1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
|
/* Foma: a finite-state toolkit and library. */
/* Copyright © 2008-2021 Mans Hulden */
/* This file is part of foma. */
/* Licensed under the Apache License, Version 2.0 (the "License"); */
/* you may not use this file except in compliance with the License. */
/* You may obtain a copy of the License at */
/* http://www.apache.org/licenses/LICENSE-2.0 */
/* Unless required by applicable law or agreed to in writing, software */
/* distributed under the License is distributed on an "AS IS" BASIS, */
/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */
/* See the License for the specific language governing permissions and */
/* limitations under the License. */
#include <stdlib.h>
#include <assert.h>
#include <limits.h>
#include <stdint.h>
#include "foma.h"
static struct fsm *fsm_minimize_brz(struct fsm *net);
static struct fsm *fsm_minimize_hop(struct fsm *net);
static struct fsm *rebuild_machine(struct fsm *net);
static int *single_sigma_array, *double_sigma_array, *memo_table, *temp_move, *temp_group, maxsigma, epsilon_symbol, num_states, num_symbols, num_finals, mainloop, total_states;
static _Bool *finals;
struct statesym {
int target;
unsigned short int symbol;
struct state_list *states;
struct statesym *next;
};
struct state_list {
int state;
struct state_list *next;
};
struct p {
struct e *first_e;
struct e *last_e;
struct p *current_split;
struct p *next;
struct agenda *agenda;
int count;
int t_count;
int inv_count;
int inv_t_count;
};
struct e {
struct p *group;
struct e *left;
struct e *right;
int inv_count;
};
struct agenda {
struct p *p;
struct agenda *next;
_Bool index;
};
struct trans_list {
int inout;
int source;
} *trans_list_minimize;
struct trans_array {
struct trans_list *transitions;
unsigned int size;
unsigned int tail;
} *trans_array_minimize;
static struct p *P, *Phead, *Pnext, *current_w;
static struct e *E;
static struct agenda *Agenda_head, *Agenda_top, *Agenda_next, *Agenda;
static INLINE int refine_states(int sym);
static void init_PE();
static void agenda_add(struct p *pptr, int start);
static void sigma_to_pairs(struct fsm *net);
/* static void single_symbol_to_symbol_pair(int symbol, int *symbol_in, int *symbol_out); */
static INLINE int symbol_pair_to_single_symbol(int in, int out);
static void generate_inverse(struct fsm *net);
struct fsm *fsm_minimize(struct fsm *net) {
extern int g_minimal;
extern int g_minimize_hopcroft;
if (net == NULL) { return NULL; }
/* The network needs to be deterministic and trim before we minimize */
if (net->is_deterministic != YES)
net = fsm_determinize(net);
if (net->is_pruned != YES)
net = fsm_coaccessible(net);
if (net->is_minimized != YES && g_minimal == 1) {
if (g_minimize_hopcroft != 0) {
net = fsm_minimize_hop(net);
}
else
net = fsm_minimize_brz(net);
fsm_update_flags(net,YES,YES,YES,YES,UNK,UNK);
}
return(net);
}
static struct fsm *fsm_minimize_brz(struct fsm *net) {
return(fsm_determinize(fsm_reverse(fsm_determinize(fsm_reverse(net)))));
}
static struct fsm *fsm_minimize_hop(struct fsm *net) {
struct e *temp_E;
struct trans_array *tptr;
struct trans_list *transitions;
int i,j,minsym,next_minsym,current_i, stateno, thissize, source;
unsigned int tail;
fsm_count(net);
if (net->finalcount == 0) {
fsm_destroy(net);
return(fsm_empty_set());
}
num_states = net->statecount;
P = NULL;
/*
1. generate the inverse lookup table
2. generate P and E (partitions, states linked list)
3. Init Agenda = {Q, Q-F}
4. Split until Agenda is empty
*/
sigma_to_pairs(net);
init_PE();
if (total_states == num_states) {
goto bail;
}
generate_inverse(net);
Agenda_head->index = 0;
if (Agenda_head->next != NULL)
Agenda_head->next->index = 0;
for (Agenda = Agenda_head; Agenda != NULL; ) {
/* Remove current_w from agenda */
current_w = Agenda->p;
current_i = Agenda->index;
Agenda->p->agenda = NULL;
Agenda = Agenda->next;
/* Store current group state number in tmp_group */
