1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Library General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General
# Public License along with this library; if not, write to the
# Free Foundation, Inc., 59 Temple Place, Suite 330, Boston,
# MA 02111-1307 USA
################################################################################
# FUNCTION: DESCRIPTION:
# grid2d Returns from two vectors x-y grid coordinates
# density2d Returns 2D Kernel Density Estimates
# hist2d Returns 2D Histogram Counts
# FUNCTION: BIVARIATE DISTRIBUTIONS:
# pnorm2d Computes bivariate Normal probability function
# dnorm2d Computes bivariate Normal density function
# rnorm2d Generates bivariate normal random deviates
# pcauchy2d Computes bivariate Cauchy probability function
# dcauchy2d Computes bivariate Cauchy density function
# rcauchy2d Generates bivariate Cauchy random deviates
# pt2d Computes bivariate Student-t probability function
# dt2d Computes bivariate Student-t density function
# rt2d Generates bivariate Student-t random deviates
# FUNCTION: ELLIPTICAL DISTRIBUTIONS:
# delliptical2d Computes density for elliptical distributions
# REQUIREMENTS:
.perspPlot <- fBasics::.perspPlot
.contourPlot <- fBasics::.contourPlot
################################################################################
test.grid2d =
function()
{
# Grid Data:
grid2d(x = (0:10)/10)
# Return Value:
return()
}
# ------------------------------------------------------------------------------
test.density2d =
function()
{
# Data:
z <- rnorm2d(1000)
# Density:
D = density2d(x = z[, 1], y = z[, 2])
.perspPlot(D)
.contourPlot(D)
# Return Value:
return()
}
# ------------------------------------------------------------------------------
test.hist2d =
function()
{
# Data:
z <- rnorm2d(1000)
# Histogram:
H <- hist2d(x = z[, 1], y = z[, 2])
.perspPlot(H)
.contourPlot(H)
# Return Value:
return()
}
# ------------------------------------------------------------------------------
test.norm2d =
function()
{
# pnorm2d - Computes bivariate Normal probability function
# dnorm2d - Computes bivariate Normal density function
# rnorm2d - Generates bivariate normal random deviates
# Normal Density:
x = (-40:40)/10
X = grid2d(x)
z = dnorm2d(X$x, X$y)
Z = list(x = x, y = x, z = matrix(z, ncol = length(x)))
.perspPlot(Z)
.contourPlot(Z)
# Normal Density, rho = 0.5:
x = (-40:40)/10
X = grid2d(x)
z = dnorm2d(X$x, X$y, rho = 0.5)
Z = list(x = x, y = x, z = matrix(z, ncol = length(x)))
.perspPlot(Z)
.contourPlot(Z)
# Return Value:
return()
}
# ------------------------------------------------------------------------------
test.cauchy2d =
function()
{
# pcauchy2d - Computes bivariate Cauchy probability function
# dcauchy2d - Computes bivariate Cauchy density function
# rcauchy2d - Generates bivariate Cauchy random deviates
# Cauchy Density:
x = (-40:40)/10
X = grid2d(x)
z = dcauchy2d(X$x, X$y)
Z = list(x = x, y = x, z = matrix(z, ncol = length(x)))
.perspPlot(Z)
.contourPlot(Z)
# Cauchy Density, rho = 0.5:
x = (-40:40)/10
X = grid2d(x)
z = dcauchy2d(X$x, X$y, rho = 0.5)
Z = list(x = x, y = x, z = matrix(z, ncol = length(x)))
.perspPlot(Z)
.contourPlot(Z)
# Return Value:
return()
}
# ------------------------------------------------------------------------------
test.t2d =
function()
{
# pt2d - Computes bivariate Student-t probability function
# dt2d - Computes bivariate Student-t density function
# rt2d - Generates bivariate Student-t random deviates
# Student Density:
x = (-40:40)/10
X = grid2d(x)
z = dt2d(X$x, X$y, nu = 4)
Z = list(x = x, y = x, z = matrix(z, ncol = length(x)))
.perspPlot(Z)
.contourPlot(Z)
# Student Density, rho = 0.5:
x = (-40:40)/10
X = grid2d(x)
z = dt2d(X$x, X$y, rho = 0.5, nu = 4)
Z = list(x = x, y = x, z = matrix(z, ncol = length(x)))
.perspPlot(Z)
.contourPlot(Z)
# Return Value:
return()
}
# ------------------------------------------------------------------------------
test.delliptical2d =
function()
{
# Settings:
xy = grid2d((-50:50)/10)
# Contour Plots:
par(mfrow = c(1, 1))
contour(delliptical2d(xy, rho = 0.75, param = NULL,
type = "norm", output = "list"), main = "norm")
contour(delliptical2d(xy, rho = 0.75, param = NULL,
type = "cauchy", output = "list"), main = "cauchy")
contour(delliptical2d(xy, rho = 0.75, param = 4,
type = "t", output = "list"), main = "t")
contour(delliptical2d(xy, rho = 0.75, param = NULL,
type = "laplace", output = "list"), main = "laplace")
contour(delliptical2d(xy, rho = 0.75, param = NULL,
type = "kotz", output = "list"), main = "kotz")
contour(delliptical2d(xy, rho = 0.75, param = NULL,
type = "epower", output = "list"), main = "epower")
# Return Value:
return()
}
################################################################################
|