1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
|
//==============================================================================================
// geometry.cc Font3D
//----------------------------------------------------------------------------------------------
//
// Copyright (c) 1994-1996 by Todd A. Prater Version 1.60
// All rights reserved.
//
//----------------------------------------------------------------------------------------------
//
// Permission to copy and distribute Font3D in its entirety, for noncommercial purposes,
// is hereby granted without fee, provided that this license information and copyright
// notice appear in all copies.
//
// If you redistribute Font3D, the entire contents of this distribution must be distributed,
// including the readme.txt, and register.txt files, and the complete set of documentation,
// both ASCII text, and PostScript files.
//
// The software may be modified for your own purposes, but modified versions may not be
// distributed without prior consent of the author.
//
// This software is provided 'asis', without any express or implied warranty. In no event
// will the author be held liable for any damages arising from the use of this software.
//
// If you would like to do something with Font3D that this copyright prohibits (such as
// distributing it with a commercial product, using portions of the source in some other
// program, distributing registered copies, etc.), please contact the author (preferably
// via email). Arrangements can probably be worked out.
//
//==============================================================================================
#include <math.h>
#include <stddef.h>
#include <stdio.h>
#include <iostream.h>
#include "vector.h"
#include "geometry.h"
//==============================================================================================
// TRIANGLELIST::Empty() (PUBLIC)
//----------------------------------------------------------------------------------------------
//
// This function removes all of the triangles from a triangle list.
//
//==============================================================================================
void TRIANGLELIST::Empty(void)
{
int i;
TRIANGLELISTLINK* tempnext;
gotoFirst();
for (i=0;i<count;i++)
{
delete current->Obj();
gotoNext();
}
gotoFirst();
for (i=0;i<count;i++)
{
tempnext = current->Next();
if (tempnext!=NULL) delete current;
current = tempnext;
}
count=0;
first=NULL;
current=NULL;
last=NULL;
}
//==============================================================================================
// TRIANGLELIST::Add() (PUBLIC)
//----------------------------------------------------------------------------------------------
//
// This function adds a triangle to a triangle list. If successful it returns TRUE, FALSE
// otherwise.
//
//==============================================================================================
int TRIANGLELIST::Add (TRIANGLE* object)
{
TRIANGLELISTLINK* newlink;
newlink = new TRIANGLELISTLINK(object,NULL);
if (!newlink)
{
return FALSE;
}
if (count==0)
{
first = newlink;
current = newlink;
last = newlink;
last->setNext(NULL);
}
else
{
last->setNext(newlink);
last = newlink;
}
count++;
return TRUE;
}
//=============================================================================================
// ostream << POLYGON (DEBUG)
//---------------------------------------------------------------------------------------------
//
// This is provided as a debugging aid. Sometimes it is useful to print out the contents
// of a polygon (ie. its number of vertices and the actual vertices).
//
//=============================================================================================
ostream& operator << (ostream& s, const POLYGON& p)
{
if (p.numpoints==0)
s<<"EMPTY POLYGON\n";
else
{
s<<"POLYGON with "<<p.numpoints<<" sides:\n";
for (int i=0;i<p.numpoints;i++)
s<<" "<<p.pointlist[i]<<"\n";
}
return s;
}
//=============================================================================================
// POLYGON::POLYGON() (PUBLIC)
//---------------------------------------------------------------------------------------------
//
// These are the constructors for the POLYGON class. The first creates a POLYGON with no
// vertices, the second creates a POLYGON given an array of n points, and the third is a
// copy constructor.
//
//=============================================================================================
POLYGON::POLYGON(void)
{
numpoints = 0;
pointlist = NULL;
orientation = CLOCKWISE;
}
POLYGON::POLYGON(int n, vector* p)
{
numpoints = n;
pointlist = p;
orientation = findOrientation();
}
POLYGON::POLYGON(const POLYGON& P)
{
numpoints = P.numpoints;
pointlist = new vector[numpoints];
for (int i=0;i<numpoints;i++)
pointlist[i]=P.pointlist[i];
orientation = P.orientation;
}
//=============================================================================================
// POLYGON::findOrientation() (PRIVATE)
//---------------------------------------------------------------------------------------------
//
// This function calculates the orientation of a POLYGON.
