File: index.md

package info (click to toggle)
foonathan-memory 0.7-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,748 kB
  • sloc: cpp: 12,014; xml: 139; sh: 49; makefile: 22
file content (213 lines) | stat: -rw-r--r-- 9,128 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
This is the documentation of `foonathan/memory`.

For a quick start, read the [Tutorial] or skim the examples at the [Github page].
The concepts of this library are defined are [here](md_doc_concepts.html).

## Features
 
 New allocator concepts:
 
 * a `RawAllocator` that is similar to an `Allocator` but easier to use and write
 * a `BlockAllocator` that is an allocator for huge memory blocks
 
 Several implementations:
 
 * `heap_/malloc_/new_allocator`
 * virtual memory allocators
 * allocator using a static memory block located on the stack
 * memory stack
 * different memory pools
 * a portable, improved `alloca()` in the form of `temporary_allocator`
 
 Adapters, wrappers and storage classes:
 
 * incredible powerful `allocator_traits` allowing `Allocator`s as `RawAllocator`s
 * `std_allocator` to make a `RawAllocator` an `Allocator` again
 * adapters for the memory resource TS
 * `allocator_deleter` classes for smart pointers
 * (optionally type-erased) `allocator_reference` and other storage classes
 * memory tracking wrapper
 
 In addition:
 
 * container node size debuggers that obtain information about the node size of an STL container at compile-time to specify node sizes for pools
 * debugging options for leak checking, double-free checks or buffer overflows
 * customizable error handling routines that can work with exceptions disabled
 * everything except the STL adapters works on a freestanding environment
 
 ## Basic example
 
 ```cpp
 #include <algorithm>
 #include <iostream>
 #include <iterator>
 
 #include <foonathan/memory/container.hpp>        // vector, list, list_node_size,...
 #include <foonathan/memory/memory_pool.hpp>      // memory_pool
 #include <foonathan/memory/smart_ptr.hpp>        // allocate_unique
 #include <foonathan/memory/static_allocator.hpp> // static_allocator_storage, static_block_allocator
 #include <foonathan/memory/temporary_allocator.hpp> // temporary_allocator
 
 // alias namespace foonathan::memory as memory for easier access
 #include <foonathan/memory/namespace_alias.hpp>
 
 template <typename BiIter>
 void merge_sort(BiIter begin, BiIter end);
 
 int main()
 {
     using namespace memory::literals;
 
     // a memory pool RawAllocator
     // allocates a memory block - initially 4KiB - and splits it into chunks of list_node_size<int>::value big
     // list_node_size<int>::value is the size of each node of a std::list
     memory::memory_pool<> pool(memory::list_node_size<int>::value, 4_KiB);
 
     // just an alias for std::list<int, memory::std_allocator<int, memory::memory_pool<>>
     // a std::list using a memory_pool
     // std_allocator stores a reference to a RawAllocator and provides the Allocator interface
     memory::list<int, memory::memory_pool<>> list(pool);
     list.push_back(3);
     list.push_back(2);
     list.push_back(1);
 
     for (auto e : list)
         std::cout << e << ' ';
     std::cout << '\n';
 
     merge_sort(list.begin(), list.end());
 
     for (auto e : list)
         std::cout << e << ' ';
     std::cout << '\n';
 
     // allocate a std::unique_ptr using the pool
     // memory::allocate_shared is also available
     auto ptr = memory::allocate_unique<int>(pool, *list.begin());
     std::cout << *ptr << '\n';
 
     // static storage of size 4KiB
     memory::static_allocator_storage<4_KiB> storage;
 
     // a memory pool again but this time with a BlockAllocator
     // this controls the internal allocations of the pool itself
     // we need to specify the first template parameter giving the type of the pool as well
     // (node_pool is the default)
     // we use a static_block_allocator that uses the static storage above
     // all allocations will use a memory block on the stack
     using static_pool_t = memory::memory_pool<memory::node_pool, memory::static_block_allocator>;
     static_pool_t static_pool(memory::unordered_set_node_size<int>::value, 4_KiB, storage);
 
     // again, just an alias for std::unordered_set<int, std::hash<int>, std::equal_to<int>, memory::std_allocator<int, static_pool_t>
     // see why I wrote these? :D
     // now we have a hash set that lives on the stack!
     memory::unordered_set<int, static_pool_t>
         set(13, std::hash<int>{}, std::equal_to<int>{},
             static_pool); // GCC 4.7 is missing the allocator-only ctor, breaks travis :(
 
     set.insert(3);
     set.insert(2);
     set.insert(3); // running out of stack memory is properly handled, of course
 
     for (auto e : set)
         std::cout << e << ' ';
     std::cout << '\n';
 }
 
 // naive implementation of merge_sort using temporary memory allocator
 template <typename BiIter>
 void merge_sort(BiIter begin, BiIter end)
 {
     using value_type = typename std::iterator_traits<BiIter>::value_type;
 
     auto distance = std::distance(begin, end);
     if (distance <= 1)
         return;
 
     auto mid = begin;
     std::advance(mid, distance / 2);
 
     // an allocator for temporary memory
     // is similar to alloca() but uses its own stack
     // this stack is thread_local and created the first time it's needed
     // as soon as the allocator object goes out of scope everything allocated through it will be freed
     memory::temporary_allocator alloc;
 
     // alias for std::vector<value_type, memory::std_allocator<value_type, memory::temporary_allocator>>
     // a std::vector using a temporary_allocator
     memory::vector<value_type, memory::temporary_allocator> first(begin, mid, alloc),
         second(mid, end, alloc);
 
     merge_sort(first.begin(), first.end());
     merge_sort(second.begin(), second.end());
     std::merge(first.begin(), first.end(), second.begin(), second.end(), begin);
 }
 ```
 
