File: mathTransform.py

package info (click to toggle)
fontmath 0.9.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 308 kB
  • sloc: python: 3,736; makefile: 4
file content (363 lines) | stat: -rw-r--r-- 12,798 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
from __future__ import print_function
import math
from fontTools.misc.transform import Transform

"""

    This is a more sophisticated approach to performing math on transformation matrices.
    Traditionally glyphMath applies the math straight to the elements in the matrix.
    By decomposing the matrix into offset, scale and rotation factors, the interpoations
    are much more natural. Or more intuitive.

    This could help in complex glyphs in which the rotation of a component plays am important role.

    This MathTransform object itself has its own interpolation method. But in order to be able
    to participate in (for instance) superpolator math, it is necessary to keep the
    offset, scale and rotation decomposed for more than one math operation.
    So, MathTransform decomposes the matrix, ShallowTransform carries it through the math,
    then MathTransform is used again to compose the new matrix. If you don't need to math with
    the transformation object itself, the MathTransform object is fine.

    MathTransform by Frederik Berlaen

    Transformation decomposition algorithm from
        http://dojotoolkit.org/reference-guide/1.9/dojox/gfx.html#decompose-js
        http://dojotoolkit.org/license


"""

def matrixToMathTransform(matrix):
    """ Take a 6-tuple and return a ShallowTransform object."""
    if isinstance(matrix, ShallowTransform):
        return matrix
    off, scl, rot = MathTransform(matrix).decompose()
    return ShallowTransform(off, scl, rot)

def mathTransformToMatrix(mathTransform):
    """ Take a ShallowTransform object and return a 6-tuple. """
    m = MathTransform().compose(mathTransform.offset, mathTransform.scale, mathTransform.rotation)
    return tuple(m)

class ShallowTransform(object):
    """ A shallow math container for offset, scale and rotation. """
    def __init__(self, offset, scale, rotation):
        self.offset = offset
        self.scale = scale
        self.rotation = rotation

    def __repr__(self):
        return "<ShallowTransform offset(%3.3f,%3.3f) scale(%3.3f,%3.3f) rotation(%3.3f,%3.3f)>"%(self.offset[0], self.offset[1], self.scale[0], self.scale[1], self.rotation[0], self.rotation[1])

    def __add__(self, other):
        newOffset = self.offset[0]+other.offset[0],self.offset[1]+other.offset[1]
        newScale = self.scale[0]+other.scale[0],self.scale[1]+other.scale[1]
        newRotation = self.rotation[0]+other.rotation[0],self.rotation[1]+other.rotation[1]
        return self.__class__(newOffset, newScale, newRotation)

    def __sub__(self, other):
        newOffset = self.offset[0]-other.offset[0],self.offset[1]-other.offset[1]
        newScale = self.scale[0]-other.scale[0],self.scale[1]-other.scale[1]

        newRotation = self.rotation[0]-other.rotation[0],self.rotation[1]-other.rotation[1]
        return self.__class__(newOffset, newScale, newRotation)

    def __mul__(self, factor):
        if isinstance(factor, (int, float)):
            fx = fy = float(factor)
        else:
            fx, fy = float(factor[0]), float(factor[1])
        newOffset = self.offset[0]*fx,self.offset[1]*fy
        newScale = self.scale[0]*fx,self.scale[1]*fy
        newRotation = self.rotation[0]*fx,self.rotation[1]*fy
        return self.__class__(newOffset, newScale, newRotation)

    __rmul__ = __mul__

    def __truediv__(self, factor):
        """ XXX why not __div__ ?"""
        if isinstance(factor, (int, float)):
            fx = fy = float(factor)
        else:
            fx, fy = float(factor)
        if fx==0 or fy==0:
            raise ZeroDivisionError((fx, fy))
        newOffset = self.offset[0]/fx,self.offset[1]/fy
        newScale = self.scale[0]/fx,self.scale[1]/fy
        newRotation = self.rotation[0]/fx,self.rotation[1]/fy
        return self.__class__(newOffset, newScale, newRotation)

    def asTuple(self):
        m = MathTransform().compose(self.offset, self.scale, self.rotation)
        return tuple(m)



class MathTransform(object):
    """ A Transform object that can compose and decompose the matrix into offset, scale and rotation."""
    transformClass = Transform

    def __init__(self, *matrixes):
        matrix = self.transformClass()
        if matrixes:
            if isinstance(matrixes[0], (int, float)):
                matrixes = [matrixes]
            for m in matrixes:
                matrix = matrix.transform(m)
        self.matrix = matrix

    def _get_matrix(self):
        return (self.xx, self.xy, self.yx, self.yy, self.dx, self.dy)

    def _set_matrix(self, matrix):
        self.xx, self.xy, self.yx, self.yy, self.dx, self.dy = matrix

    matrix = property(_get_matrix, _set_matrix)

    def __repr__(self):
        return "< %.8f %.8f %.8f %.8f %.8f %.8f >" % (self.xx, self.xy, self.yx, self.yy, self.dx, self.dy)

    def __len__(self):
        return 6

    def __getitem__(self, index):
        return self.matrix[index]

    def __getslice__(self, i, j):
        return self.matrix[i:j]

    def __eq__(self, other):
        return str(self) == str(other)

