1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
\name{NonLinModelling}
\alias{NonLinModelling}
\alias{tentSim}
\alias{henonSim}
\alias{ikedaSim}
\alias{logisticSim}
\alias{lorentzSim}
\alias{roesslerSim}
\title{Chaotic Time Series Modelling}
\description{
A collection and description of functions to
simulate different types of chaotic time series
maps.
\cr
Chaotic Time Series Maps:
\tabular{ll}{
\code{tentSim} \tab Simulates data from the Tent Map, \cr
\code{henonSim} \tab simulates data from the Henon Map, \cr
\code{ikedaSim} \tab simulates data from the Ikeda Map, \cr
\code{logisticSim} \tab simulates data from the Logistic Map, \cr
\code{lorentzSim} \tab simulates data from the Lorentz Map, \cr
\code{roesslerSim} \tab simulates data from the Roessler Map. }
}
\usage{
tentSim(n = 1000, n.skip = 100, parms = c(a = 2), start = runif(1),
doplot = FALSE)
henonSim(n = 1000, n.skip = 100, parms = c(a = 1.4, b = 0.3),
start = runif(2), doplot = FALSE)
ikedaSim(n = 1000, n.skip = 100, parms = c(a = 0.4, b = 6.0, c = 0.9),
start = runif(2), doplot = FALSE)
logisticSim(n = 1000, n.skip = 100, parms = c(r = 4), start = runif(1),
doplot = FALSE)
lorentzSim(times = seq(0, 40, by = 0.01), parms = c(sigma = 16, r = 45.92,
b = 4), start = c(-14, -13, 47), doplot = TRUE, \dots)
roesslerSim(times = seq(0, 100, by = 0.01), parms = c(a = 0.2, b = 0.2, c = 8.0),
start = c(-1.894, -9.920, 0.0250), doplot = TRUE, \dots)
}
\arguments{
\item{doplot}{
a logical flag. Should a plot be displayed?
}
\item{n, n.skip}{
[henonSim][ikedaSim][logisticSim] - \cr
the number of chaotic time series points to be generated and the
number of initial values to be skipped from the series.
}
\item{parms}{
the named parameter vector characterizing the chaotic map.
}
\item{start}{
the vector of start values to initiate the chaotic map.
}
\item{times}{
[lorentzSim][roesslerSim] - \cr
the sequence of time series points at which to generate the map.
}
\item{\dots}{
arguments to be passed.
}
}
\value{
[*Sim] - \cr
All functions return invisible a vector of time series data.
}
\references{
Brock, W.A., Dechert W.D., Sheinkman J.A. (1987);
\emph{A Test of Independence Based on the Correlation
Dimension},
SSRI no. 8702, Department of Economics, University of
Wisconsin, Madison.
Eckmann J.P., Oliffson Kamphorst S., Ruelle D. (1987),
\emph{Recurrence plots of dynamical systems},
Europhys. Letters 4, 973.
Hegger R., Kantz H., Schreiber T. (1999);
\emph{Practical implementation of nonlinear time series
methods: The TISEAN package},
CHAOS 9, 413--435.
Kennel M.B., Brown R., Abarbanel H.D.I. (1992);
\emph{Determining embedding dimension for phase-space
reconstruction using a geometrical construction},
Phys. Rev. A45, 3403.
Rosenstein M.T., Collins J.J., De Luca C.J. (1993);
\emph{A practical method for calculating largest Lyapunov
exponents from small data sets},
Physica D 65, 117.
}
\seealso{
\code{RandomInnovations}.
}
\author{
Diethelm Wuertz for the Rmetrics \R-port.
}
\examples{
## logisticSim -
set.seed(4711)
x = logisticSim(n = 100)
plot(x, main = "Logistic Map")
}
\keyword{models}
|