability:
    # P = integrate2d(fun = *)
    # .perspPlot(P)
    # .contourPlot(P)
    
    
    # Return Value:
    return()    
}


# ------------------------------------------------------------------------------


test.bivariate.norm =
function()
{
    #  pnorm2d               Computes bivariate Normal probability function
    #  dnorm2d               Computes bivariate Normal density function
    #  rnorm2d               Generates bivariate normal random deviates
    
    # Normal Density:
    x = (-40:40)/10
    X = grid2d(x)
    z = dnorm2d(X$x, X$y)
    Z = list(x = x, y = x, z = matrix(z, ncol = length(x)))
    .perspPlot(Z)
    .contourPlot(Z)
    
    # Normal Density, rho = 0.5:
    x = (-40:40)/10
    X = grid2d(x)
    z = dnorm2d(X$x, X$y, rho = 0.5)
    Z = list(x = x, y = x, z = matrix(z, ncol = length(x)))
    .perspPlot(Z)
    .contourPlot(Z)
 
    # Return Value:
    return()    
}


# ------------------------------------------------------------------------------


test.bivariate.cauchy =
function()
{
    #  pcauchy2d             Computes bivariate Cauchy probability function
    #  dcauchy2d             Computes bivariate Cauchy density function
    #  rcauchy2d             Generates bivariate Cauchy random deviates
    
    # Cauchy Density:
    x = (-40:40)/10
    X = grid2d(x)
    z = dcauchy2d(X$x, X$y)
    Z = list(x = x, y = x, z = matrix(z, ncol = length(x)))
    .perspPlot(Z)
    .contourPlot(Z)
    
    # Cauchy Density, rho = 0.5:
    x = (-40:40)/10
    X = grid2d(x)
    z = dcauchy2d(X$x, X$y, rho = 0.5)
    Z = list(x = x, y = x, z = matrix(z, ncol = length(x)))
    .perspPlot(Z)
    .contourPlot(Z)
 
    # Return Value:
    return()    
}


# ------------------------------------------------------------------------------


test.bivariate.t =
function()
{
    #  pt2d                  Computes bivariate Student-t probability function
    #  dt2d                  Computes bivariate Student-t density function
    #  rt2d                  Generates bivariate Student-t random deviates
    
    # Student Density:
    x = (-40:40)/10
    X = grid2d(x)
    z = dt2d(X$x, X$y, nu = 4)
    Z = list(x = x, y = x, z = matrix(z, ncol = length(x)))
    .perspPlot(Z)
    .contourPlot(Z)
    
    # Student Density, rho = 0.5:
    x = (-40:40)/10
    X = grid2d(x)
    z = dt2d(X$x, X$y, rho = 0.5, nu = 4)
    Z = list(x = x, y = x, z = matrix(z, ncol = length(x)))
    .perspPlot(Z)
    .contourPlot(Z)
 
    # Return Value:
    return()    
}


# ------------------------------------------------------------------------------


test.elliptical =
function()
{
    
    # Settings:
    xy = grid2d((-50:50)/10)
    
    # Contour Plots:
    par(mfrow = c(3, 2), cex = 0.7)
    contour(delliptical2d(xy, rho = 0.75, param = NULL, 
        type = "norm", output = "list"), main = "norm")
    contour(delliptical2d(xy, rho = 0.75, param = NULL, 
        type = "cauchy", output = "list"), main = "cauchy")
    contour(delliptical2d(xy, rho = 0.75, param = 4, 
        type = "t", output = "list"), main = "t")
    contour(delliptical2d(xy, rho = 0.75, param = NULL, 
        type = "laplace", output = "list"), main = "laplace")
    contour(delliptical2d(xy, rho = 0.75, param = NULL, 
        type = "kotz", output = "list"), main = "kotz")
    contour(delliptical2d(xy, rho = 0.75, param = NULL, 
        type = "epower", output = "list"), main = "epower")
        
# Return Value:
    return()    
}



# ------------------------------------------------------------------------------


if (FALSE) {
    require(RUnit)
    testResult = runTestFile("C:/Rmetrics/SVN/trunk/fMultivar/test/runit7A.R")
    printTextProtocol(testResult)
}
   

################################################################################