1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
|
// Copyright (C) 2015-2025 Jonathan Müller and foonathan/memory contributors
// SPDX-License-Identifier: Zlib
#ifndef FOONATHAN_MEMORY_ALLOCATOR_STORAGE_HPP_INCLUDED
#define FOONATHAN_MEMORY_ALLOCATOR_STORAGE_HPP_INCLUDED
/// \file
/// Class template \ref foonathan::memory::allocator_storage, some policies and resulting typedefs.
#include <new>
#include <type_traits>
#include "detail/utility.hpp"
#include "config.hpp"
#include "allocator_traits.hpp"
#include "threading.hpp"
namespace foonathan
{
namespace memory
{
namespace detail
{
template <class Alloc>
void* try_allocate_node(std::true_type, Alloc& alloc, std::size_t size,
std::size_t alignment) noexcept
{
return composable_allocator_traits<Alloc>::try_allocate_node(alloc, size,
alignment);
}
template <class Alloc>
void* try_allocate_array(std::true_type, Alloc& alloc, std::size_t count,
std::size_t size, std::size_t alignment) noexcept
{
return composable_allocator_traits<Alloc>::try_allocate_array(alloc, count, size,
alignment);
}
template <class Alloc>
bool try_deallocate_node(std::true_type, Alloc& alloc, void* ptr, std::size_t size,
std::size_t alignment) noexcept
{
return composable_allocator_traits<Alloc>::try_deallocate_node(alloc, ptr, size,
alignment);
}
template <class Alloc>
bool try_deallocate_array(std::true_type, Alloc& alloc, void* ptr, std::size_t count,
std::size_t size, std::size_t alignment) noexcept
{
return composable_allocator_traits<Alloc>::try_deallocate_array(alloc, ptr, count,
size, alignment);
}
template <class Alloc>
void* try_allocate_node(std::false_type, Alloc&, std::size_t, std::size_t) noexcept
{
FOONATHAN_MEMORY_UNREACHABLE("Allocator is not compositioning");
return nullptr;
}
template <class Alloc>
void* try_allocate_array(std::false_type, Alloc&, std::size_t, std::size_t,
std::size_t) noexcept
{
FOONATHAN_MEMORY_UNREACHABLE("Allocator is not compositioning");
return nullptr;
}
template <class Alloc>
bool try_deallocate_node(std::false_type, Alloc&, void*, std::size_t,
std::size_t) noexcept
{
FOONATHAN_MEMORY_UNREACHABLE("Allocator is not compositioning");
return false;
}
template <class Alloc>
bool try_deallocate_array(std::false_type, Alloc&, void*, std::size_t, std::size_t,
std::size_t) noexcept
{
FOONATHAN_MEMORY_UNREACHABLE("Allocator is not compositioning");
return false;
}
} // namespace detail
/// A \concept{concept_rawallocator,RawAllocator} that stores another allocator.
/// The \concept{concept_storagepolicy,StoragePolicy} defines the allocator type being stored and how it is stored.
/// The \c Mutex controls synchronization of the access.
/// \ingroup storage
template <class StoragePolicy, class Mutex>
class allocator_storage
: FOONATHAN_EBO(StoragePolicy,
detail::mutex_storage<
detail::mutex_for<typename StoragePolicy::allocator_type, Mutex>>)
{
using traits = allocator_traits<typename StoragePolicy::allocator_type>;
using composable_traits =
composable_allocator_traits<typename StoragePolicy::allocator_type>;
using composable = is_composable_allocator<typename StoragePolicy::allocator_type>;
using actual_mutex = const detail::mutex_storage<
detail::mutex_for<typename StoragePolicy::allocator_type, Mutex>>;
public:
using allocator_type = typename StoragePolicy::allocator_type;
using storage_policy = StoragePolicy;
using mutex = Mutex;
using is_stateful = typename traits::is_stateful;
/// \effects Creates it by default-constructing the \c StoragePolicy.
/// \requires The \c StoragePolicy must be default-constructible.