//
//=============================================================================================
int POLYGON::findOrientation(void)
{
double area;
int i;
area = pointlist[numpoints-1].x * pointlist[0].y
- pointlist[0].x * pointlist[numpoints-1].y;
for (i=0;i<numpoints-1;i++)
area += pointlist[i].x * pointlist[i+1].y
- pointlist[i+1].x * pointlist[i].y;
if (area >= 0.0)
return ANTICLOCKWISE;
else
return CLOCKWISE;
}
//=============================================================================================
// POLYGON::findDeterminant() (PRIVATE)
//---------------------------------------------------------------------------------------------
//
// Finds the orientation of the triangle formed by connecting the POLYGON's p1, p2, and
// p3 vertices.
//
//=============================================================================================
int POLYGON::findDeterminant(int p1, int p2, int p3)
{
double determinant;
determinant = (pointlist[p2].x-pointlist[p1].x)
*(pointlist[p3].y-pointlist[p1].y)
-(pointlist[p3].x-pointlist[p1].x)
*(pointlist[p2].y-pointlist[p1].y);
if (determinant > 0.0)
return ANTICLOCKWISE;
else if (determinant==0.0)
{
if( pointlist[p1]==pointlist[p2]
|| pointlist[p1]==pointlist[p3]
|| pointlist[p2]==pointlist[p3])
{
return CLOCKWISE;
}
else
{
return ANTICLOCKWISE;
}
}
else
return CLOCKWISE;
}
//=============================================================================================
// POLYGON::noneInside() (PRIVATE)
//---------------------------------------------------------------------------------------------
//
// Returns 'FALSE' if any of the POLYGON's vertices in 'vlist' are inside the triangle formed
// by connecting the vertices p1, p2, and p3. 'n' is the number of vertices in 'vlist'.
// Returns 'TRUE' if no vertices are inside that triangle.
//
//=============================================================================================
int POLYGON::noneInside(int p1, int p2, int p3, int n, int* vlist)
{
int i,p;
for(i=0;i<n;i++)
{
p=vlist[i];
if((p==p1)||(p==p2)||(p==p3)) continue;
if ( (findDeterminant(p2,p1,p)==orientation)
|| (findDeterminant(p1,p3,p)==orientation)
|| (findDeterminant(p3,p2,p)==orientation)) continue;
else
{
if ( (pointlist[p].x==pointlist[p1].x && pointlist[p].y==pointlist[p1].y)
||(pointlist[p].x==pointlist[p2].x && pointlist[p].y==pointlist[p2].y)
||(pointlist[p].x==pointlist[p3].x && pointlist[p].y==pointlist[p3].y))
continue;
else
return FALSE;
}
}
return TRUE;
}
//=============================================================================================
// POLYGON::Correct() (PUBLIC)
//---------------------------------------------------------------------------------------------
//
// This routine just makes sure there are no two consecutive points in the polygon that are
// the same. If there are the duplicates are deleted from the vertex list.
//
//=============================================================================================
void POLYGON::Correct()
{
int i,j;
for (i=0;i<numpoints-1;i++)
{
if (pointlist[i]==pointlist[i+1])
{
for (j=i;j<numpoints-1;j++)
pointlist[j]=pointlist[j+1];
numpoints--; i--;
}
}
}
//=============================================================================================
// POLYGON::Triangulate() (PUBLIC)
//---------------------------------------------------------------------------------------------
//
// Slices the POLYGON up into a list of triangles. The POLYGON must be non-intersecting.
// This is done by checking each vertex to see whether or not it can be 'chopped off'.
// If so, that vertex is removed, and the process is repeated until there are only three
// vertices left (only one triangle left). Returns the following values upon completion:
//
// GEOM_ERR_NoPolyFound .......... If there were more than three vertices left, but none
// of them could be 'chopped off'. This usually happens
// if the polygon intersects itself.
//
// GEOM_GEOM_ERR_NoError .............. If the polygon was successfully triangulated.
