File: NonLinModelling.Rd

package info (click to toggle)
fnonlinear 260.72-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 240 kB
  • ctags: 47
  • sloc: ansic: 529; makefile: 13
file content (139 lines) | stat: -rwxr-xr-x 3,469 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
\name{NonLinModelling}

\alias{NonLinModelling}

\alias{tentSim}
\alias{henonSim}
\alias{ikedaSim}
\alias{logisticSim}
\alias{lorentzSim}
\alias{roesslerSim}


\title{Chaotic Time Series Modelling}


\description{

    A collection and description of functions to 
    simulate different types of chaotic time series 
    maps.
    \cr
    
    Chaotic Time Series Maps:
        
    \tabular{ll}{
    \code{tentSim} \tab Simulates data from the Tent Map, \cr
    \code{henonSim} \tab simulates data from the Henon Map, \cr
    \code{ikedaSim} \tab simulates data from the Ikeda Map, \cr
    \code{logisticSim} \tab simulates data from the Logistic Map, \cr
    \code{lorentzSim} \tab simulates data from the Lorentz Map, \cr
    \code{roesslerSim} \tab simulates data from the Roessler Map. }  
    
}


\usage{
tentSim(n = 1000, n.skip = 100, parms = c(a = 2), start = runif(1), 
    doplot = FALSE)
henonSim(n = 1000, n.skip = 100, parms = c(a = 1.4, b = 0.3), 
    start = runif(2), doplot = FALSE)
ikedaSim(n = 1000, n.skip = 100, parms = c(a = 0.4, b = 6.0, c = 0.9), 
    start = runif(2), doplot = FALSE)
logisticSim(n = 1000, n.skip = 100, parms = c(r = 4), start = runif(1), 
    doplot = FALSE)
lorentzSim(times = seq(0, 40, by = 0.01), parms = c(sigma = 16, r = 45.92, 
    b = 4), start = c(-14, -13, 47), doplot = TRUE, \dots)
roesslerSim(times = seq(0, 100, by = 0.01), parms = c(a = 0.2, b = 0.2, c = 8.0),
    start = c(-1.894, -9.920, 0.0250), doplot = TRUE, \dots) 
}


\arguments{
  
    \item{doplot}{
        a logical flag. Should a plot be displayed?
        }
    \item{n, n.skip}{
        [henonSim][ikedaSim][logisticSim] - \cr
        the number of chaotic time series points to be generated and the 
        number of initial values to be skipped from the series. 
        }
    \item{parms}{
        the named parameter vector characterizing the chaotic map.
        }
    \item{start}{
        the vector of start values to initiate the chaotic map.
        }
    \item{times}{
        [lorentzSim][roesslerSim] - \cr
        the sequence of time series points at which to generate the map. 
        }
    \item{\dots}{
        arguments to be passed.
        }

}

    
\value{

    [*Sim] - \cr
    All functions return invisible a vector of time series data. 
        
}


\references{

Brock, W.A., Dechert W.D., Sheinkman J.A. (1987); 
    \emph{A Test of Independence Based on the Correlation 
    Dimension}, 
    SSRI no. 8702, Department of Economics, University of 
    Wisconsin, Madison.

Eckmann J.P., Oliffson Kamphorst S., Ruelle D. (1987), 
    \emph{Recurrence plots of dynamical systems}, 
    Europhys. Letters 4, 973.
    
Hegger R., Kantz H., Schreiber T. (1999);
    \emph{Practical implementation of nonlinear time series 
    methods: The TISEAN package},
    CHAOS 9, 413--435.

Kennel M.B., Brown R., Abarbanel H.D.I. (1992); 
    \emph{Determining embedding dimension for phase-space 
    reconstruction using a geometrical construction}, 
    Phys. Rev. A45, 3403. 
    
Rosenstein M.T., Collins J.J., De Luca C.J. (1993);
    \emph{A practical method for calculating largest Lyapunov 
    exponents from small data sets}, 
    Physica D 65, 117.
}


\seealso{

    \code{RandomInnovations}.
    
}


\author{

    Diethelm Wuertz for the Rmetrics \R-port.
    
}


\examples{
## logisticSim -
   set.seed(4711)
   x = logisticSim(n = 100)  
   plot(x, main = "Logistic Map")            
}


\keyword{models}