File: NonLinStatistics.R

package info (click to toggle)
fnonlinear 2100.76-3
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 248 kB
  • ctags: 46
  • sloc: ansic: 529; makefile: 13
file content (652 lines) | stat: -rw-r--r-- 18,756 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652

# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# General Public License for more details.
#
# A copy of the GNU General Public License is available via WWW at
# http://www.gnu.org/copyleft/gpl.html.  You can also obtain it by
# writing to the Free Software Foundation, Inc., 59 Temple Place,
# Suite 330, Boston, MA  02111-1307  USA. 

# Copyrights (C)
# for this R-port: 
#   1999 - 2004, Diethelm Wuertz, GPL
#   Diethelm Wuertz <wuertz@itp.phys.ethz.ch>
#   info@rmetrics.org
#   www.rmetrics.org
# for the code accessed (or partly included) from other R-ports:
#   see R's copyright and license files
# for the code accessed (or partly included) from contributed R-ports
# and other sources
#   see Rmetrics's copyright file


################################################################################
# FUNCTION:             PHASE SPACE REPRESENTATION PLOTS:
#  mutualPlot            Creates mutual information plot
#  .embeddPSR            Embeds a time series given time delay and dimension
#  .checkEmbParms        Checks embedding parameters
#  falsennPlot           Creates false nearest neigbours plot
# FUNCTION:             NON STATIONARITY PLOTS:
#  recurrencePlot        Creates recurrence plot
#  separationPlot        Creates space-time separation plot
# FUNCTION:             LYAPUNOV EXPONENTS PLOT:
#  lyapunovPlot          Creates Maximum Lyapunov plot    
#  .find.nearest
#  .follow.points
#  .lyapunovFit            
# FUNCTION:             DIMENSIONS AND ENTROPY:
#  .C2
#  .d2
################################################################################


################################################################################
# CHAOTIC TIME SERIES ANALYSIS
# Package: tseriesChaos
# Title: Analysis of nonlinear time series
# Date: 2005-07-24
# Version: 0.1
# Author: Antonio, Fabio Di Narzo
# Description: Routines for the analysis of nonlinear time series. 
#   This work is largely inspired by the TISEAN project, by Rainer 
#   Hegger, Holger Kantz and Thomas Schreiber: 
#   http://www.mpipks-dresden.mpg.de/~tisean/
# Maintainer: Antonio, Fabio Di Narzo <antonio.dinarzo@studio.unibo.it>
# License: GPL version 2 or newer
# Packaged: Sun Jul 24 10:58:36 2005; antonio
# CONTENT:
#   1. PHASE SPACE REPRESENTATION
#   2. NON STATIONARITY
#   3. LYAPUNOV EXPONENTS
#   4. DIMENSIONS AND ENTROPY
################################################################################


mutualPlot = 
function(x, partitions = 16, lag.max = 20, doplot = TRUE, ...) 
{   # A function implemented by Diethelm Wuertz

    # Description:
    #   Estimate the mutual information index of a given time 
    #   series for a specified number of lags   
    
    # Arguments:
    #   x - a numeric vector, or an object either of class 'ts' or
    #       of class 'timeSeries'.
    #   partitions - an integer value setting the number of bins, by
    #       default 16.
    #   lag.max - an integer value setting the number of
    #       maximum lags, by default 20/
    #   doplot - a logical flag. Should a plot be displayed?