/// \notes The default constructor may create an invalid allocator storage not associated with any allocator.
/// If that is the case, it must not be used.
allocator_storage() = default;
/// \effects Creates it by passing it an allocator.
/// The allocator will be forwarded to the \c StoragePolicy, it decides whether it will be moved, its address stored or something else.
/// \requires The expression <tt>new storage_policy(std::forward<Alloc>(alloc))</tt> must be well-formed,
/// otherwise this constructor does not participate in overload resolution.
template <
class Alloc,
// MSVC seems to ignore access rights in SFINAE below
// use this to prevent this constructor being chosen instead of move for types inheriting from it
FOONATHAN_REQUIRES(
(!std::is_base_of<allocator_storage, typename std::decay<Alloc>::type>::value))>
allocator_storage(Alloc&& alloc,
FOONATHAN_SFINAE(new storage_policy(std::declval<Alloc>())))
: storage_policy(detail::forward<Alloc>(alloc))
{
}
/// \effects Creates it by passing it another \c allocator_storage with a different \c StoragePolicy but the same \c Mutex type.
/// Initializes it with the result of \c other.get_allocator().
/// \requires The expression <tt>new storage_policy(other.get_allocator())</tt> must be well-formed,
/// otherwise this constructor does not participate in overload resolution.
template <class OtherPolicy>
allocator_storage(
const allocator_storage<OtherPolicy, Mutex>& other,
FOONATHAN_SFINAE(new storage_policy(
std::declval<const allocator_storage<OtherPolicy, Mutex>&>().get_allocator())))
: storage_policy(other.get_allocator())
{
}
/// @{
/// \effects Moves the \c allocator_storage object.
/// A moved-out \c allocator_storage object must still store a valid allocator object.
allocator_storage(allocator_storage&& other) noexcept
: storage_policy(detail::move(other)),
detail::mutex_storage<
detail::mutex_for<typename StoragePolicy::allocator_type, Mutex>>(
detail::move(other))
{
}
allocator_storage& operator=(allocator_storage&& other) noexcept
{
storage_policy::operator=(detail::move(other));
detail::mutex_storage<detail::mutex_for<typename StoragePolicy::allocator_type,
Mutex>>::operator=(detail::move(other));
return *this;
}
/// @}
/// @{
/// \effects Copies the \c allocator_storage object.
/// \requires The \c StoragePolicy must be copyable.
allocator_storage(const allocator_storage&) = default;
allocator_storage& operator=(const allocator_storage&) = default;
/// @}
/// @{
/// \effects Calls the function on the stored allocator.
/// The \c Mutex will be locked during the operation.
void* allocate_node(std::size_t size, std::size_t alignment)
{
std::lock_guard<actual_mutex> lock(*this);
auto&& alloc = get_allocator();
return traits::allocate_node(alloc, size, alignment);
}
void* allocate_array(std::size_t count, std::size_t size, std::size_t alignment)
{
std::lock_guard<actual_mutex> lock(*this);
auto&& alloc = get_allocator();
return traits::allocate_array(alloc, count, size, alignment);
}
void deallocate_node(void* ptr, std::size_t size, std::size_t alignment) noexcept
{
std::lock_guard<actual_mutex> lock(*this);
auto&& alloc = get_allocator();
traits::deallocate_node(alloc, ptr, size, alignment);
}
void deallocate_array(void* ptr, std::size_t count, std::size_t size,
std::size_t alignment) noexcept
{
std::lock_guard<actual_mutex> lock(*this);
auto&& alloc = get_allocator();
traits::deallocate_array(alloc, ptr, count, size, alignment);
}
std::size_t max_node_size() const
{
std::lock_guard<actual_mutex> lock(*this);
auto&& alloc = get_allocator();
return traits::max_node_size(alloc);
}
std::size_t max_array_size() const
{
std::lock_guard<actual_mutex> lock(*this);
auto&& alloc = get_allocator();
return traits::max_array_size(alloc);
}
std::size_t max_alignment() const
{
std::lock_guard<actual_mutex> lock(*this);
auto&& alloc = get_allocator();
return traits::max_alignment(alloc);
}
/// @}
/// @{
/// \effects Calls the function on the stored composable allocator.
