1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Library General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General
# Public License along with this library; if not, write to the
# Free Foundation, Inc., 59 Temple Place, Suite 330, Boston,
# MA 02111-1307 USA
# Copyrights (C)
# for this R-port:
# 1999 - 2007, Diethelm Wuertz, GPL
# Diethelm Wuertz <wuertz@itp.phys.ethz.ch>
# info@rmetrics.org
# www.rmetrics.org
# for the code accessed (or partly included) from other R-ports:
# see R's copyright and license files
# for the code accessed (or partly included) from contributed R-ports
# and other sources
# see Rmetrics's copyright file
################################################################################
# FUNCTION: DESCRIPION:
# tsTest Time Series Test Suite
# FUNCTION: DEPENDENCY TEST:
# bdsTest Brock-Dechert-Scheinkman test for iid series
# FUNCTION: NONLINEARITY TESTS:
# wnnTest White Neural Network Test for Nonlinearity
# tnnTest Teraesvirta Neural Network Test for Nonlinearity
################################################################################
test.tsSuite =
function()
{
# NA
# Return Value:
return()
}
# ------------------------------------------------------------------------------
test.bdsTest =
function()
{
# iid example:
RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion")
set.seed(4711, kind = "Marsaglia-Multicarry")
x = rnorm(100)
plot(x, type = "l", col = "steelblue")
test = bdsTest(x)
print(test)
p.value = as.vector(test@test$p.value)
# Is each of the 8 p.values greater 0.1?
checkEqualsNumeric(sum(p.value > 0.1), 8)
# Not identically distributed:
RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion")
set.seed(4711, kind = "Marsaglia-Multicarry")
x = c(rnorm(50), runif(50))
test = bdsTest(x)
print(test)
p.value = as.vector(test@test$p.value)
# Is each of the 8 p.values smaller 1e-3?
checkEqualsNumeric(sum(p.value < 1e-3), 8)
# Not independent:
RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion")
set.seed(4711, kind = "Marsaglia-Multicarry")
n = 500
x = rep(0, times = n)
for(i in (2:n)) x[i] = 0.4*x[i-1] + tanh(x[i-1]) + rnorm(1, sd = 0.5)
plot(x, type = "l", col = "steelblue")
test = bdsTest(x)
print(test)
p.value = as.vector(test@test$p.value)
# Is each of the 8 p.values smaller 1e-6?
checkEqualsNumeric(sum(p.value < 1e-6), 8)
# Return Value:
return()
}
# ------------------------------------------------------------------------------
test.wnnTest =
function()
{
# White NN Test:
# See tseries Package:
RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion")
set.seed(4711, kind = "Marsaglia-Multicarry")
x = runif(1000, -1, 1)
plot(x, type = "l", col = "steelblue")
test = wnnTest(x)
print(test)
p.value = as.vector(test@test$p.value)
# Is each of the two p.values greater 0.5?
checkTrue(as.logical(mean(p.value > 0.5)))
## Generate time series which is nonlinear in ``mean''
RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion")
set.seed(4711, kind = "Marsaglia-Multicarry")
n = 1000
x = rep(0, times = n)
for(i in (2:n)) x[i] <- 0.4*x[i-1] + tanh(x[i-1]) + rnorm(1, sd = 0.5)
plot(x, type = "l", col = "steelblue")
test = wnnTest(x)
print(test)
p.value = as.vector(test@test$p.value)
# Is each of the two p.values smaller than 1e-4?
checkTrue(as.logical(mean(p.value < 1e-4)))
# Return Value:
return()
}
# ------------------------------------------------------------------------------
test.tnnTest =
function()
{
# Teraesvirta NN Test:
# See example from tseries Package:
RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion")
set.seed(4711, kind = "Marsaglia-Multicarry")
x = runif(1000, -1, 1)
plot(x, type = "l", col = "steelblue")
test = tnnTest(x)
print(test)
p.value = as.vector(test@test$p.value)
# Is each of the two p.values greater 0.5?
checkTrue(as.logical(mean(p.value > 0.5)))
## Generate time series which is nonlinear in ``mean''
RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion")
set.seed(4711, kind = "Marsaglia-Multicarry")
n = 1000
x = rep(0, times = n)
for(i in (2:n)) x[i] <- 0.4*x[i-1] + tanh(x[i-1]) + rnorm(1, sd = 0.5)
plot(x, type = "l", col = "steelblue")
test = tnnTest(x)
print(test)
p.value = as.vector(test@test$p.value)
# Is each of the two p.values smaller than 1e-4?
checkTrue(as.logical(mean(p.value < 1e-4)))
# Return Value:
return()
}
################################################################################
|