File: runitNonLinPlots.R

package info (click to toggle)
fnonlinear 260.72-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 240 kB
  • ctags: 47
  • sloc: ansic: 529; makefile: 13
file content (141 lines) | stat: -rwxr-xr-x 4,107 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# General Public License for more details.
#
# A copy of the GNU General Public License is available via WWW at
# http://www.gnu.org/copyleft/gpl.html.  You can also obtain it by
# writing to the Free Software Foundation, Inc., 59 Temple Place,
# Suite 330, Boston, MA  02111-1307  USA. 

# Copyrights (C)
# for this R-port: 
#   1999 - 2007, Diethelm Wuertz, GPL
#   Diethelm Wuertz <wuertz@itp.phys.ethz.ch>
#   info@rmetrics.org
#   www.rmetrics.org
# for the code accessed (or partly included) from other R-ports:
#   see R's copyright and license files
# for the code accessed (or partly included) from contributed R-ports
# and other sources
#   see Rmetrics's copyright file


################################################################################
# FUNCTION:             PHASE SPACE REPRESENTATION:
#  mutualPlot            Creates mutual information plot
#  falsennPlot           Creates false nearest neigbours plot
# FUNCTION:             NON STATIONARITY:
#  recurrencePlot        Creates recurrence plot
#  separationPlot        Creates space-time separation plot
# FUNCTION:             LYAPUNOV EXPONENTS:
#  lyapunovPlot          Maximum Lyapunov plot              
################################################################################


test.mutualPlot = 
function()
{  
    # Mutual Information Index:
    par(mfrow = c(1, 1))
    lorentz = lorentzSim(
        times = seq(0, 40, by = 0.01), 
        parms = c(sigma = 16, r = 45.92, b = 4), 
        start = c(-14, -13, 47), 
        doplot = FALSE) 
    mutualPlot(x = lorentz[, 2], partitions = 16, lag.max = 20, doplot = TRUE) 
    
    # Return Value:
    return()    
}


# ------------------------------------------------------------------------------


test.falsennPlot = 
function()
{  
    # False Nearest Neighbours:
    par(mfrow = c(1, 1))
    roessler = roesslerSim(
        times = seq(0, 100, by = 0.01), 
        parms = c(a = 0.2, b = 0.2, c = 8), 
        start = c(-1.894, -9.92, 0.025), 
        doplot = FALSE)
    falsennPlot(x = roessler[, 2], m = 6, d = 8, t = 180, eps = 1, rt = 3)
    abline(h = 0, col = "grey")
    grid()

   
    # Return Value:
    return()    
}


# ------------------------------------------------------------------------------


test.recurrencePlot = 
function()
{  
    # Recurrence Plot:
    par(mfrow = c(2, 2), cex = 0.7)
    lorentz = lorentzSim(
        times = seq(0, 40, by = 0.01), 
        parms = c(sigma = 16, r = 45.92, b = 4), 
        start = c(-14, -13, 47), 
        doplot = FALSE) 
    recurrencePlot(lorentz[, 2], m = 3, d = 2, end.time = 800, eps = 3, 
        nt = 5, pch = '.', cex = 2)
    recurrencePlot(lorentz[, 3], m = 3, d = 2, end.time = 800, eps = 3, 
        nt = 5, pch = '.', cex = 2)
    recurrencePlot(lorentz[, 4], m = 3, d = 2, end.time = 800, eps = 3, 
        nt = 5, pch = '.', cex = 2)
    # Return Value:
    return()    
}


# ------------------------------------------------------------------------------


test.separationPlot = 
function()
{          
    # Separation Plot:
    par(mfrow = c(1, 1))
    roessler = roesslerSim(
        times = seq(0, 100, by = 0.01), 
        parms = c(a = 0.2, b = 0.2, c = 8), 
        start = c(-1.894, -9.92, 0.025), 
        doplot = FALSE)
    separationPlot(roessler[, 2], m = 3, d = 8, idt = 1, mdt = 250)    
   
    # Return Value:
    return()    
}


################################################################################


test.lyapunovPlot = 
function()
{          
    # Lyapunov Plot:
    NA
   
    # Return Value:
    return()    
}
   

################################################################################