File: runit.BivariateDistributions.R

package info (click to toggle)
fmultivar 4031.84-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 340 kB
  • sloc: fortran: 366; ansic: 43; makefile: 14
file content (213 lines) | stat: -rw-r--r-- 5,983 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Library General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General
# Public License along with this library; if not, write to the
# Free Foundation, Inc., 59 Temple Place, Suite 330, Boston,
# MA  02111-1307  USA


################################################################################
# FUNCTION:             DESCRIPTION:
#  grid2d                Returns from two vectors x-y grid coordinates
#  density2d             Returns 2D Kernel Density Estimates
#  hist2d                Returns 2D Histogram Counts
# FUNCTION:             BIVARIATE DISTRIBUTIONS:
#  pnorm2d               Computes bivariate Normal probability function
#  dnorm2d               Computes bivariate Normal density function
#  rnorm2d               Generates bivariate normal random deviates
#  pcauchy2d             Computes bivariate Cauchy probability function
#  dcauchy2d             Computes bivariate Cauchy density function
#  rcauchy2d             Generates bivariate Cauchy random deviates
#  pt2d                  Computes bivariate Student-t probability function
#  dt2d                  Computes bivariate Student-t density function
#  rt2d                  Generates bivariate Student-t random deviates
# FUNCTION:             ELLIPTICAL DISTRIBUTIONS:
#  delliptical2d         Computes density for elliptical distributions
# REQUIREMENTS:
.perspPlot   <- fBasics::.perspPlot
.contourPlot <- fBasics::.contourPlot
################################################################################


test.grid2d =
function()
{
    # Grid Data:
    grid2d(x = (0:10)/10)
    
    # Return Value:
    return()    
}


# ------------------------------------------------------------------------------


test.density2d =
    function()
{
    # Data:
    z <- rnorm2d(1000)
    
    # Density:
    D = density2d(x = z[, 1], y = z[, 2])
    .perspPlot(D)
    .contourPlot(D)
    
    # Return Value:
    return()    
}


# ------------------------------------------------------------------------------


test.hist2d =
    function()
{
    # Data:
    z <- rnorm2d(1000)
   
    # Histogram:
    H <- hist2d(x = z[, 1], y = z[, 2])
    .perspPlot(H)
    .contourPlot(H)

    # Return Value:
    return()    
}


# ------------------------------------------------------------------------------


test.norm2d =
    function()
{
    #  pnorm2d - Computes bivariate Normal probability function
    #  dnorm2d - Computes bivariate Normal density function
    #  rnorm2d - Generates bivariate normal random deviates
    
    # Normal Density:
    x = (-40:40)/10
    X = grid2d(x)
    z = dnorm2d(X$x, X$y)
    Z = list(x = x, y = x, z = matrix(z, ncol = length(x)))
    .perspPlot(Z)
    .contourPlot(Z)
    
    # Normal Density, rho = 0.5:
    x = (-40:40)/10
    X = grid2d(x)
    z = dnorm2d(X$x, X$y, rho = 0.5)
    Z = list(x = x, y = x, z = matrix(z, ncol = length(x)))
    .perspPlot(Z)
    .contourPlot(Z)
 
    # Return Value:
    return()    
}


# ------------------------------------------------------------------------------


test.cauchy2d =
    function()
{
    #  pcauchy2d - Computes bivariate Cauchy probability function
    #  dcauchy2d - Computes bivariate Cauchy density function
    #  rcauchy2d - Generates bivariate Cauchy random deviates
    
    # Cauchy Density:
    x = (-40:40)/10
    X = grid2d(x)
    z = dcauchy2d(X$x, X$y)
    Z = list(x = x, y = x, z = matrix(z, ncol = length(x)))
    .perspPlot(Z)
    .contourPlot(Z)
    
    # Cauchy Density, rho = 0.5:
    x = (-40:40)/10
    X = grid2d(x)
    z = dcauchy2d(X$x, X$y, rho = 0.5)
    Z = list(x = x, y = x, z = matrix(z, ncol = length(x)))
    .perspPlot(Z)
    .contourPlot(Z)
 
    # Return Value:
    return()    
}


# ------------------------------------------------------------------------------


test.t2d =
    function()
{
    #  pt2d - Computes bivariate Student-t probability function
    #  dt2d - Computes bivariate Student-t density function
    #  rt2d - Generates bivariate Student-t random deviates
    
    # Student Density:
    x = (-40:40)/10
    X = grid2d(x)
    z = dt2d(X$x, X$y, nu = 4)
    Z = list(x = x, y = x, z = matrix(z, ncol = length(x)))
    .perspPlot(Z)
    .contourPlot(Z)
    
    # Student Density, rho = 0.5:
    x = (-40:40)/10
    X = grid2d(x)
    z = dt2d(X$x, X$y, rho = 0.5, nu = 4)
    Z = list(x = x, y = x, z = matrix(z, ncol = length(x)))
    .perspPlot(Z)
    .contourPlot(Z)
 
    # Return Value:
    return()    
}


# ------------------------------------------------------------------------------


test.delliptical2d =
    function()
{ 
    # Settings:
    xy = grid2d((-50:50)/10)
    
    # Contour Plots:
    par(mfrow = c(1, 1))
    contour(delliptical2d(xy, rho = 0.75, param = NULL, 
        type = "norm", output = "list"), main = "norm")
    contour(delliptical2d(xy, rho = 0.75, param = NULL, 
        type = "cauchy", output = "list"), main = "cauchy")
    contour(delliptical2d(xy, rho = 0.75, param = 4, 
        type = "t", output = "list"), main = "t")
    contour(delliptical2d(xy, rho = 0.75, param = NULL, 
        type = "laplace", output = "list"), main = "laplace")
    contour(delliptical2d(xy, rho = 0.75, param = NULL, 
        type = "kotz", output = "list"), main = "kotz")
    contour(delliptical2d(xy, rho = 0.75, param = NULL, 
        type = "epower", output = "list"), main = "epower")
        
    # Return Value:
    return()    
}


################################################################################