//
//
//=============================================================================================*/
int POLYGON::Triangulate(TRIANGLELIST& trilist, int verbose)
{
TRIANGLE* current_triangle;
int previous;
int current;
int next;
int* rvl;
int vertex_count;
int current_determinant;
int current_position;
int i;
vector p1,p2,p3;
int done;
vector n1(0,0,1);
vector n2(0,0,1);
vector n3(0,0,1);
char* progChar = "/-\\|"; // Character Array to animate progress with
int progCount = 0; // Keeps track of progress
int progSize = 4; // Number of characters in animation sequence
rvl = new int[numpoints];
for (i=0;i<numpoints;i++)
rvl[i]=i;
vertex_count=numpoints;
while (vertex_count>3)
{
if (verbose) { cout<<progChar[(progCount++)%progSize]; cout.flush(); }
done=FALSE;
previous=vertex_count-1;
current=0;
next=1;
while (current<vertex_count && !done)
{
previous = current-1;
next = current+1;
if (current==0)
previous=vertex_count-1;
else if (current==vertex_count-1)
next=0;
current_determinant = findDeterminant(rvl[previous],
rvl[current],
rvl[next]);
current_position = noneInside(rvl[previous] ,
rvl[current] ,
rvl[next] ,
vertex_count ,
rvl );
if ( (current_determinant==orientation)
&& (current_position==TRUE))
{
done=TRUE;
}
else
{
current++;
}
}
if (!done)
{
return GEOM_ERR_NoPolyFound;
}
p1=vector(pointlist[rvl[previous]]);
p2=vector(pointlist[rvl[current]]);
p3=vector(pointlist[rvl[next]]);
current_triangle = new TRIANGLE(p1,p2,p3,n1,n2,n3);
trilist.Add(current_triangle);
vertex_count-=1;
for (i=current;i<vertex_count;i++) rvl[i]=rvl[i+1];
if (verbose) { cout<<'\b'; cout.flush(); }
}
p1=vector(pointlist[rvl[0]]);
p2=vector(pointlist[rvl[1]]);
p3=vector(pointlist[rvl[2]]);
current_triangle = new TRIANGLE(p1,p2,p3,n1,n2,n3);
trilist.Add(current_triangle);
delete rvl;
return GEOM_ERR_NoError;
}
//=============================================================================================
// POLYGON::Combine() (PUBLIC)
//---------------------------------------------------------------------------------------------
//
// This function combines two polygons by cutting between them at their point of closest
// approach (PCA). The resulting polygon is found by tracing around it's own vertices from
// the PCA all the way back around to and including the PCA. Then, adding an edge to the
// PCA of the polygon we're combining, tracing around the polygon we're combining (in the
// opposite direction), and finally adding an edge from the inner PCA to the outer PCA.
//
//=============================================================================================
void POLYGON::Combine(POLYGON& p)
{
int i,ni,j;
double current_dist;
double min_dist;
int min_i=0;
int min_j=0;
vector currToPrev, currToNext, mintoPrev, mintoNext;
vector testvector;
double distCP,distCN,distMP,distMN;
vector* newpl;
newpl = new vector[numpoints+p.numpoints+2];
min_dist = BIG;
for (i=0;i<numpoints;i++)
{
for (j=0;j<p.numpoints;j++)
{
current_dist = dist(pointlist[i],p.pointlist[j]);
if (current_dist==min_dist)
{
if (i>0) currToPrev = pointlist[i-1]-pointlist[i];
else currToPrev = pointlist[numpoints-1]-pointlist[i];
if (i<numpoints-1) currToNext = pointlist[i+1]-pointlist[i];
else currToNext = pointlist[0]-pointlist[i];
if (min_i>0) mintoPrev = pointlist[min_i-1]-pointlist[min_i];
else mintoPrev = pointlist[numpoints-1]-pointlist[min_i];
if (min_i<numpoints-1) mintoNext = pointlist[min_i+1]-pointlist[min_i];
else mintoNext = pointlist[0]-pointlist[min_i];
testvector = p.pointlist[j]-pointlist[i];
distCP = dist(~currToPrev,testvector); // Changed from being normalized...
distCN = dist(~currToNext,testvector);
distMP = dist(~mintoPrev ,testvector);
distMN = dist(~mintoNext ,testvector);
if ( (distCP+distCN)<(distMP+distMN))
{
min_dist=current_dist;
min_i=i;
min_j=j;
}
}
else if (current_dist<min_dist)
{
min_dist = current_dist;
min_i = i;
min_j = j;
}
}
}
ni=0;
for(i=0 ; i<=min_i ;i++)
{
newpl[ni]=pointlist[i];
ni++;
}
for(i=min_j ; i<p.numpoints ;i++)
{
newpl[ni]=p.pointlist[i];
ni++;
}
for(i=0 ; i<=min_j ;i++)
{
newpl[ni]=p.pointlist[i];
ni++;
}
for(i=min_i ; i<numpoints ;i++)
{
newpl[ni]=pointlist[i];
ni++;
}
numpoints = ni;
delete pointlist;
pointlist = newpl;
}
//=============================================================================================
// POLYGON::isInside (PUBLIC)
//---------------------------------------------------------------------------------------------
//
// This function determines whether or not a polygon (the one it is called upon) is entirely
// inside another polygon (the one passed as a parameter: 'p'). If it is, the function ret-
// urns TRUE, FALSE otherwise.
