1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
\name{NonLinTests}
\alias{NonLinTests}
\alias{tsTest}
\alias{bdsTest}
\alias{tnnTest}
\alias{wnnTest}
\alias{runsTest}
\title{Time Series Tests}
\description{
A collection and description of functions
for testing various aspects of univariate
time series, including independence, and neglected
nonlinearities.
\cr
The family of time series tests includes the following
hypothesis tests:
\tabular{ll}{
\code{bdsTest} \tab Brock--Dechert--Scheinkman test for iid series, \cr
\code{tnnTest} \tab Teraesvirta NN test for neglected nonlinearity, \cr
\code{wnnTest} \tab White NN test for neglected nonlinearity, \cr
\code{runsTest} \tab Runs test for detecting non-randomness.}
}
\note{
There is nothing really new in this package. The benefit you will
get from this help page, that we bring together a collection of
time series tests from several \R-packages which may be of interest
for economists and financial engineers.
On the other hand the user can still use the underlying function
calls from the imported \R-packages.
The output of the various hypothesis tests is an object of class
\code{htest}. The associated \code{print} method gives an unique
report about the test results.
}
\usage{
bdsTest(x, m = 3, eps = NULL, title = NULL, description = NULL)
tnnTest(x, lag = 1, title = NULL, description = NULL)
wnnTest(x, lag = 1, qstar = 2, q = 10, range = 4, title = NULL, description = NULL)
runsTest(x)
}
\arguments{
\item{description}{
optional description string, or a vector of character strings.
}
\item{eps}{
[bdsTest] - \cr
a numeric vector of epsilon values for close points. The
BDS test is computed for each element of \code{eps}. It should
be set in terms of the standard deviation of \code{x}. If
\code{eps} is \code{NULL}, then the four default values
\code{seq(0.5*sd(x), 2*sd(x), length = 4)} are used.
}
\item{lag}{
[tnnTest][wnnTest] -\cr
an integer which specifies the model order in terms of lags.
}
\item{m}{
[bdsTest] - \cr
an integer indicating that the BDS test statistic is computed
for embedding dimensions \code{2}, \dots, \code{m}.
}
\item{q}{
[wnnTest] -\cr
an integer representing the number of phantom hidden units
used to compute the test statistic.
}
\item{qstar}{
[wnnTest] -\cr
the test is conducted using \code{qstar} principal components
of the phantom hidden units. The first principal component is
omitted since in most cases it appears to be collinear with the
input vector of lagged variables. This strategy preserves power
while still conserving degrees of freedom.
}
\item{range}{
[wnnTest] -\cr
the input to hidden unit weights are initialized uniformly
over \code{[-range/2, range/2]}.
}
\item{title}{
an optional title string, if not specified the inputs data
name is deparsed.
}
\item{x}{
a numeric vector or an object of class \code{"timeseries"}.
}
}
\details{
\bold{Brock--Dechert--Sheinkman Test:}
\cr\cr
The \code{bdsTest} test examines the \emph{spatial dependence} of the
observed series. To do this, the series is embedded in \code{m}-space
and the dependence of \code{x} is examined by counting \emph{near}
points. Points for which the distance is less than \code{eps} are
called near. The BDS test statistic is asymptotically standard Normal.
Note, that missing values are not allowed.
There is a special print method for objects of class \code{"bdsTest"}
which by default uses 4 digits to format real numbers.
\cr
\code{[tseries:bds.test]}
\cr
\bold{Teraesvirta Neural Network Test:}
\cr\cr
The null is the hypotheses of linearity in \code{mean}. This test
uses a Taylor series expansion of the activation function to
arrive at a suitable test statistic. If \code{type} equals \code{"F"},
then the F-statistic instead of the Chi-Squared statistic
is used in analogy to the classical linear regression.
Missing values are not allowed.
\cr
\code{[tseries:teraesvirta.test]}
\cr
\bold{White Neural Network Test:}
\cr\cr
The null is the hypotheses of linearity in ``mean''. This
type of test is consistent against arbitrary nonlinearity
in mean. If \code{type} equals \code{"F"}, then the F-statistic
instead of the Chi-Squared statistic is used in analogy to the
classical linear regression.