/// The \c Mutex will be locked during the operation.
/// \requires The allocator must be composable,
/// i.e. \ref is_composable() must return `true`.
/// \note This check is done at compile-time where possible,
/// and at runtime in the case of type-erased storage.
FOONATHAN_ENABLE_IF(composable::value)
void* try_allocate_node(std::size_t size, std::size_t alignment) noexcept
{
FOONATHAN_MEMORY_ASSERT(is_composable());
std::lock_guard<actual_mutex> lock(*this);
auto&& alloc = get_allocator();
return composable_traits::try_allocate_node(alloc, size, alignment);
}
FOONATHAN_ENABLE_IF(composable::value)
void* try_allocate_array(std::size_t count, std::size_t size,
std::size_t alignment) noexcept
{
FOONATHAN_MEMORY_ASSERT(is_composable());
std::lock_guard<actual_mutex> lock(*this);
auto&& alloc = get_allocator();
return composable_traits::try_allocate_array(alloc, count, size, alignment);
}
FOONATHAN_ENABLE_IF(composable::value)
bool try_deallocate_node(void* ptr, std::size_t size, std::size_t alignment) noexcept
{
FOONATHAN_MEMORY_ASSERT(is_composable());
std::lock_guard<actual_mutex> lock(*this);
auto&& alloc = get_allocator();
return composable_traits::try_deallocate_node(alloc, ptr, size, alignment);
}
FOONATHAN_ENABLE_IF(composable::value)
bool try_deallocate_array(void* ptr, std::size_t count, std::size_t size,
std::size_t alignment) noexcept
{
FOONATHAN_MEMORY_ASSERT(is_composable());
std::lock_guard<actual_mutex> lock(*this);
auto&& alloc = get_allocator();
return composable_traits::try_deallocate_array(alloc, ptr, count, size, alignment);
}
/// @}
/// @{
/// \effects Forwards to the \c StoragePolicy.
/// \returns Returns a reference to the stored allocator.
/// \note This does not lock the \c Mutex.
auto get_allocator() noexcept
-> decltype(std::declval<storage_policy>().get_allocator())
{
return storage_policy::get_allocator();
}
auto get_allocator() const noexcept
-> decltype(std::declval<const storage_policy>().get_allocator())
{
return storage_policy::get_allocator();
}
/// @}
/// @{
/// \returns A proxy object that acts like a pointer to the stored allocator.
/// It cannot be reassigned to point to another allocator object and only moving is supported, which is destructive.
/// As long as the proxy object lives and is not moved from, the \c Mutex will be kept locked.
auto lock() noexcept -> FOONATHAN_IMPL_DEFINED(decltype(detail::lock_allocator(
std::declval<storage_policy>().get_allocator(), std::declval<actual_mutex&>())))
{
return detail::lock_allocator(get_allocator(), static_cast<actual_mutex&>(*this));
}
auto lock() const noexcept -> FOONATHAN_IMPL_DEFINED(decltype(detail::lock_allocator(
std::declval<const storage_policy>().get_allocator(),
std::declval<actual_mutex&>())))
{
return detail::lock_allocator(get_allocator(), static_cast<actual_mutex&>(*this));
}
/// @}.
/// \returns Whether or not the stored allocator is composable,
/// that is you can use the compositioning functions.
/// \note Due to type-erased allocators,
/// this function can not be `constexpr`.
bool is_composable() const noexcept
{
return StoragePolicy::is_composable();
}
};
/// Tag type that enables type-erasure in \ref reference_storage.
/// It can be used everywhere a \ref allocator_reference is used internally.
/// \ingroup storage
struct any_allocator
{
};
/// A \concept{concept_storagepolicy,StoragePolicy} that stores the allocator directly.
