1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
\name{NonLinStatistics}
\alias{NonLinStatistics}
\alias{mutualPlot}
\alias{falsennPlot}
\alias{recurrencePlot}
\alias{separationPlot}
\alias{lyapunovPlot}
\title{Chaotic Time Series Statistics}
\description{
A collection and description of functions to
investigate the chaotic behavior of time series
processes.
\cr
Functions to Analyse Chaotic Time Series:
\tabular{ll}{
\code{mutualPlot} \tab Returns mutual information, \cr
\code{falsennPlot} \tab returns false nearest neigbours, \cr
\code{recurrencePlot} \tab returns a recurrence plot, \cr
\code{separationPlot} \tab returns a space-time separation plot, \cr
\code{lyapunovPlot} \tab computes maximum lyapunov exponent. }
}
\usage{
mutualPlot(x, partitions = 16, lag.max = 20, doplot = TRUE, \dots)
falsennPlot(x, m, d, t, rt = 10, eps = NULL, doplot = TRUE, \dots)
recurrencePlot(x, m, d, end.time, eps, nt = 10, doplot = TRUE, \dots)
separationPlot(x, m, d, mdt, idt = 1, doplot = TRUE, \dots)
lyapunovPlot(x, m, d, t, ref, s, eps, k = 1, doplot = TRUE, \dots)
}
\arguments{
\item{d}{
an integer value setting the value of the time delay.
}
\item{eps}{
[falsennPlot] - \cr
a numeric value setting the value of the neighbour diameter.
If NULL, which is the default value, then the value will be
automatically setted to \code{eps=sd(x)/10}.
\cr
[lyapunovPlot] - \cr
the radius where to find nearest neighbours.
\cr
[recurrencePlot] - \cr
the neighbourhood threshold.
}
\item{doplot}{
a logical flag. Should a plot be displayed?
}
\item{end.time}{
[recurrencePlot] - \cr
ending time as number of observations.
}
\item{idt}{
[separationPlot] - \cr
an integer value setting the number of observation steps in
each iterations. By default 1.
}
\item{k}{
[lyapunovPlot] - \cr
an integer setting th enumber of considered neighbours.
By default 1.
}
\item{lag.max}{
[mutualPlot] - \cr
an integer value setting the number of maximum lags, by
default 20.
}
\item{m}{
[*Plot] - \cr
an integer value setting the value of the maximum embedding
dimension.
}
\item{mdt}{
[separationPlot] - \cr
an integer value setting the number of iterations.
}
\item{nt}{
[recurrencePlot] - \cr
observations in each step which will be plotted, by default 10.
Increasing \code{nt} reduces number of points plotted which
is usefule especially with highly sampled data.
}
\item{rt}{
[falsennPlot] - \cr
an integer value setting the value for the escape factor. By
default 10.
}
\item{partitions}{
[mutualPlot] - \cr
an integer value setting the number of bins, by default 16.
}
\item{ref}{
[lyapunovPlot] - \cr
the number of points to take into account.
}
\item{s}{
[lyapunovPlot] - \cr
the iterations along which follow the neighbours of each point.
}
\item{t}{
[*Plot] - \cr
an integer value setting the value for the Theiler window.
}
\item{x}{
[*Plot] - \cr
a numeric vector, or an object either of class 'ts' or
of class 'timeSeries'.
}
\item{\dots}{
arguments to be passed.
}
}
\details{
\bold{Phase Space Representation:}
\cr\cr
The function \code{mutualPlot} estimates and plots the mutual
information index of a given time series for a specified number
of lags. The joint probability distribution function is estimated
with a simple bi-dimensional density histogram.
\cr
The function \code{falsennPlot} uses the Method of false nearest
neighbours to help deciding the optimal embedding dimension.
\cr
\bold{Non-Stationarity:}
\cr\cr
The funcdtion \code{recurrencePlot} creates a recurrence plot as
proposed by Eckmann et al. [1987].
\cr
The function \code{separationPlot} creates a space-time separation
plot qs introduced by Provenzale et al. [1992]. It plots the
probability that two points in the reconstructed phase-space have
distance smaller than epsilon in function of epsilon and of the
time between the points, as iso-lines at levels 10, 20, ..., 100
percent levels. The plot can be used to decide the Theiler time
window.
\cr
\bold{Lyapunov Exponents:}
\cr\cr
The function \code{lyapunovPlot} evaluates and plots the largest
Lyapunov exponent of a dynamic system from a univariate time series.
The estimate of the Lyapunov exponent uses the algorithm of Kantz.
In addition, the function computes the regression coefficients of
a user specified segment of the sequence given as input.
\cr
\bold{Dimensions and Entropies:}
\cr\cr
The function \code{C2} computes the sample correlation integral on
the provided time series for the specified length scale and
Theiler window. It uses a naiv algorithm: simply returns the
fraction of points pairs nearer than eps. It is prefarable to use
the function \code{d2}, which takes roughly the same time, but
computes the correlation sum for multiple length scales and
embedding dimensions at once.
\cr
The function \code{d2} computes the sample correlation integral
over given length scales \code{neps} for embedding dimensions
\code{1:m} for a given Theiler window. The slope of the linear
segment in the log-log plot gives an estimate of the correlation
dimension.
}
\references{
Brock, W.A., Dechert W.D., Sheinkman J.A. (1987);
\emph{A Test of Independence Based on the Correlation
Dimension},
SSRI no. 8702, Department of Economics, University of
Wisconsin, Madison.
Eckmann J.P., Oliffson Kamphorst S., Ruelle D. (1987),
\emph{Recurrence plots of dynamical systems},
Europhys. Letters 4, 973.
Hegger R., Kantz H., Schreiber T. (1999);
\emph{Practical implementation of nonlinear time series
methods: The TISEAN package},
CHAOS 9, 413--435.
Kennel M.B., Brown R., Abarbanel H.D.I. (1992);
\emph{Determining embedding dimension for phase-space
reconstruction using a geometrical construction},
Phys. Rev. A45, 3403.
Rosenstein M.T., Collins J.J., De Luca C.J. (1993);
\emph{A practical method for calculating largest Lyapunov
exponents from small data sets},
Physica D 65, 117.
}
\seealso{
\code{RandomInnovations}.
}
\author{
Diethelm Wuertz for the Rmetrics \R-port.
}
\examples{
## mutualPlot -
mutualPlot(logisticSim(1000))
## recurrencePlot -
lorentz = lorentzSim(
times = seq(0, 40, by = 0.01),
parms = c(sigma = 16, r = 45.92, b = 4),
start = c(-14, -13, 47),
doplot = FALSE)
recurrencePlot(lorentz[, 2], m = 3, d = 2, end.time = 800, eps = 3,
nt = 5, pch = '.', cex = 2)
}
\keyword{models}
|