    ## transformations

    def translate(self, x=0, y=0):
        return self.__class__(self.transformClass(*self.matrix).translate(x, y))

    def scale(self, x=1, y=None):
        return self.__class__(self.transformClass(*self.matrix).scale(x, y))

    def rotate(self, angle):
        return self.__class__(self.transformClass(*self.matrix).rotate(angle))

    def rotateDegrees(self, angle):
        return self.rotate(math.radians(angle))

    def skew(self, x=0, y=0):
        return self.__class__(self.transformClass(*self.matrix).skew(x, y))

    def skewDegrees(self, x=0, y=0):
        return self.skew(math.radians(x), math.radians(y))

    def transform(self, other):
        return self.__class__(self.transformClass(*self.matrix).transform(other))

    def reverseTransform(self, other):
        return self.__class__(self.transformClass(*self.matrix).reverseTransform(other))

    def inverse(self):
        return self.__class__(self.transformClass(*self.matrix).inverse())

    def copy(self):
        return self.__class__(self.matrix)
    ## tools

    def scaleSign(self):
        if self.xx * self.yy < 0 or self.xy * self.yx > 0:
            return -1
        return 1

    def eq(self, a, b):
        return abs(a - b) <= 1e-6 * (abs(a) + abs(b))

    def calcFromValues(self, r1, m1, r2, m2):
        m1 = abs(m1)
        m2 = abs(m2)
        return (m1 * r1 + m2 * r2) / (m1 + m2)

    def transpose(self):
        return self.__class__(self.xx, self.yx, self.xy, self.yy, 0, 0)

    def decompose(self):
        self.translateX = self.dx
        self.translateY = self.dy
        self.scaleX = 1
        self.scaleY = 1
        self.angle1 = 0
        self.angle2 = 0

        if self.eq(self.xy, 0) and self.eq(self.yx, 0):
            self.scaleX = self.xx
            self.scaleY = self.yy

        elif self.eq(self.xx * self.yx, -self.xy * self.yy):
            self._decomposeScaleRotate()

        elif self.eq(self.xx * self.xy, -self.yx * self.yy):
            self._decomposeRotateScale()

        else:
            transpose = self.transpose()
            (vx1, vy1), (vx2, vy2) = self._eigenvalueDecomposition(self.matrix, transpose.matrix)
            u = self.__class__(vx1, vx2, vy1, vy2, 0, 0)

            (vx1, vy1), (vx2, vy2) = self._eigenvalueDecomposition(transpose.matrix, self.matrix)
            vt = self.__class__(vx1, vy1, vx2, vy2, 0, 0)

            s = self.__class__(self.__class__().reverseTransform(u), self, self.__class__().reverseTransform(vt))

            vt._decomposeScaleRotate()
            self.angle1 = -vt.angle2

            u._decomposeRotateScale()
            self.angle2 = -u.angle1

            self.scaleX = s.xx * vt.scaleX * u.scaleX
            self.scaleY = s.yy * vt.scaleY * u.scaleY

        return (self.translateX, self.translateY), (self.scaleX, self.scaleY), (self.angle1, self.angle2)

    def _decomposeScaleRotate(self):
        sign = self.scaleSign()
        a = (math.atan2(self.yx, self.yy) + math.atan2(-sign * self.xy, sign * self.xx)) * .5
        c = math.cos(a)
        s = math.sin(a)
        if c == 0: ## ????
            c = 0.0000000000000000000000000000000001
        if s == 0:
            s = 0.0000000000000000000000000000000001
        self.angle2 = -a
        self.scaleX = self.calcFromValues(self.xx / float(c), c, -self.xy / float(s), s)
        self.scaleY = self.calcFromValues(self.yy / float(c), c,  self.yx / float(s), s)