//
//=============================================================================================
int POLYGON::isInside(POLYGON& p)
{
int i,j,c=0;
double x,y;
x = pointlist[0].x;
y = pointlist[0].y;
for (i=0, j=p.numpoints-1; i<p.numpoints; j=i++)
{
if ((((p.pointlist[i].y<=y) && (y<p.pointlist[j].y)) ||
((p.pointlist[j].y<=y) && (y<p.pointlist[i].y))) &&
(x < (p.pointlist[j].x - p.pointlist[i].x) * (y - p.pointlist[i].y) /
(p.pointlist[j].y - p.pointlist[i].y) + p.pointlist[i].x))
c = !c;
}
return c;
}
//=============================================================================================
// POLYGON::Shrink (PUBLIC)
//---------------------------------------------------------------------------------------------
//
// This function shifts each vertex of a polygon inward a small amount, along a direction
// vector that bisects the angle created by the vertex's two adjacent edges. The amount
// of movement is specified by 'shrinkFactor'; if it is positive the movement is inward, if
// it is negative the movement is toward the outside of the polygon. The resulting 'shrunk'
// polygon is stored in 'newPoly'. If this polygon is not already empty (if it has any
// vertices at all), then its vertices are deleted before creating the new polygon.
//
// NOTE: The algorithm used here is not foolproof. If relatively large shrinkFactors are
// given, the resulting 'shrunk' polygon can become self-intersecting.
//
// Also, two versions are provided; one that creates a new polygon, one that modifies
// the points of the old polygon.
//
//=============================================================================================
//---------------------------------------------------------------------------------------------
// VERSION 1: Does not modify the original polygon.
//---------------------------------------------------------------------------------------------
void POLYGON::Shrink(POLYGON& newPoly, double shrinkFactor)
{
int i;
vector current,previous,next;
vector toPrevious,toNext,inPrevious,inNext;
vector inward;
double angle;
double shrinkDist;
vector zDir(0,0,1);
double bisectorLength;
if (shrinkFactor==0) return;
if (newPoly.numpoints>0)
{
delete newPoly.pointlist;
newPoly.numpoints = 0;
}
newPoly.pointlist = new vector[numpoints];
newPoly.numpoints = numpoints;
previous = pointlist[numpoints-1];
current = pointlist[0];
next = pointlist[1];
toPrevious = ~(previous-current);
toNext = ~(next-current);
inPrevious = zDir^toPrevious;
inNext = toNext^zDir;
bisectorLength = toPrevious%toNext;
if (bisectorLength < -1.0)
bisectorLength = -1.0;
else if (bisectorLength > 1.0)
bisectorLength = 1.0;
angle = 0.5*acos(bisectorLength);
if (angle<MIN_SHRINK_ANGLE) angle=MIN_SHRINK_ANGLE;
shrinkDist = shrinkFactor/sin(angle);
inward = ~(inPrevious+inNext)*shrinkDist;
newPoly.pointlist[0]=current+inward;
previous = pointlist[numpoints-2];
current = pointlist[numpoints-1];
next = pointlist[0];
toPrevious = ~(previous-current);
toNext = ~(next-current);
inPrevious = zDir^toPrevious;
inNext = toNext^zDir;
bisectorLength = toPrevious%toNext;
if (bisectorLength < -1.0)
bisectorLength = -1.0;
else if (bisectorLength > 1.0)
bisectorLength = 1.0;
angle = 0.5*acos(bisectorLength);
if (angle<MIN_SHRINK_ANGLE) angle=MIN_SHRINK_ANGLE;
shrinkDist = shrinkFactor/sin(angle);
inward = ~(inPrevious+inNext)*shrinkDist;
newPoly.pointlist[numpoints-1]=current+inward;
for (i=1;i<numpoints-1;i++)
{
previous = pointlist[i-1];
current = pointlist[i];
next = pointlist[i+1];
toPrevious = ~(previous-current);
toNext = ~(next-current);
inPrevious = zDir^toPrevious;
inNext = toNext^zDir;
bisectorLength = toPrevious%toNext;
if (bisectorLength < -1.0)
bisectorLength = -1.0;
else if (bisectorLength > 1.0)
bisectorLength = 1.0;
angle = 0.5*acos(bisectorLength);
if (angle<MIN_SHRINK_ANGLE) angle=MIN_SHRINK_ANGLE;
shrinkDist = shrinkFactor/sin(angle);
inward = ~(inPrevious+inNext)*shrinkDist;
newPoly.pointlist[i]=current+inward;
}
}
//---------------------------------------------------------------------------------------------