    # Author:
    #   Antonio, Fabio Di Narzo 
    #   of the original function from the 'tseriesChaos' package
    
    # FUNCTION:
    
    # Settings:
    if (class(x) == "timeSeries") x = as.vector(x)
    x = as.ts(x)
    series = (x-min(x))/(diff(range(x)))
    corr = numeric(lag.max+1)
    
    # Mutual Information:
    for(i in 0:lag.max) {
        hist = matrix(0, partitions, partitions)
        hist = .C("mutual", 
            series = as.double(series), 
            length = as.integer(length(series)), 
            lag = as.integer(i), 
            partitions = as.integer(partitions), 
            hist = as.double(hist), 
            PACKAGE = "fNonlinear")[["hist"]]
        hist = matrix(hist, partitions, partitions)/sum(hist)
        histx = apply(hist, 1, sum)
        hist = hist[hist != 0]
        histx<- histx[histx != 0]
        corr[i+1] = sum(hist*log(hist)) - 2*sum(histx*log(histx))
    }
    names(corr) = paste(0:lag.max)
    
    # Plot:
    if (doplot) {
        plot(0:lag.max, corr, xlab = "Lag", type = "b", pch = 19, cex = 0.25,
            col = "steelblue", main = "Mutual Information", ...) 
    }

    # Return Value:
    corr
}


# ------------------------------------------------------------------------------


.embeddPSR = 
function(x, m, d) 
{   # A function implemented by Diethelm Wuertz

    # Description:
    #   Embeds a time series given time delay and dimension parameters.
    
    # Arguments
    #   x - time series
    #   m - embedding dimension
    #   d - time delay
    
    # Value:
    #   Matrix with columns corresponding to lagged time series.

    # Author:
    #   Antonio, Fabio Di Narzo 
    #   of the original function from the 'tseriesChaos' package
    
    # FUNCTION:
    
    .checkEmbParms(x, m, d)
    n = length(x) - (m-1)*d
    res = matrix(0, n, m)
    for(i in 1:m) res[,i] = x[((i-1)*d+1):(n+(i-1)*d)]
    
    # Return Value:
    res
}


# ------------------------------------------------------------------------------


.checkEmbParms =
function(series, m, d, t = 0, s = 1, ref = NULL) 
{   # A function implemented by Diethelm Wuertz

    # Description:
    #   Checks embedding parameters
    
    # Author:
    #   Antonio, Fabio Di Narzo 
    #   of the original function from the 'tseriesChaos' package
    
    # FUNCTION:
    
    n = length(series)-(m-1)*d
    if (n <= 0) 
        stop("Not enough points to handle these parameters")
    if (!is.null(ref)) if (ref > n) 
        stop("Not enough points to handle these parameters")
    if (t < 0) 
        stop("Theiler window t must be non-negative")
    if (s <= 0) 
        stop("Number of steps must be positive")
        
    # Return Value:
    invisible()
}


# ------------------------------------------------------------------------------


falsennPlot = 
function(x, m, d, t, rt = 10, eps = NULL, doplot = TRUE, ...) 
{   # A function implemented by Diethelm Wuertz

    # Description:
    #   Use the method of false nearest neighbours to help deciding 
    #   the optimal embedding dimension 
    
    # Arguments:
    #   x - time series
    #   m - maximum embedding dimension
    #   d - delay parameter
    #   t - Theiler window
    #   rt - escape factor
    #   eps - neighborhood diameter

    # Value:
    #   Fraction of false neighbors (first row) and total number of 
    #   neighbors (second row) for each specified embedding dimension 
    #   (columns)

    # Author:
    #   Antonio, Fabio Di Narzo 
    #   of the original function from the 'tseriesChaos' package
    
    # FUNCTION:
    
    # Settings:
    if (class(x) == "timeSeries") x = as.vector(x)
    series = as.ts(x)
    if (is.null(eps)) eps = sd(series)/10
    res = numeric(m)
    res2 = numeric(m)
    
    # False Nearest Neigbours:
    for(i in 1:m) {
        a = .C("falseNearest", 
            series = as.double(series), 
            length = as.integer(length(series)), 
            m = as.integer(i), 
            d = as.integer(d), 
            t = as.integer(t), 
            eps = as.double(eps), 
            rt = as.double(rt), 
            out = as.double(res[i]), 
            out2 = as.integer(res2[i]), 
            PACKAGE = "fNonlinear")
        res[i] = a[["out"]]
        res2[i]= a[["out2"]]
    }
    res = rbind(res, res2)
    rownames(res) = c("fraction", "total")
    colnames(res) = paste("m", 1:m, sep = "")
    