\cr
\code{[tseries:white.test]}
\cr
\bold{Runs Test:}
\cr\cr
The runs test can be used to decide if a data set is from a random
process. A run is defined as a series of increasing values or a
series of decreasing values. The number of increasing, or decreasing,
values is the length of the run. In a random data set, the probability
that the \emph{(i+1)-th} value is larger or smaller than the \emph{i-th}
value follows a binomial distribution, which forms the basis of the
runs test.
\cr
\code{[tseries:runs.test]}
}
\value{
In contrast to R's output report from S3 objects of class \code{"htest"}
a different output report is produced. The tests here return an S4
object of class \code{"fHTEST"}. The object contains the following slots:
\item{@call}{
the function call.
}
\item{@data}{
the data as specified by the input argument(s).
}
\item{@test}{
a list whose elements contail the results from the statistical
test. The information provided is similar to a list object of
class{"htest"}.
}
\item{@title}{
a character string with the name of the test. This can be
overwritten specifying a user defined input argument.
}
\item{@description}{
a character string with an optional user defined description.
By default just the current date when the test was applied will
be returned.
}
The slot \code{@test} returns an object of class \code{"list"}
containing the following (otionally empty) elements:
\item{statistic}{
the value(s) of the test statistic.
}
\item{p.value}{
the p-value(s) of the test.
}
\item{parameters}{
a numeric value or vector of parameters.
}
\item{estimate}{
a numeric value or vector of sample estimates.
}
\item{conf.int}{
a numeric two row vector or matrix of 95% confidence levels.
}
\item{method}{
a character string indicating what type of test was performed.
}
\item{data.name}{
a character string giving the name(s) of the data.
}
}
\references{
Brock, W.A., Dechert W.D., Sheinkman J.A. (1987);
\emph{A Test of Independence Based on the Correlation
Dimension},
SSRI no. 8702, Department of Economics, University of
Wisconsin, Madison.
Conover, W.J. (1980);
\emph{Practical Nonparametric Statistics},
New York, Wiley.
Cromwell J.B., Labys W.C., Terraza M. (1994);
\emph{Univariate Tests for Time Series Models},
Sage, Thousand Oaks, CA, pages 32--36.
Lee T.H., White H., Granger C.W.J. (1993);
\emph{Testing for neglected nonlinearity in time series models},
Journal of Econometrics 56, 269--290.
Teraesvirta T., Lin C.F., Granger C.W.J. (1993);
\emph{Power of the Neural Network Linearity Test},
Journal of Time Series Analysis 14, 209--220.
}
\author{
Adrian Trapletti for the tests from \R's tseries package,\cr
Blake LeBaron for the \code{bds} C program,\cr
Diethelm Wuertz for the Rmetrics \R-port.
}
\examples{
## bdsTest -
# iid Time Series:
par(mfrow = c(3, 1))
x = rnorm(100)
plot(x, type = "l", main = "iid Time Series")
bdsTest(x, m = 3)
# Non Identically Distributed Time Series:
x = c(rnorm(50), runif(50))
plot(x, type = "l", main = "Non-iid Time Series")
bdsTest(x, m = 3)
# Non Independent Innovations from Quadratic Map:
x = rep(0.2, 100)
for (i in 2:100) x[i] = 4*(1-x[i-1])*x[i-1]
plot(x, type = "l", main = "Quadratic Map")
bdsTest(x, m = 3)
## tnnTest -
# Time Series Non-linear in "mean" regression
par(mfrow = c(2, 1))
n = 1000
x = runif(1000, -1, 1)
tnnTest(x)
# Generate time series which is nonlinear in "mean"
x[1] = 0.0
for (i in (2:n)) {
x[i] = 0.4*x[i-1] + tanh(x[i-1]) + rnorm (1, sd = 0.5) }
plot(x, main = "Teraesvirta Test", type = "l")
tnnTest(x)
## wnnTest -
# Time Series Non-Linear in "mean" Regression
par(mfrow = c(2, 1))
n = 1000
x = runif(1000, -1, 1)
wnnTest(x)
# Generate time series which is nonlinear in "mean"
x[1] = 0.0
for (i in (2:n)) {
x[i] = 0.4*x[i-1] + tanh(x[i-1]) + rnorm (1, sd = 0.5) }
plot(x, main = "White Test", type = "l")
wnnTest(x)
}
\keyword{htest}
|