/// It embeds the allocator inside it, i.e. moving the storage policy will move the allocator.
/// \ingroup storage
template <class RawAllocator>
class direct_storage : FOONATHAN_EBO(allocator_traits<RawAllocator>::allocator_type)
{
static_assert(!std::is_same<RawAllocator, any_allocator>::value,
"cannot type-erase in direct_storage");
public:
using allocator_type = typename allocator_traits<RawAllocator>::allocator_type;
/// \effects Creates it by default-constructing the allocator.
/// \requires The \c RawAllcoator must be default constructible.
direct_storage() = default;
/// \effects Creates it by moving in an allocator object.
direct_storage(allocator_type&& allocator) noexcept
: allocator_type(detail::move(allocator))
{
}
/// @{
/// \effects Moves the \c direct_storage object.
/// This will move the stored allocator.
direct_storage(direct_storage&& other) noexcept : allocator_type(detail::move(other)) {}
direct_storage& operator=(direct_storage&& other) noexcept
{
allocator_type::operator=(detail::move(other));
return *this;
}
/// @}
/// @{
/// \returns A (\c const) reference to the stored allocator.
allocator_type& get_allocator() noexcept
{
return *this;
}
const allocator_type& get_allocator() const noexcept
{
return *this;
}
/// @}
protected:
~direct_storage() noexcept = default;
bool is_composable() const noexcept
{
return is_composable_allocator<allocator_type>::value;
}
};
/// An alias template for \ref allocator_storage using the \ref direct_storage policy without a mutex.
/// It has the effect of giving any \concept{concept_rawallocator,RawAllocator} the interface with all member functions,
/// avoiding the need to wrap it inside the \ref allocator_traits.
/// \ingroup storage
template <class RawAllocator>
FOONATHAN_ALIAS_TEMPLATE(allocator_adapter,
allocator_storage<direct_storage<RawAllocator>, no_mutex>);
/// \returns A new \ref allocator_adapter object created by forwarding to the constructor.
/// \relates allocator_adapter
template <class RawAllocator>
auto make_allocator_adapter(RawAllocator&& allocator) noexcept
-> allocator_adapter<typename std::decay<RawAllocator>::type>
{
return {detail::forward<RawAllocator>(allocator)};
}
/// An alias template for \ref allocator_storage using the \ref direct_storage policy with a mutex.
/// It has a similar effect as \ref allocator_adapter but performs synchronization.
/// The \c Mutex will default to \c std::mutex if threading is supported,
/// otherwise there is no default.
/// \ingroup storage
#if FOONATHAN_HOSTED_IMPLEMENTATION
template <class RawAllocator, class Mutex = std::mutex>
FOONATHAN_ALIAS_TEMPLATE(thread_safe_allocator,
allocator_storage<direct_storage<RawAllocator>, Mutex>);
#else
template <class RawAllocator, class Mutex>
FOONATHAN_ALIAS_TEMPLATE(thread_safe_allocator,
allocator_storage<direct_storage<RawAllocator>, Mutex>);
#endif
#if FOONATHAN_HOSTED_IMPLEMENTATION
/// \returns A new \ref thread_safe_allocator object created by forwarding to the constructor/
/// \relates thread_safe_allocator
template <class RawAllocator>
auto make_thread_safe_allocator(RawAllocator&& allocator)
-> thread_safe_allocator<typename std::decay<RawAllocator>::type>
{
return detail::forward<RawAllocator>(allocator);
}
#endif
/// \returns A new \ref thread_safe_allocator object created by forwarding to the constructor,
/// specifying a certain mutex type.
/// \requires It requires threading support from the implementation.
