1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Library General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General
# Public License along with this library; if not, write to the
# Free Foundation, Inc., 59 Temple Place, Suite 330, Boston,
# MA 02111-1307 USA
################################################################################
# FUNCTION: DESCRIPTION:
# density2d Returns 2D Kernel Density Estimates
# hist2d Returns 2D Histogram Counts
################################################################################
density2d <-
function (x, y = NULL, n = 20, h = NULL, limits = c(range(x), range(y)))
{
# A function implemented by Diethelm Wuertz
# Description:
# Returns 2D Kernel Density Estimates
# Arguments:
# x, y - two vectors of coordinates of data. If y is NULL then x
# is assumed to be a two column matrix, where the first column
# contains the x data, and the second column the y data.
# n - Number of grid points in each direction.
# h - a vector of bandwidths for x and y directions. Defaults to
# normal reference bandwidth.
# limits - the limits of the rectangle covered by the grid.
# Value:
# A list with three elements x, y, and z. x and y are vectors
# spanning the two dimensioanl grid and z the corresponding
# matrix. The output can directly serve as input to the
# plotting functions image, contour and persp.
# Details:
# Two-dimensional kernel density estimation with an axis-aligned
# bivariate normal kernel, evaluated on a square grid.
# Note:
# Partly copied from R Package MASS, function 'kde2d'.
# Reference:
# Venables, W.N., Ripley, B. D. (2002);
# Modern Applied Statistics with S.
# Fourth edition, Springer.
# FUNCTION:
# Settings:
lims = limits
if (is.null(y)) {
y = x[, 2]
x = x[, 1]
}
# Bandwidth:
.bandwidth.nrd = function (x) {
r = quantile(x, c(0.25, 0.75))
h = (r[2] - r[1])/1.34
4 * 1.06 * min(sqrt(var(x)), h) * length(x)^(-1/5) }
# Kernel Density Estimator:
nx = length(x)
if (length(y) != nx) stop("Data vectors must be the same length")
gx = seq(lims[1], lims[2], length = n)
gy = seq(lims[3], lims[4], length = n)
if (is.null(h)) h = c(.bandwidth.nrd(x), .bandwidth.nrd(y))
h = h/4
ax = outer(gx, x, "-")/h[1]
ay = outer(gy, y, "-")/h[2]
z = matrix(dnorm(ax), n, nx) %*% t(matrix(dnorm(ay), n,
nx))/(nx * h[1] * h[2])
# Return Value:
list(x = gx, y = gy, z = z)
}
# ------------------------------------------------------------------------------
hist2d <-
function(x, y = NULL, n = c(20, 20))
{
# A function implemented by Diethelm Wuertz
# Description:
# Returns 2D Histogram Counts
# Arguments:
# x, y - two vectors of coordinates of data. If y is NULL then x
# is assumed to be a two column matrix, where the first column
# contains the x data, and the second column the y data.
# n - number of bins in each dimension, may be a scalar or a 2
# element vector. The default value is 20.
# Value:
# A list with three elements x, y, and z. x and y are vectors
# spanning the two dimensioanl grid and z the corresponding
# matrix. The output can directly serve as input to the
# plotting functions image, contour and persp.
# Note:
# Partly copied from R Package gregmisc, function 'hist2d'.
# FUNCTION:
# 2D Histogram Counts:
if (is.null(y)) {
y = x[, 2]
x = x[, 1]
}
if (length(n) == 1) {
nbins = c(n, n)
} else {
nbins = n
}
nas = is.na(x) | is.na(y)
x.cuts = seq(from = min(x, y), to = max(x,y), length = nbins[1]+1)
y.cuts = seq(from = min(x, y), to = max(x,y), length = nbins[2]+1)
index.x = cut(x, x.cuts, include.lowest = TRUE)
index.y = cut(y, y.cuts, include.lowest = TRUE)
m = matrix(0, nrow=nbins[1], ncol = nbins[2],
dimnames = list( levels(index.x), levels(index.y) ) )
for ( i in 1:length(index.x) ) {
m[index.x[i], index.y[i] ] = m[index.x[i], index.y[i] ] + 1
}
xvals = x.cuts[1:nbins[1]]
yvals = y.cuts[1:nbins[2]]
# Return Value:
list(x = xvals, y = yvals, z = m)
}
################################################################################
|