1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
This is the documentation of `foonathan/memory`.
For a quick start, read the [Tutorial] or skim the examples at the [Github page].
The concepts of this library are defined are [here](md_doc_concepts.html).
## Features
New allocator concepts:
* a `RawAllocator` that is similar to an `Allocator` but easier to use and write
* a `BlockAllocator` that is an allocator for huge memory blocks
Several implementations:
* `heap_/malloc_/new_allocator`
* virtual memory allocators
* allocator using a static memory block located on the stack
* memory stack
* different memory pools
* a portable, improved `alloca()` in the form of `temporary_allocator`
Adapters, wrappers and storage classes:
* incredible powerful `allocator_traits` allowing `Allocator`s as `RawAllocator`s
* `std_allocator` to make a `RawAllocator` an `Allocator` again
* adapters for the memory resource TS
* `allocator_deleter` classes for smart pointers
* (optionally type-erased) `allocator_reference` and other storage classes
* memory tracking wrapper
In addition:
* container node size debuggers that obtain information about the node size of an STL container at compile-time to specify node sizes for pools
* debugging options for leak checking, double-free checks or buffer overflows
* customizable error handling routines that can work with exceptions disabled
* everything except the STL adapters works on a freestanding environment
## Basic example
```cpp
#include <algorithm>
#include <iostream>
#include <iterator>
#include <foonathan/memory/container.hpp> // vector, list, list_node_size,...
#include <foonathan/memory/memory_pool.hpp> // memory_pool
#include <foonathan/memory/smart_ptr.hpp> // allocate_unique
#include <foonathan/memory/static_allocator.hpp> // static_allocator_storage, static_block_allocator
#include <foonathan/memory/temporary_allocator.hpp> // temporary_allocator
// alias namespace foonathan::memory as memory for easier access
#include <foonathan/memory/namespace_alias.hpp>
template <typename BiIter>
void merge_sort(BiIter begin, BiIter end);
int main()
{
using namespace memory::literals;
// a memory pool RawAllocator
// allocates a memory block - initially 4KiB - and splits it into chunks of list_node_size<int>::value big
// list_node_size<int>::value is the size of each node of a std::list
memory::memory_pool<> pool(memory::list_node_size<int>::value, 4_KiB);
// just an alias for std::list<int, memory::std_allocator<int, memory::memory_pool<>>
// a std::list using a memory_pool
// std_allocator stores a reference to a RawAllocator and provides the Allocator interface
memory::list<int, memory::memory_pool<>> list(pool);
list.push_back(3);
list.push_back(2);
list.push_back(1);
for (auto e : list)
std::cout << e << ' ';
std::cout << '\n';
merge_sort(list.begin(), list.end());
for (auto e : list)
std::cout << e << ' ';
std::cout << '\n';
// allocate a std::unique_ptr using the pool
// memory::allocate_shared is also available
auto ptr = memory::allocate_unique<int>(pool, *list.begin());
std::cout << *ptr << '\n';
// static storage of size 4KiB
memory::static_allocator_storage<4_KiB> storage;
// a memory pool again but this time with a BlockAllocator
// this controls the internal allocations of the pool itself
// we need to specify the first template parameter giving the type of the pool as well
// (node_pool is the default)
// we use a static_block_allocator that uses the static storage above
// all allocations will use a memory block on the stack
using static_pool_t = memory::memory_pool<memory::node_pool, memory::static_block_allocator>;
static_pool_t static_pool(memory::unordered_set_node_size<int>::value, 4_KiB, storage);
// again, just an alias for std::unordered_set<int, std::hash<int>, std::equal_to<int>, memory::std_allocator<int, static_pool_t>
// see why I wrote these? :D
// now we have a hash set that lives on the stack!