    # Plot:
    if (doplot) {
        plot(res[1, ], type = "b", col = "steelblue", pch = 19,
            cex = 0.25, xlab = "Dimension", ylab = "Fraction of ffn",
            main = "False Nearest Neigbours", ...)
    }
    
    # Return Value:
    res
}


################################################################################


recurrencePlot = 
function(x, m, d, end.time, eps, nt = 10, doplot = TRUE, ...) 
{   # A function implemented by Diethelm Wuertz

    # Description:
    #   Creates a recurrence plot
    
    # Arguments
    #   x - time series
    #   m - embedding dimension
    #   d - time delay
    #   end.time - ending time (as no. of observations)
    #   eps - neighbourhood threshold
    #   nt - observations in each step
    #   ... - further parameters to be passed to plot
    
    # Value:
    #   Produces the recurrence plot, as proposed by Eckmann et al. (1987). 
    #   To reduce the number of points plotted (especially with highly 
    #   sampled data), each nt observations, one single point is plotted.

    # FUNCTION:
    
    # Settings:
    if (class(x) == "timeSeries") x = as.vector(x)
    series = as.ts(x)
    w = (0:(m-1))*d
    .dist = function(i, j) { sum((series[i+w]-series[j+w])^2) }

    .checkEmbParms(series, m, d)
    if (eps <= 0) stop("eps must be positive")
    nt = as.integer(nt)
    if (nt<=0) nt = 1
    n = length(series)-(m-1)*d
    if(end.time > n) end.time = n
    eps = eps^2
    xyz = .embeddPSR(series, m = m, d = d)[1:end.time, ]
    
    # Plot:
    if (doplot) {
        plot(0, xlim = c(0, end.time), ylim = c(0, end.time), type = "n", 
            main = "Recurrence Plot", xlab = "i", ylab = "j")
        for(i in seq(1, end.time, by = nt)) 
            for(j in seq(i,end.time, by = nt))
                if(.dist(i,j) < eps) points(c(i, j), c(j, i), ...)
    }
    
    # Return Value:
    invisible()         
}


# ------------------------------------------------------------------------------


separationPlot = 
function(x, m, d, mdt, idt = 1, doplot = TRUE, ...) 
{   # A function implemented by Diethelm Wuertz

    # Description:
    #   Creates a space-time separation plot 

    # Arguments:
    #   x - time series
    #   m - embedding dimension
    #   d - time delay
    #   idt - observation steps in each iteration
    #   mdt - number of iterations
    
    # Value:
    #   Returns lines of costant probability at 10%, 20%, ..., 100%.
    
    # Author:
    #   Antonio, Fabio Di Narzo 
    #   of the original function from the 'tseriesChaos' package
    
    # FUNCTION:
    
    # Settings:
    if (class(x) == "timeSeries") x = as.vector(x)
    series = as.ts(x)
    .checkEmbParms(series, m, d)
    
    # Space Time Separations:
    eps.max = diff(range(series))*sqrt(m)
    res = matrix(0, 10, mdt)
    res = .C("stplot", 
        series = as.double(series), 
        length = as.integer(length(series)), 
        m = as.integer(m), 
        d = as.integer(d), 
        mdt = as.integer(mdt), 
        idt = as.integer(idt),
        eps.max = as.double(eps.max), 
        res = as.double(res), 
        PACKAGE = "fNonlinear")[["res"]]
    stp = matrix(res, 10, mdt)
    eps.m = min(stp)
    eps.M = max(stp)
    
    # Plot:
    if (doplot) {
        plot(0, xlim = c(0, mdt*idt/frequency(series)), 
            ylim = c(eps.m*0.99, eps.M*1.01), 
            xlab = "Time", ylab = "Distance", type = "n", 
            main = "Space-time Separation Plot")
        x = seq(1/frequency(series), mdt*idt/frequency(series), 
            by = idt/frequency(series))
        for(i in 1:10) lines(x, stp[i, ], col = "steelblue")
    }
    