// VERSION 2: Modifies the original polygon's points
//---------------------------------------------------------------------------------------------
void POLYGON::Shrink(double shrinkFactor)
{
int i;
vector current,previous,next;
vector toPrevious,toNext,inPrevious,inNext;
vector inward;
double angle;
double shrinkDist;
vector zDir(0,0,1);
vector* newpointlist;
double bisectorLength;
if (shrinkFactor==0) return;
newpointlist = new vector[numpoints];
previous = pointlist[numpoints-1];
current = pointlist[0];
next = pointlist[1];
toPrevious = ~(previous-current);
toNext = ~(next-current);
inPrevious = zDir^toPrevious;
inNext = toNext^zDir;
bisectorLength = toPrevious%toNext;
if (bisectorLength < -1.0)
bisectorLength = -1.0;
else if (bisectorLength > 1.0)
bisectorLength = 1.0;
angle = 0.5*acos(bisectorLength);
if (angle<MIN_SHRINK_ANGLE) angle=MIN_SHRINK_ANGLE;
shrinkDist = shrinkFactor/sin(angle);
inward = ~(inPrevious+inNext)*shrinkDist;
newpointlist[0]=current+inward;
previous = pointlist[numpoints-2];
current = pointlist[numpoints-1];
next = pointlist[0];
toPrevious = ~(previous-current);
toNext = ~(next-current);
inPrevious = zDir^toPrevious;
inNext = toNext^zDir;
bisectorLength = toPrevious%toNext;
if (bisectorLength < -1.0)
bisectorLength = -1.0;
else if (bisectorLength > 1.0)
bisectorLength = 1.0;
angle = 0.5*acos(bisectorLength);
if (angle<MIN_SHRINK_ANGLE) angle=MIN_SHRINK_ANGLE;
shrinkDist = shrinkFactor/sin(angle);
inward = ~(inPrevious+inNext)*shrinkDist;
newpointlist[numpoints-1]=current+inward;
for (i=1;i<numpoints-1;i++)
{
previous = pointlist[i-1];
current = pointlist[i];
next = pointlist[i+1];
toPrevious = ~(previous-current);
toNext = ~(next-current);
inPrevious = zDir^toPrevious;
inNext = toNext^zDir;
bisectorLength = toPrevious%toNext;
if (bisectorLength < -1.0)
bisectorLength = -1.0;
else if (bisectorLength > 1.0)
bisectorLength = 1.0;
angle = 0.5*acos(bisectorLength);
if (angle<MIN_SHRINK_ANGLE) angle=MIN_SHRINK_ANGLE;
shrinkDist = shrinkFactor/sin(angle);
inward = ~(inPrevious+inNext)*shrinkDist;
newpointlist[i]=current+inward;
}
delete pointlist;
pointlist = newpointlist;
}
//=============================================================================================
// POLYGON::SetDepth() (PUBLIC)
//---------------------------------------------------------------------------------------------
//
// This function simply sets the z-coordinate of each of the vertices in the polygon to a
// specified value 'depth'.
//
//=============================================================================================
void POLYGON::SetDepth(double depth)
{
for (int i=0;i<numpoints;i++)
pointlist[i].z = depth;
}
//=============================================================================================
// POLYGON::SetDepth() (PUBLIC)
//---------------------------------------------------------------------------------------------
//
// This function translates each point in the polygon by adding 'offset' to each of its
// points.
//
//=============================================================================================
void POLYGON::Translate(vector offset)
{
for (int i=0;i<numpoints;i++)
pointlist[i] = pointlist[i]+offset;
}
//=============================================================================================
// ApproximateQuadraticSpline() (PUBLIC)
//---------------------------------------------------------------------------------------------
//
// This function evaluates a quadratic B-spline curve, specified by its three control points
// (cp1,cp2,cp3), at an arbitrary point along that curve. The return value is only meaning-
// ful if the parameter 't' is between 0 and 1, inclusively.
//
//=============================================================================================
vector ApproximateQuadraticSpline(vector cp1, vector cp2, vector cp3, double t)
{
double i1 = (1-t)*(1-t);
double i2 = 2*t*(1-t);
double i3 = t*t;
double tx = i1*cp1.x + i2*cp2.x + i3*cp3.x;
double ty = i1*cp1.y + i2*cp2.y + i3*cp3.y;
double tz = cp1.z;
return vector(tx,ty,tz);
}
|