/// \relates thread_safe_allocator
template <class Mutex, class RawAllocator>
auto make_thread_safe_allocator(RawAllocator&& allocator)
-> thread_safe_allocator<typename std::decay<RawAllocator>::type, Mutex>
{
return detail::forward<RawAllocator>(allocator);
}
namespace detail
{
struct reference_stateful
{
};
struct reference_stateless
{
};
struct reference_shared
{
};
reference_stateful reference_type(std::true_type stateful, std::false_type shared);
reference_stateless reference_type(std::false_type stateful, std::true_type shared);
reference_stateless reference_type(std::false_type stateful, std::false_type shared);
reference_shared reference_type(std::true_type stateful, std::true_type shared);
template <class RawAllocator, class Tag>
class reference_storage_impl;
// reference to stateful: stores a pointer to an allocator
template <class RawAllocator>
class reference_storage_impl<RawAllocator, reference_stateful>
{
protected:
reference_storage_impl() noexcept : alloc_(nullptr) {}
reference_storage_impl(RawAllocator& allocator) noexcept : alloc_(&allocator) {}
bool is_valid() const noexcept
{
return alloc_ != nullptr;
}
RawAllocator& get_allocator() const noexcept
{
FOONATHAN_MEMORY_ASSERT(alloc_ != nullptr);
return *alloc_;
}
private:
RawAllocator* alloc_;
};
// reference to stateless: store in static storage
template <class RawAllocator>
class reference_storage_impl<RawAllocator, reference_stateless>
{
protected:
reference_storage_impl() noexcept = default;
reference_storage_impl(const RawAllocator&) noexcept {}
bool is_valid() const noexcept
{
return true;
}
RawAllocator& get_allocator() const noexcept
{
static RawAllocator alloc;
return alloc;
}
};
// reference to shared: stores RawAllocator directly
template <class RawAllocator>
class reference_storage_impl<RawAllocator, reference_shared>
{
protected:
reference_storage_impl() noexcept = default;
reference_storage_impl(const RawAllocator& alloc) noexcept : alloc_(alloc) {}
bool is_valid() const noexcept
{
return true;
}
RawAllocator& get_allocator() const noexcept
{
return alloc_;
}
private:
mutable RawAllocator alloc_;
};
} // namespace detail
/// Specifies whether or not a \concept{concept_rawallocator,RawAllocator} has shared semantics.
/// It is shared, if - like \ref allocator_reference - if multiple objects refer to the same internal allocator and if it can be copied.
/// This sharing is stateful, however, stateless allocators are not considered shared in the meaning of this traits. <br>
/// If a \c RawAllocator is shared, it will be directly embedded inside \ref reference_storage since it already provides \ref allocator_reference like semantics, so there is no need to add them manually,<br>
/// Specialize it for your own types, if they provide sharing semantics and can be copied.
/// They also must provide an `operator==` to check whether two allocators refer to the same shared one.
/// \note This makes no guarantees about the lifetime of the shared object, the sharing allocators can either own or refer to a shared object.
/// \ingroup storage
template <class RawAllocator>
struct is_shared_allocator : std::false_type
{
};
/// A \concept{concept_storagepolicy,StoragePolicy} that stores a reference to an allocator.
/// For stateful allocators it only stores a pointer to an allocator object and copying/moving only copies the pointer.
/// For stateless allocators it does not store anything, an allocator will be constructed as needed.
/// For allocators that are already shared (determined through \ref is_shared_allocator) it will store the allocator type directly.
/// \note It does not take ownership over the allocator in the stateful case, the user has to ensure that the allocator object stays valid.
/// In the other cases the lifetime does not matter.
/// \ingroup storage
template <class RawAllocator>
class reference_storage
#ifndef DOXYGEN
: FOONATHAN_EBO(detail::reference_storage_impl<
typename allocator_traits<RawAllocator>::allocator_type,
decltype(detail::reference_type(
typename allocator_traits<RawAllocator>::is_stateful{},
is_shared_allocator<RawAllocator>{}))>)
#endif
{
using storage = detail::reference_storage_impl<
typename allocator_traits<RawAllocator>::allocator_type,
decltype(detail::reference_type(typename allocator_traits<
RawAllocator>::is_stateful{},
is_shared_allocator<RawAllocator>{}))>;
public:
using allocator_type = typename allocator_traits<RawAllocator>::allocator_type;
/// Default constructor.