    # Return Value:
    invisible(stp)
}


################################################################################


lyapunovPlot = 
function(x, m, d, t, ref, s, eps, k = 1, doplot = TRUE, ...) 
{   # A function implemented by Diethelm Wuertz

    # Description:
    #   Evaluate the maximal Lyapunov exponent of a dynamic system 
    #   from an univariate time series  
    
    # Arguments
    #   x - time series
    #   m - embedding dimension
    #   d - time delay
    #   k - number of considered neighbours
    #   eps - radius where to find nearest neighbours
    #   s - iterations along which follow the neighbours of each point
    #   ref - number of points to take into account
    #   t - Theiler window
    
    # Value:
    #   Returns the logarithm of the stretching factor in time. 
    
    # Author:
    #   Antonio, Fabio Di Narzo 
    #   of the original function from the 'tseriesChaos' package
    
    # Example:
    #   output = lyapunovPlot(lorenz.ts, m = 3, d = 2, s = 200, t = 40, 
    #   ref = 1700, k = 2, eps = 4)   
    
    # FUNCTION:
    
    # Settings:
    if (class(x) == "timeSeries") x = as.vector(x)
    series = as.ts(x)
    .checkEmbParms(series, m, d, t, s, ref)
    n = length(series) - (m-1)*d - s 
    if(ref < 0) ref = n
    trash = numeric()
    ref = 1:ref
    
    # Finding Nearest Neighbours:
    cat("Finding nearests\n")
    nearest = .find.nearest(series, m = m, d = d, t = t, ref = length(ref), 
        s = s, eps = eps, k = k)
    trash = apply(nearest, 1, function(x) any(is.na(x)))
    ref = ref[!trash]
    if(length(ref) == 0) 
        stop("not enough neighbours found")
    cat("Keeping ", length(ref)," reference points\n")
    
    # Following Points:
    cat("Following points\n")
    res = .follow.points(series, m = m, d = d, s = s, ref = ref, 
        nearest = nearest, k = k)
    ans = ts(res, freq = frequency(series), start = 0)
    
    # Plot:
    if (doplot) {
        plot(ans, col = "steelblue", main = "Max Lyapunov Exponents", ...)
    }
    
    
    # Return Value:
    ans
}


# ------------------------------------------------------------------------------


.find.nearest = 
function(series, m, d, t, eps, ref, k, s)
{   # A function implemented by Diethelm Wuertz

    # Description:
    #   Internal Function called by 'lyapunovPlot'  
    
    # Arguments:
    
    # Author:
    #   Antonio, Fabio Di Narzo 
    #   of the original function from the 'tseriesChaos' package
    
    # FUNCTION:
    
    # Find Nearest:
    res = numeric(ref*k)
    res = .C("find_nearest", 
        series = as.double(series), 
        m = as.integer(m), 
        d = as.integer(d), 
        t = as.integer(t), 
        length = as.integer(length(series)), 
        eps = as.double(eps),
        ref = as.integer(ref), 
        k = as.integer(k), 
        s = as.integer(s), 
        res = as.integer(res), 
        PACKAGE = "fNonlinear")[["res"]]
    res[res == -1] = NA
    
    # Return Value:
    matrix(res, ref, k)
}


# ------------------------------------------------------------------------------


.follow.points = 
function(series, m, d, ref, k, s, nearest) 
{   # A function implemented by Diethelm Wuertz

    # Description:
    #   Internal Function called by 'lyapunovPlot'
    
    # Arguments:
    
    # Author:
    #   Antonio, Fabio Di Narzo 
    #   of the original function from the 'tseriesChaos' package
    
    # FUNCTION:
    
    # Follow Points:
    res = numeric(s)
    nearest[is.na(nearest)] = -1
    ans = .C("follow_points",
        series = as.double(series), 
        m = as.integer(m), 
        d = as.integer(d), 
        length = as.integer(length(series)), 
        nref = as.integer(length(ref)), 
        nrow = as.integer(nrow(nearest)), 
        k = as.integer(k), 
        s = as.integer(s), 
        nearest = as.integer(nearest), 
        ref = as.integer(ref), 
        res = as.double(res),
        PACKAGE = "fNonlinear")[["res"]]
        
