1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
#
# A copy of the GNU General Public License is available via WWW at
# http://www.gnu.org/copyleft/gpl.html. You can also obtain it by
# writing to the Free Software Foundation, Inc., 59 Temple Place,
# Suite 330, Boston, MA 02111-1307 USA.
# Copyrights (C)
# for this R-port:
# 1999 - 2007, Diethelm Wuertz, GPL
# Diethelm Wuertz <wuertz@itp.phys.ethz.ch>
# info@rmetrics.org
# www.rmetrics.org
# for the code accessed (or partly included) from other R-ports:
# see R's copyright and license files
# for the code accessed (or partly included) from contributed R-ports
# and other sources
# see Rmetrics's copyright file
################################################################################
# FUNCTION: PHASE SPACE REPRESENTATION:
# mutualPlot Creates mutual information plot
# falsennPlot Creates false nearest neigbours plot
# FUNCTION: NON STATIONARITY:
# recurrencePlot Creates recurrence plot
# separationPlot Creates space-time separation plot
# FUNCTION: LYAPUNOV EXPONENTS:
# lyapunovPlot Maximum Lyapunov plot
################################################################################
test.mutualPlot =
function()
{
# Mutual Information Index:
par(mfrow = c(1, 1))
lorentz = lorentzSim(
times = seq(0, 40, by = 0.01),
parms = c(sigma = 16, r = 45.92, b = 4),
start = c(-14, -13, 47),
doplot = FALSE)
mutualPlot(x = lorentz[, 2], partitions = 16, lag.max = 20, doplot = TRUE)
# Return Value:
return()
}
# ------------------------------------------------------------------------------
test.falsennPlot =
function()
{
# False Nearest Neighbours:
par(mfrow = c(1, 1))
roessler = roesslerSim(
times = seq(0, 100, by = 0.01),
parms = c(a = 0.2, b = 0.2, c = 8),
start = c(-1.894, -9.92, 0.025),
doplot = FALSE)
falsennPlot(x = roessler[, 2], m = 6, d = 8, t = 180, eps = 1, rt = 3)
abline(h = 0, col = "grey")
grid()
# Return Value:
return()
}
# ------------------------------------------------------------------------------
test.recurrencePlot =
function()
{
# Recurrence Plot:
par(mfrow = c(2, 2), cex = 0.7)
lorentz = lorentzSim(
times = seq(0, 40, by = 0.01),
parms = c(sigma = 16, r = 45.92, b = 4),
start = c(-14, -13, 47),
doplot = FALSE)
recurrencePlot(lorentz[, 2], m = 3, d = 2, end.time = 800, eps = 3,
nt = 5, pch = '.', cex = 2)
recurrencePlot(lorentz[, 3], m = 3, d = 2, end.time = 800, eps = 3,
nt = 5, pch = '.', cex = 2)
recurrencePlot(lorentz[, 4], m = 3, d = 2, end.time = 800, eps = 3,
nt = 5, pch = '.', cex = 2)
# Return Value:
return()
}
# ------------------------------------------------------------------------------
test.separationPlot =
function()
{
# Separation Plot:
par(mfrow = c(1, 1))
roessler = roesslerSim(
times = seq(0, 100, by = 0.01),
parms = c(a = 0.2, b = 0.2, c = 8),
start = c(-1.894, -9.92, 0.025),
doplot = FALSE)
separationPlot(roessler[, 2], m = 3, d = 8, idt = 1, mdt = 250)
# Return Value:
return()
}
################################################################################
test.lyapunovPlot =
function()
{
# Lyapunov Plot:
NA
# Return Value:
return()
}
################################################################################
|