/// \effects If the allocator is stateless, this has no effect and the object is usable as an allocator.
/// If the allocator is stateful, creates an invalid reference without any associated allocator.
/// Then it must not be used.
/// If the allocator is shared, default constructs the shared allocator.
/// If the shared allocator does not have a default constructor, this constructor is ill-formed.
reference_storage() noexcept = default;
/// \effects Creates it from a stateless or shared allocator.
/// It will not store anything, only creates the allocator as needed.
/// \requires The \c RawAllocator is stateless or shared.
reference_storage(const allocator_type& alloc) noexcept : storage(alloc) {}
/// \effects Creates it from a reference to a stateful allocator.
/// It will store a pointer to this allocator object.
/// \note The user has to take care that the lifetime of the reference does not exceed the allocator lifetime.
reference_storage(allocator_type& alloc) noexcept : storage(alloc) {}
/// @{
/// \effects Copies the \c allocator_reference object.
/// Only copies the pointer to it in the stateful case.
reference_storage(const reference_storage&) noexcept = default;
reference_storage& operator=(const reference_storage&) noexcept = default;
/// @}
/// \returns Whether or not the reference is valid.
/// It is only invalid, if it was created by the default constructor and the allocator is stateful.
explicit operator bool() const noexcept
{
return storage::is_valid();
}
/// \returns Returns a reference to the allocator.
/// \requires The reference must be valid.
allocator_type& get_allocator() const noexcept
{
return storage::get_allocator();
}
protected:
~reference_storage() noexcept = default;
bool is_composable() const noexcept
{
return is_composable_allocator<allocator_type>::value;
}
};
/// Specialization of the class template \ref reference_storage that is type-erased.
/// It is triggered by the tag type \ref any_allocator.
/// The specialization can store a reference to any allocator type.
/// \ingroup storage
template <>
class reference_storage<any_allocator>
{
class base_allocator
{
public:
using is_stateful = std::true_type;
virtual ~base_allocator() = default;
virtual void clone(void* storage) const noexcept = 0;
void* allocate_node(std::size_t size, std::size_t alignment)
{
return allocate_impl(1, size, alignment);
}
void* allocate_array(std::size_t count, std::size_t size, std::size_t alignment)
{
return allocate_impl(count, size, alignment);
}
void deallocate_node(void* node, std::size_t size, std::size_t alignment) noexcept
{
deallocate_impl(node, 1, size, alignment);
}
void deallocate_array(void* array, std::size_t count, std::size_t size,
std::size_t alignment) noexcept
{
deallocate_impl(array, count, size, alignment);
}
void* try_allocate_node(std::size_t size, std::size_t alignment) noexcept
{
return try_allocate_impl(1, size, alignment);
}
void* try_allocate_array(std::size_t count, std::size_t size,
std::size_t alignment) noexcept
{
return try_allocate_impl(count, size, alignment);
}
bool try_deallocate_node(void* node, std::size_t size,
std::size_t alignment) noexcept
{
return try_deallocate_impl(node, 1, size, alignment);
}
bool try_deallocate_array(void* array, std::size_t count, std::size_t size,
std::size_t alignment) noexcept
{
return try_deallocate_impl(array, count, size, alignment);
}
// count 1 means node
virtual void* allocate_impl(std::size_t count, std::size_t size,
std::size_t alignment) = 0;
virtual void deallocate_impl(void* ptr, std::size_t count, std::size_t size,
std::size_t alignment) noexcept = 0;
virtual void* try_allocate_impl(std::size_t count, std::size_t size,
std::size_t alignment) noexcept = 0;
virtual bool try_deallocate_impl(void* ptr, std::size_t count, std::size_t size,
std::size_t alignment) noexcept = 0;
std::size_t max_node_size() const
{
return max(query::node_size);
}
std::size_t max_array_size() const
{
return max(query::array_size);
}
std::size_t max_alignment() const
{
return max(query::alignment);
}
virtual bool is_composable() const noexcept = 0;
protected:
enum class query
{
node_size,
array_size,
alignment
};
virtual std::size_t max(query q) const = 0;
};
public:
using allocator_type = FOONATHAN_IMPL_DEFINED(base_allocator);
/// \effects Creates it from a reference to any stateful \concept{concept_rawallocator,RawAllocator}.