memory::unordered_set<int, static_pool_t>
set(13, std::hash<int>{}, std::equal_to<int>{},
static_pool); // GCC 4.7 is missing the allocator-only ctor, breaks travis :(
set.insert(3);
set.insert(2);
set.insert(3); // running out of stack memory is properly handled, of course
for (auto e : set)
std::cout << e << ' ';
std::cout << '\n';
}
// naive implementation of merge_sort using temporary memory allocator
template <typename BiIter>
void merge_sort(BiIter begin, BiIter end)
{
using value_type = typename std::iterator_traits<BiIter>::value_type;
auto distance = std::distance(begin, end);
if (distance <= 1)
return;
auto mid = begin;
std::advance(mid, distance / 2);
// an allocator for temporary memory
// is similar to alloca() but uses its own stack
// this stack is thread_local and created the first time it's needed
// as soon as the allocator object goes out of scope everything allocated through it will be freed
memory::temporary_allocator alloc;
// alias for std::vector<value_type, memory::std_allocator<value_type, memory::temporary_allocator>>
// a std::vector using a temporary_allocator
memory::vector<value_type, memory::temporary_allocator> first(begin, mid, alloc),
second(mid, end, alloc);
merge_sort(first.begin(), first.end());
merge_sort(second.begin(), second.end());
std::merge(first.begin(), first.end(), second.begin(), second.end(), begin);
}
```
See `example/` for more.
## Installation
This library can be used as [CMake] subdirectory.
It is tested on GCC 4.7-4.9, Clang 3.4-3.5 and Visual Studio 2013. Newer versions should work too.
1. Fetch it, e.g. using [git submodules] `git submodule add https://github.com/foonathan/memory ext/memory` and `git submodule update --init --recursive`.
2. Call `add_subdirectory(ext/memory)` or whatever your local path is to make it available in CMake.
3. Simply call `target_link_libraries(your_target PUBLIC foonathan_memory)` to link this library and setups the include search path.
4. You need to activate C++11 at your target, if not already done, you can use [foonathan/compatibility] already available through `add_subdirectory()` and call `comp_target_features(your_target PUBLIC CPP11)`.
*Note: If during CMake you see an error message that compatibility is
not on the newest version, run `git submodule update
--recursive --remote` to force the compatiblity submodule of memory to
update to the latest version.*
You can also install the library:
1. Run `cmake -DCMAKE_BUILD_TYPE="buildtype" -DFOONATHAN_MEMORY_BUILD_EXAMPLES=OFF -DFOONATHAN_MEMORY_BUILD_TESTS=OFF .` inside the library sources.
2. Run `cmake --build . -- install` to install the library under `${CMAKE_INSTALL_PREFIX}`.
3. Repeat 1 and 2 for each build type/configuration you want to have (like `Debug`, `RelWithDebInfo` and `Release` or custom names).
The use an installed library:
4. Call `find_package(foonathan_memory major.minor REQUIRED)` to find the library.
5. Call `target_link_libraries(your_target PUBLIC foonathan_memory)` and activate C++11 to link to the library.
See https://memory.foonathan.net/md_doc_installation.html for a detailed guide.
## About this documentation
This documentation is written in a similar way as the C++ standard itself, although not that formal.
Concepts are documented using the names of the template parameters, for example the following class:
~~~{.cpp}
template <class Tracker, class RawAllocator>
class tracked_allocator;
~~~
It takes two template parameters, the first must model the [Tracker] concept, the second the [RawAllocator] concept.
Unless explicitly stated otherwise, it is not allowed to call a function that modifies state from two different threads.
Functions that modify state are non-`const` member functions, functions taking a non-`const` reference to objects
or functions where it is explictly documented that they change some hidden state.
If a function is documented as `noexcept`, it does not throw anything.
Otherwise it has a *Throws:* clause specifying what it throws, or if it is a forwarding function, the information can be found there (see below).
If a class is described as [RawAllocator] it automatically has certain semantically information which are not explictly mentioned.
This is especially true for the member functions of an [allocator_traits] specialization.
If a function is described as returning the value of another function or forwarding to it,
it implicitly has the requirements and effects from the called function and can also throw the same things.
[Tutorial]: md_doc_tutorial.html
[Github page]: https://github.com/foonathan/memory/
[Tracker]: md_doc_concepts.html#concept_tracker
[RawAllocator]: md_doc_concepts.html#concept_rawallocator
[allocator_traits]: \ref foonathan::memory::allocator_traits
|