/* And figure out minsym */
/* If index is 0 we start splitting from the first symbol */
/* Otherwise we split from where we left off last time */
thissize = 0;
minsym = INT_MAX;
for (temp_E = current_w->first_e; temp_E != NULL; temp_E = temp_E->right) {
stateno = temp_E - E;
*(temp_group+thissize) = stateno;
thissize++;
tptr = trans_array_minimize+stateno;
/* Clear tails if symloop should start from 0 */
if (current_i == 0)
tptr->tail = 0;
tail = tptr->tail;
transitions = (tptr->transitions)+tail;
if (tail < tptr->size && transitions->inout < minsym) {
minsym = transitions->inout;
}
}
for (next_minsym = INT_MAX; minsym != INT_MAX ; minsym = next_minsym, next_minsym = INT_MAX) {
/* Add states to temp_move */
for (i = 0, j = 0; i < thissize; i++) {
tptr = trans_array_minimize+*(temp_group+i);
tail = tptr->tail;
transitions = (tptr->transitions)+tail;
while (tail < tptr->size && transitions->inout == minsym) {
source = transitions->source;
if (*(memo_table+(source)) != mainloop) {
*(memo_table+(source)) = mainloop;
*(temp_move+j) = source;
j++;
}
tail++;
transitions++;
}
tptr->tail = tail;
if (tail < tptr->size && transitions->inout < next_minsym) {
next_minsym = transitions->inout;
}
}
if (j == 0) {
continue;
}
mainloop++;
if (refine_states(j) == 1) {
break; /* break loop if we split current_w */
}
}
if (total_states == num_states) {
break;
}
}
net = rebuild_machine(net);
free(trans_array_minimize);
free(trans_list_minimize);
bail:
free(Agenda_top);
free(memo_table);
free(temp_move);
free(temp_group);
free(finals);
free(E);
free(Phead);
free(single_sigma_array);
free(double_sigma_array);
return(net);
}
static struct fsm *rebuild_machine(struct fsm *net) {
int i,j, group_num, source, target, new_linecount = 0, arccount = 0;
struct fsm_state *fsm;
struct p *myp;
struct e *thise;
if (net->statecount == total_states) {
return(net);
}
fsm = net->states;
/* We need to make sure state 0 is first in its group */
/* to get the proper numbering of states */
if (E->group->first_e != E) {
E->group->first_e = E;
}
/* Recycling t_count for group numbering use here */
group_num = 1;
myp = P;
while (myp != NULL) {
myp->count = 0;
myp = myp->next;
}
for (i=0; (fsm+i)->state_no != -1; i++) {
thise = E+((fsm+i)->state_no);
if (thise->group->first_e == thise) {
new_linecount++;
if ((fsm+i)->start_state == 1) {
thise->group->t_count = 0;
thise->group->count = 1;
} else if (thise->group->count == 0) {
thise->group->t_count = group_num++;
thise->group->count = 1;
}
}
}
for (i=0, j=0; (fsm+i)->state_no != -1; i++) {
thise = E+((fsm+i)->state_no);
if (thise->group->first_e == thise) {
source = thise->group->t_count;
target = ((fsm+i)->target == -1) ? -1 : (E+((fsm+i)->target))->group->t_count;
add_fsm_arc(fsm, j, source, (fsm+i)->in, (fsm+i)->out, target, finals[(fsm+i)->state_no], (fsm+i)->start_state);
arccount = ((fsm+i)->target == -1) ? arccount : arccount+1;
j++;
}
}
add_fsm_arc(fsm, j, -1, -1, -1, -1, -1, -1);
fsm = realloc(fsm,sizeof(struct fsm_state)*(new_linecount+1));
net->states = fsm;
net->linecount = j+1;
net->arccount = arccount;
net->statecount = total_states;
return(net);
}
static INLINE int refine_states(int invstates) {
int i, selfsplit;
struct e *thise;
struct p *tP, *newP = NULL;
/*
1. add inverse(P,a) to table of inverses, disallowing duplicates
2. first pass on S, touch each state once, increasing P->t_count
3. for each P where counter != count, split and add to agenda
*/
/* Inverse to table of inverses */
selfsplit = 0;
/* touch and increase P->counter */
for (i=0; i < invstates; i++) {
((E+(*(temp_move+i)))->group)->t_count++;
((E+(*(temp_move+i)))->group)->inv_t_count += ((E+(*(temp_move+i)))->inv_count);
assert((E+(*(temp_move+i)))->group->t_count <= (E+(*(temp_move+i)))->group->count);
}
/* Split (this is the tricky part) */
for (i=0; i < invstates; i++) {
thise = E+*(temp_move+i);
tP = thise->group;
/* Do we need to split?