    def _decomposeRotateScale(self):
        sign = self.scaleSign()
        a = (math.atan2(sign * self.yx, sign * self.xx) + math.atan2(-self.xy, self.yy)) * .5
        c = math.cos(a)
        s = math.sin(a)
        if c == 0:
            c = 0.0000000000000000000000000000000001
        if s == 0:
            s = 0.0000000000000000000000000000000001
        self.angle1 = -a
        self.scaleX = self.calcFromValues(self.xx / float(c), c,  self.yx / float(s), s)
        self.scaleY = self.calcFromValues(self.yy / float(c), c, -self.xy / float(s), s)

    def _eigenvalueDecomposition(self, *matrixes):
        m = self.__class__(*matrixes)
        b = -m.xx - m.yy
        c = m.xx * m.yy - m.xy * m.yx
        d = math.sqrt(abs(b * b - 4 * c))
        if b < 0:
            d *= -1
        l1 = -(b + d) * .5
        l2 = c / float(l1)

        vx1 = vy2 = None
        if l1 - m.xx != 0:
            vx1 = m.xy / (l1 - m.xx)
            vy1 = 1
        elif m.xy != 0:
            vx1 = 1
            vy1 = (l1 - m.xx) / m.xy
        elif m.yx != 0:
            vx1 = (l1 - m.yy) / m.yx
            vy1 = 1
        elif l1 - m.yy != 0:
            vx1 = 1
            vy1 = m.yx / (l1 - m.yy)

        vx2 = vy2 = None
        if l2 - m.xx != 0:
            vx2 = m.xy / (l2 - m.xx)
            vy2 = 1
        elif m.xy != 0:
            vx2 = 1
            vy2 = (l2 - m.xx) / m.xy
        elif m.yx != 0:
            vx2 = (l2 - m.yy) / m.yx
            vy2 = 1
        elif l2 - m.yy != 0:
            vx2 = 1
            vy2 = m.yx / (l2 - m.yy)


        if self.eq(l1, l2):
            vx1 = 1
            vy1 = 0
            vx2 = 0
            vy2 = 1

        d1 = math.sqrt(vx1 * vx1 + vy1 * vy1)
        d2 = math.sqrt(vx2 * vx2 + vy2 * vy2)

        vx1 /= d1
        vy1 /= d1
        vx2 /= d2
        vy2 /= d2

        return (vx1, vy1), (vx2, vy2)

    def compose(self, translate, scale, angle):
        translateX, translateY = translate
        scaleX, scaleY = scale
        angle1, angle2 = angle
        matrix = self.transformClass()
        matrix = matrix.translate(translateX, translateY)
        matrix = matrix.rotate(angle2)
        matrix = matrix.scale(scaleX, scaleY)
        matrix = matrix.rotate(angle1)
        return self.__class__(matrix)

    def _interpolate(self, v1, v2, value):
        return v1 * (1 - value) + v2 * value

    def interpolate(self, other, value):
        if isinstance(value, (int, float)):
            x = y = value
        else:
            x, y = value

        self.decompose()
        other.decompose()

        translateX = self._interpolate(self.translateX, other.translateX, x)
        translateY = self._interpolate(self.translateY, other.translateY, y)
        scaleX = self._interpolate(self.scaleX, other.scaleX, x)
        scaleY = self._interpolate(self.scaleY, other.scaleY, y)
        angle1 = self._interpolate(self.angle1, other.angle1, x)
        angle2 = self._interpolate(self.angle2, other.angle2, y)
        return self.compose((translateX, translateY), (scaleX, scaleY), (angle1, angle2))


class FontMathWarning(Exception): pass

def _interpolateValue(data1, data2, value):
    return data1 * (1 - value) + data2 * value

def _linearInterpolationTransformMatrix(matrix1, matrix2, value):
    """ Linear, 'oldstyle' interpolation of the transform matrix."""
    return tuple(_interpolateValue(matrix1[i], matrix2[i], value) for i in range(len(matrix1)))

def _polarDecomposeInterpolationTransformation(matrix1, matrix2, value):
    """ Interpolate using the MathTransform method. """
    m1 = MathTransform(matrix1)
    m2 = MathTransform(matrix2)
    return tuple(m1.interpolate(m2, value))

def _mathPolarDecomposeInterpolationTransformation(matrix1, matrix2, value):
    """ Interpolation with ShallowTransfor, wrapped by decompose / compose actions."""
    off, scl, rot = MathTransform(matrix1).decompose()
    m1 = ShallowTransform(off, scl, rot)
    off, scl, rot = MathTransform(matrix2).decompose()
    m2 = ShallowTransform(off, scl, rot)
    m3 = m1 + value * (m2-m1)
    m3 = MathTransform().compose(m3.offset, m3.scale, m3.rotation)
    return tuple(m3)


if __name__ == "__main__":
    from random import random
    import sys
    import doctest
    sys.exit(doctest.testmod().failed)