 See `example/` for more.

## Installation

This library can be used as [CMake] subdirectory.
It is tested on GCC 4.7-4.9, Clang 3.4-3.5 and Visual Studio 2013. Newer versions should work too.

1. Fetch it, e.g. using [git submodules] `git submodule add https://github.com/foonathan/memory ext/memory` and `git submodule update --init --recursive`.

2. Call `add_subdirectory(ext/memory)` or whatever your local path is to make it available in CMake.

3. Simply call `target_link_libraries(your_target PUBLIC foonathan_memory)` to link this library and setups the include search path.

4. You need to activate C++11 at your target, if not already done, you can use [foonathan/compatibility] already available through `add_subdirectory()` and call `comp_target_features(your_target PUBLIC CPP11)`.

*Note: If during CMake you see an error message that compatibility is 
not on the newest version, run `git submodule update 
--recursive --remote` to force the compatiblity submodule of memory to 
update to the latest version.*

You can also install the library:

1. Run `cmake -DCMAKE_BUILD_TYPE="buildtype" -DFOONATHAN_MEMORY_BUILD_EXAMPLES=OFF -DFOONATHAN_MEMORY_BUILD_TESTS=OFF .` inside the library sources.

2. Run `cmake --build . -- install` to install the library under `${CMAKE_INSTALL_PREFIX}`.

3. Repeat 1 and 2 for each build type/configuration you want to have (like `Debug`, `RelWithDebInfo` and `Release` or custom names).

The use an installed library:

4. Call `find_package(foonathan_memory major.minor REQUIRED)` to find the library.

5. Call `target_link_libraries(your_target PUBLIC foonathan_memory)` and activate C++11 to link to the library.

See http://foonathan.github.io/doc/memory/md_doc_installation.html for a detailed guide.

## About this documentation

This documentation is written in a similar way as the C++ standard itself, although not that formal.

Concepts are documented using the names of the template parameters, for example the following class:

~~~{.cpp}
template <class Tracker, class RawAllocator>
class tracked_allocator;
~~~

It takes two template parameters, the first must model the [Tracker] concept, the second the [RawAllocator] concept.

Unless explicitly stated otherwise, it is not allowed to call a function that modifies state from two different threads.
Functions that modify state are non-`const` member functions, functions taking a non-`const` reference to objects
or functions where it is explictly documented that they change some hidden state.

If a function is documented as `noexcept`, it does not throw anything.
Otherwise it has a *Throws:* clause specifying what it throws, or if it is a forwarding function, the information can be found there (see below).

If a class is described as [RawAllocator] it automatically has certain semantically information which are not explictly mentioned.
This is especially true for the member functions of an [allocator_traits] specialization.

If a function is described as returning the value of another function or forwarding to it,
it implicitly has the requirements and effects from the called function and can also throw the same things.

[Tutorial]: md_doc_tutorial.html
[Github page]: https://github.com/foonathan/memory/
[Tracker]: md_doc_concepts.html#concept_tracker
[RawAllocator]: md_doc_concepts.html#concept_rawallocator
[allocator_traits]: \ref foonathan::memory::allocator_traits