if we've touched as many states as there are in the partition
we don't split */
if (tP->t_count == tP->count) {
tP->t_count = 0;
tP->inv_t_count = 0;
continue;
}
if ((tP->t_count != tP->count) && (tP->count > 1) && (tP->t_count > 0)) {
/* Check if we already split this */
newP = tP->current_split;
if (newP == NULL) {
/* printf("tP [%i] newP [%i]\n",tP->inv_count,tP->inv_t_count); */
/* Create new group newP */
total_states++;
if (total_states == num_states)
return(1); /* Abort now, machine is already minimal */
tP->current_split = Pnext++;
newP = tP->current_split;
newP->first_e = newP->last_e = thise;
newP->count = 0;
newP->inv_count = tP->inv_t_count;
newP->inv_t_count = 0;
newP->t_count = 0;
newP->current_split = NULL;
newP->agenda = NULL;
/* Add to agenda */
/* If the current block (tP) is on the agenda, we add both back */
/* to the agenda */
/* In practice we need only add newP since tP stays where it is */
/* However, we mark the larger one as not starting the symloop */
/* from zero */
if (tP->agenda != NULL) {
/* Is tP smaller */
if (tP->inv_count < tP->inv_t_count) {
agenda_add(newP, 1);
tP->agenda->index = 0;
}
else {
agenda_add(newP, 0);
}
/* In the event that we're splitting the partition we're currently */
/* splitting with, we can simply add both new partitions to the agenda */
/* and break out of the entire sym loop after we're */
/* done with the current sym and move on with the agenda */
/* We process the larger one for all symbols */
/* and the smaller one for only the ones remaining in this symloop */
} else if (tP == current_w) {
agenda_add(((tP->inv_count < tP->inv_t_count) ? tP : newP),0);
agenda_add(((tP->inv_count >= tP->inv_t_count) ? tP : newP),1);
selfsplit = 1;
} else {
/* If the block is not on the agenda, we add */
/* the smaller of tP, newP and start the symloop from 0 */
agenda_add((tP->inv_count < tP->inv_t_count ? tP : newP),0);
}
/* Add to middle of P-chain */
newP->next = P->next;
P->next = newP;
}
thise->group = newP;
newP->count++;
/* need to make tP->last_e point to the last untouched e */
if (thise == tP->last_e)
tP->last_e = thise->left;
if (thise == tP->first_e)
tP->first_e = thise->right;
/* Adjust links */
if (thise->left != NULL)
thise->left->right = thise->right;
if (thise->right != NULL)
thise->right->left = thise->left;
if (newP->last_e != thise) {
newP->last_e->right = thise;
thise->left = newP->last_e;
newP->last_e = thise;
}
thise->right = NULL;
if (newP->first_e == thise)
thise->left = NULL;
/* Are we done for this block? Adjust counters */
if (newP->count == tP->t_count) {
tP->count = tP->count - newP->count;
tP->inv_count = tP->inv_count - tP->inv_t_count;
tP->current_split = NULL;
tP->t_count = 0;
tP->inv_t_count = 0;
}
}
}
/* We return 1 if we just split the partition we were working with */
return (selfsplit);
}
static void agenda_add(struct p *pptr, int start) {
/* Use FILO strategy here */
struct agenda *ag;
//ag = malloc(sizeof(struct agenda));
ag = Agenda_next++;
if (Agenda != NULL)
ag->next = Agenda;
else
ag->next = NULL;
ag->p = pptr;
ag->index = start;
Agenda = ag;
pptr->agenda = ag;
}
static void init_PE() {
/* Create two members of P
(nonfinals,finals)
and put both of them on the agenda
*/
int i;
struct e *last_f, *last_nonf;
struct p *nonFP, *FP;
struct agenda *ag;
mainloop = 1;
memo_table = calloc(num_states,sizeof(int));
temp_move = calloc(num_states,sizeof(int));
temp_group = calloc(num_states,sizeof(int));
Phead = P = Pnext = calloc(num_states+1, sizeof(struct p));
nonFP = Pnext++;
FP = Pnext++;
nonFP->next = FP;
nonFP->count = num_states-num_finals;
FP->next = NULL;
FP->count = num_finals;
FP->t_count = 0;
nonFP->t_count = 0;
FP->current_split = NULL;
nonFP->current_split = NULL;
FP->inv_count = nonFP->inv_count = FP->inv_t_count = nonFP->inv_t_count = 0;
/* How many groups can we put on the agenda? */
Agenda_top = Agenda_next = calloc(num_states*2, sizeof(struct agenda));
Agenda_head = NULL;
P = NULL;
total_states = 0;
if (num_finals > 0) {
ag = Agenda_next++;
FP->agenda = ag;
P = FP;
P->next = NULL;