/// It will store a pointer to this allocator object.
/// \note The user has to take care that the lifetime of the reference does not exceed the allocator lifetime.
template <class RawAllocator>
reference_storage(RawAllocator& alloc) noexcept
{
static_assert(sizeof(basic_allocator<RawAllocator>)
<= sizeof(basic_allocator<default_instantiation>),
"requires all instantiations to have certain maximum size");
::new (static_cast<void*>(&storage_)) basic_allocator<RawAllocator>(alloc);
}
// \effects Creates it from any stateless \concept{concept_rawallocator,RawAllocator}.
/// It will not store anything, only creates the allocator as needed.
/// \requires The \c RawAllocator is stateless.
template <class RawAllocator>
reference_storage(
const RawAllocator& alloc,
FOONATHAN_REQUIRES(!allocator_traits<RawAllocator>::is_stateful::value)) noexcept
{
static_assert(sizeof(basic_allocator<RawAllocator>)
<= sizeof(basic_allocator<default_instantiation>),
"requires all instantiations to have certain maximum size");
::new (static_cast<void*>(&storage_)) basic_allocator<RawAllocator>(alloc);
}
/// \effects Creates it from the internal base class for the type-erasure.
/// Has the same effect as if the actual stored allocator were passed to the other constructor overloads.
/// \note This constructor is used internally to avoid double-nesting.
reference_storage(const FOONATHAN_IMPL_DEFINED(base_allocator) & alloc) noexcept
{
alloc.clone(&storage_);
}
/// \effects Creates it from the internal base class for the type-erasure.
/// Has the same effect as if the actual stored allocator were passed to the other constructor overloads.
/// \note This constructor is used internally to avoid double-nesting.
reference_storage(FOONATHAN_IMPL_DEFINED(base_allocator) & alloc) noexcept
: reference_storage(static_cast<const base_allocator&>(alloc))
{
}
/// @{
/// \effects Copies the \c reference_storage object.
/// It only copies the pointer to the allocator.
reference_storage(const reference_storage& other) noexcept
{
other.get_allocator().clone(&storage_);
}
reference_storage& operator=(const reference_storage& other) noexcept
{
get_allocator().~allocator_type();
other.get_allocator().clone(&storage_);
return *this;
}
/// @}
/// \returns A reference to the allocator.
/// The actual type is implementation-defined since it is the base class used in the type-erasure,
/// but it provides the full \concept{concept_rawallocator,RawAllocator} member functions.
/// \note There is no way to access any custom member functions of the allocator type.