    # Return Value:
    ans
}


# ------------------------------------------------------------------------------


.lyapunovFit = 
function(x, start, end) 
{   # A function implemented by Diethelm Wuertz

    # Description:
    #   Lyapunov Fit
    
    # Arguments:
    #   x - Should be the output of a call to lyap_k (see the example)
    #   start - Starting time of the linear bite of dsts
    #   end - Ending time of the linear bite of dsts

    # Value:
    #   Returns the regression coefficients of the specified input sequence.
    
    # Author:
    #   Antonio, Fabio Di Narzo 
    #   of the original function from the 'tseriesChaos' package
    
    # Example:
    #   lyapunovFit(output, start = 0.73, end = 2.47)
    
    # FUNCTION:
    
    # Settings:
    dsts = as.ts(x)
    sf = window(dsts, start, end)
    start = start(sf)[1] + (start(sf)[2]-1)/frequency(sf)
    end = end(sf)[1] + (end(sf)[2]-1)/frequency(sf)
    lambda = seq(start, end, by = 1/frequency(dsts))
    
    # Fit:
    ans = lm(sf ~ lambda, data = data.frame(sf = sf, lambda = lambda))$coeff
    
    # Return Value:
    ans
}



################################################################################
# DIMENSIONS AND ENTROPY:


.C2 = 
function(x, m, d, t, eps)
{
    # Settings:
    if (class(x) == "timeSeries") x = as.vector(x)
    series = as.ts(x)
    .checkEmbParms(series, m, d, t)
    if (eps <= 0) stop("eps must be positive")
    res = numeric(1)
    
    # C2:
    ans = .C("C2", 
        series = as.double(series), 
        m = as.integer(m), 
        d = as.integer(d),
        length = as.integer(length(series)), 
        t = as.integer(t), 
        eps = as.double(eps), 
        res = as.double(res), 
        PACKAGE = "fNonlinear")[["res"]]
        
    # Return Value:
    ans
}


# ------------------------------------------------------------------------------


.d2 = 
function(series, m, d, t, eps.min, neps = 100) 
{
    # Settings:
    if (class(x) == "timeSeries") x = as.vector(x)
    series = as.ts(x)
    .checkEmbParms(series, m, d, t)
    if (eps.min <= 0) stop("eps.min must be positive")
    neps = as.integer(neps)
    if (neps <= 0) neps = 100
    res = numeric(neps*m)
    eps.max = diff(range(series))*sqrt(m)
    
    # d2:
    res = .C("d2", 
        series = as.double(series), 
        length = as.integer(length(series)), 
        m = as.integer(m), d = as.integer(d), 
        t = as.integer(t), neps = as.integer(neps), 
        eps.max = as.double(eps.max), 
        eps.min = as.double(eps.min), 
        res = as.double(res), 
        PACKAGE = "fNonlinear")[["res"]]
    res = matrix(res, neps, m)
    res = res[neps:1,]
    denom = length(series) - (m-1)*d
    denom = (denom-t+1)*(denom-t)/2
    res = apply(res, 2, cumsum)/denom
    a = -log(eps.min/eps.max)/(neps-1)
    eps = eps.max*exp((1-1:neps)*a)
    eps = eps[neps:1]
    res = cbind(eps, res)
    colnames(res) = c("eps",paste("m", 1:m, sep = ""))
    plot(res[ , c(1,m+1)], type = "l", log = "xy", 
        main = "Sample correlation integral", 
        xlab = expression(epsilon), ylab = expression(C(epsilon)))
    for (i in m:2) lines(res[,c(1, i)])
    
    # Return Value:
    invisible(res)
}


################################################################################