ag->p = FP;
Agenda_head = ag;
ag->next = NULL;
total_states++;
}
if (num_states - num_finals > 0) {
ag = Agenda_next++;
nonFP->agenda = ag;
ag->p = nonFP;
ag->next = NULL;
total_states++;
if (Agenda_head != NULL) {
Agenda_head->next = ag;
P->next = nonFP;
P->next->next = NULL;
} else {
P = nonFP;
P->next = NULL;
Agenda_head = ag;
}
}
/* Initialize doubly linked list E */
E = calloc(num_states,sizeof(struct e));
last_f = NULL;
last_nonf = NULL;
for (i=0; i < num_states; i++) {
if (finals[i]) {
(E+i)->group = FP;
(E+i)->left = last_f;
if (i > 0 && last_f != NULL)
last_f->right = (E+i);
if (last_f == NULL)
FP->first_e = (E+i);
last_f = (E+i);
FP->last_e = (E+i);
} else {
(E+i)->group = nonFP;
(E+i)->left = last_nonf;
if (i > 0 && last_nonf != NULL)
last_nonf->right = (E+i);
if (last_nonf == NULL)
nonFP->first_e = (E+i);
last_nonf = (E+i);
nonFP->last_e = (E+i);
}
(E+i)->inv_count = 0;
}
if (last_f != NULL)
last_f->right = NULL;
if (last_nonf != NULL)
last_nonf->right = NULL;
}
static int trans_sort_cmp(const void *a, const void *b) {
return (((const struct trans_list *)a)->inout - ((const struct trans_list *)b)->inout);
}
static void generate_inverse(struct fsm *net) {
struct fsm_state *fsm;
struct trans_array *tptr;
struct trans_list *listptr;
int i, source, target, offsetcount, symbol, size;
fsm = net->states;
trans_array_minimize = calloc(net->statecount, sizeof(struct trans_array));
trans_list_minimize = calloc(net->arccount, sizeof(struct trans_list));
/* Figure out the number of transitions each one has */
for (i=0; (fsm+i)->state_no != -1; i++) {
if ((fsm+i)->target == -1) {
continue;
}
target = (fsm+i)->target;
(E+target)->inv_count++;
(E+target)->group->inv_count++;
(trans_array_minimize+target)->size++;
}
offsetcount = 0;
for (i=0; i < net->statecount; i++) {
(trans_array_minimize+i)->transitions = trans_list_minimize + offsetcount;
offsetcount += (trans_array_minimize+i)->size;
}
for (i=0; (fsm+i)->state_no != -1; i++) {
if ((fsm+i)->target == -1) {
continue;
}
symbol = symbol_pair_to_single_symbol((fsm+i)->in,(fsm+i)->out);
source = (fsm+i)->state_no;
target = (fsm+i)->target;
tptr = trans_array_minimize + target;
((tptr->transitions)+(tptr->tail))->inout = symbol;
((tptr->transitions)+(tptr->tail))->source = source;
tptr->tail++;
}
/* Sort arcs */
for (i=0; i < net->statecount; i++) {
listptr = (trans_array_minimize+i)->transitions;
size = (trans_array_minimize+i)->size;
if (size > 1)
qsort(listptr, size, sizeof(struct trans_list), trans_sort_cmp);
}
}
static void sigma_to_pairs(struct fsm *net) {
int i, j, x, y, z, next_x = 0;
struct fsm_state *fsm;
fsm = net->states;
epsilon_symbol = -1;
maxsigma = sigma_max(net->sigma);
maxsigma++;
single_sigma_array = malloc(2*maxsigma*maxsigma*sizeof(int));
double_sigma_array = malloc(maxsigma*maxsigma*sizeof(int));
for (i=0; i < maxsigma; i++) {
for (j=0; j< maxsigma; j++) {
*(double_sigma_array+maxsigma*i+j) = -1;
}
}
/* f(x) -> y,z sigma pair */
/* f(y,z) -> x simple entry */
/* if exists f(n) <-> EPSILON, EPSILON, save n */
/* symbol(x) x>=1 */
/* Forward mapping: */
/* *(double_sigma_array+maxsigma*in+out) */
/* Backmapping: */
/* *(single_sigma_array+(symbol*2) = in(symbol) */
/* *(single_sigma_array+(symbol*2+1) = out(symbol) */
/* Table for checking whether a state is final */
finals = calloc(num_states, sizeof(_Bool));
x = 0; num_finals = 0;
net->arity = 1;
for (i=0; (fsm+i)->state_no != -1; i++) {
if ((fsm+i)->final_state == 1 && finals[(fsm+i)->state_no] != 1) {
num_finals++;
finals[(fsm+i)->state_no] = 1;
}
y = (fsm+i)->in;
z = (fsm+i)->out;
if (y != z || y == UNKNOWN || z == UNKNOWN)
net->arity = 2;
if ((y == -1) || (z == -1))
continue;
if (*(double_sigma_array+maxsigma*y+z) == -1) {
*(double_sigma_array+maxsigma*y+z) = x;
*(single_sigma_array+next_x) = y;
next_x++;
*(single_sigma_array+next_x) = z;
next_x++;
if (y == EPSILON && z == EPSILON) {
epsilon_symbol = x;
}
x++;
}
}
num_symbols = x;
}
static INLINE int symbol_pair_to_single_symbol(int in, int out) {
return(*(double_sigma_array+maxsigma*in+out));
}
|