allocator_type& get_allocator() const noexcept
{
auto mem = static_cast<void*>(&storage_);
return *static_cast<base_allocator*>(mem);
}
protected:
~reference_storage() noexcept
{
get_allocator().~allocator_type();
}
bool is_composable() const noexcept
{
return get_allocator().is_composable();
}
private:
template <class RawAllocator>
class basic_allocator
: public base_allocator,
private detail::reference_storage_impl<
typename allocator_traits<RawAllocator>::allocator_type,
decltype(detail::reference_type(typename allocator_traits<
RawAllocator>::is_stateful{},
is_shared_allocator<RawAllocator>{}))>
{
using traits = allocator_traits<RawAllocator>;
using composable = is_composable_allocator<typename traits::allocator_type>;
using storage = detail::reference_storage_impl<
typename allocator_traits<RawAllocator>::allocator_type,
decltype(detail::reference_type(typename allocator_traits<
RawAllocator>::is_stateful{},
is_shared_allocator<RawAllocator>{}))>;
public:
// non stateful
basic_allocator(const RawAllocator& alloc) noexcept : storage(alloc) {}
// stateful
basic_allocator(RawAllocator& alloc) noexcept : storage(alloc) {}
private:
typename traits::allocator_type& get() const noexcept
{
return storage::get_allocator();
}
void clone(void* storage) const noexcept override
{
::new (storage) basic_allocator(get());
}
void* allocate_impl(std::size_t count, std::size_t size,
std::size_t alignment) override
{
auto&& alloc = get();
if (count == 1u)
return traits::allocate_node(alloc, size, alignment);
else
return traits::allocate_array(alloc, count, size, alignment);
}
void deallocate_impl(void* ptr, std::size_t count, std::size_t size,
std::size_t alignment) noexcept override
{
auto&& alloc = get();
if (count == 1u)
traits::deallocate_node(alloc, ptr, size, alignment);
else
traits::deallocate_array(alloc, ptr, count, size, alignment);
}
void* try_allocate_impl(std::size_t count, std::size_t size,
std::size_t alignment) noexcept override
{
auto&& alloc = get();
if (count == 1u)
return detail::try_allocate_node(composable{}, alloc, size, alignment);
else
return detail::try_allocate_array(composable{}, alloc, count, size,
alignment);
}
bool try_deallocate_impl(void* ptr, std::size_t count, std::size_t size,
std::size_t alignment) noexcept override
{
auto&& alloc = get();
if (count == 1u)
return detail::try_deallocate_node(composable{}, alloc, ptr, size,
alignment);
else
return detail::try_deallocate_array(composable{}, alloc, ptr, count, size,
alignment);
}
bool is_composable() const noexcept override
{
return composable::value;
}
std::size_t max(query q) const override
{
auto&& alloc = get();
if (q == query::node_size)
return traits::max_node_size(alloc);
else if (q == query::array_size)
return traits::max_array_size(alloc);
return traits::max_alignment(alloc);
}
};
// use a stateful instantiation to determine size and alignment
// base_allocator is stateful
using default_instantiation = basic_allocator<base_allocator>;
alignas(default_instantiation) mutable char storage_[sizeof(default_instantiation)];
};
/// An alias template for \ref allocator_storage using the \ref reference_storage policy.
/// It will store a reference to the given allocator type. The tag type \ref any_allocator enables type-erasure.
/// Wrap the allocator in a \ref thread_safe_allocator if you want thread safety.
/// \ingroup storage
template <class RawAllocator>
FOONATHAN_ALIAS_TEMPLATE(allocator_reference,
allocator_storage<reference_storage<RawAllocator>, no_mutex>);
/// \returns A new \ref allocator_reference object by forwarding the allocator to the constructor.
/// \relates allocator_reference
template <class RawAllocator>
auto make_allocator_reference(RawAllocator&& allocator) noexcept
-> allocator_reference<typename std::decay<RawAllocator>::type>
{
return {detail::forward<RawAllocator>(allocator)};
}
/// An alias for the \ref reference_storage specialization using type-erasure.
/// \ingroup storage
using any_reference_storage = reference_storage<any_allocator>;
/// An alias for \ref allocator_storage using the \ref any_reference_storage.
/// It will store a reference to any \concept{concept_rawallocator,RawAllocator}.
/// This is the same as passing the tag type \ref any_allocator to the alias \ref allocator_reference.
/// Wrap the allocator in a \ref thread_safe_allocator if you want thread safety.
/// \ingroup storage
using any_allocator_reference = allocator_storage<any_reference_storage, no_mutex>;
/// \returns A new \ref any_allocator_reference object by forwarding the allocator to the constructor.
/// \relates any_allocator_reference
template <class RawAllocator>
auto make_any_allocator_reference(RawAllocator&& allocator) noexcept
-> any_allocator_reference
{
return {detail::forward<RawAllocator>(allocator)};
}
} // namespace memory
} // namespace foonathan
#endif // FOONATHAN_MEMORY_ALLOCATOR_STORAGE_HPP_INCLUDED
|