1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
// Copyright (C) 2015-2025 Jonathan Müller and foonathan/memory contributors
// SPDX-License-Identifier: Zlib
#ifndef FOONATHAN_MEMORY_ITERATION_ALLOCATOR_HPP_INCLUDED
#define FOONATHAN_MEMORY_ITERATION_ALLOCATOR_HPP_INCLUDED
/// \file
/// Class template \ref foonathan::memory::iteration_allocator.
#include "detail/debug_helpers.hpp"
#include "detail/memory_stack.hpp"
#include "default_allocator.hpp"
#include "error.hpp"
#include "memory_arena.hpp"
namespace foonathan
{
namespace memory
{
namespace detail
{
template <class BlockOrRawAllocator>
using iteration_block_allocator =
make_block_allocator_t<BlockOrRawAllocator, fixed_block_allocator>;
} // namespace detail
/// A stateful \concept{concept_rawallocator,RawAllocator} that is designed for allocations in a loop.
/// It uses `N` stacks for the allocation, one of them is always active.
/// Allocation uses the currently active stack.
/// Calling \ref iteration_allocator::next_iteration() at the end of the loop,
/// will make the next stack active for allocation,
/// effectively releasing all of its memory.
/// Any memory allocated will thus be usable for `N` iterations of the loop.
/// This type of allocator is a generalization of the double frame allocator.
/// \ingroup allocator
template <std::size_t N, class BlockOrRawAllocator = default_allocator>
class iteration_allocator
: FOONATHAN_EBO(detail::iteration_block_allocator<BlockOrRawAllocator>)
{
public:
using allocator_type = detail::iteration_block_allocator<BlockOrRawAllocator>;
/// \effects Creates it with a given initial block size and and other constructor arguments for the \concept{concept_blockallocator,BlockAllocator}.
/// It will allocate the first (and only) block and evenly divide it on all the stacks it uses.
template <typename... Args>
explicit iteration_allocator(std::size_t block_size, Args&&... args)
: allocator_type(block_size, detail::forward<Args>(args)...), cur_(0u)
{
block_ = get_allocator().allocate_block();
auto cur = static_cast<char*>(block_.memory);
auto size_each = block_.size / N;
for (auto i = 0u; i != N; ++i)
{
stacks_[i] = detail::fixed_memory_stack(cur);
cur += size_each;
}
}
iteration_allocator(iteration_allocator&& other) noexcept
: allocator_type(detail::move(other)),
block_(other.block_),
cur_(detail::move(other.cur_))
{
for (auto i = 0u; i != N; ++i)
stacks_[i] = detail::move(other.stacks_[i]);
other.cur_ = N;
}
~iteration_allocator() noexcept
{
if (cur_ < N)
get_allocator().deallocate_block(block_);
}
iteration_allocator& operator=(iteration_allocator&& other) noexcept
{
allocator_type::operator=(detail::move(other));
block_ = other.block_;
cur_ = other.cur_;
for (auto i = 0u; i != N; ++i)
stacks_[i] = detail::move(other.stacks_[i]);
other.cur_ = N;
return *this;
}
/// \effects Allocates a memory block of given size and alignment.
/// It simply moves the top marker of the currently active stack.
/// \returns A \concept{concept_node,node} with given size and alignment.
/// \throws \ref out_of_fixed_memory if the current stack does not have any memory left.
/// \requires \c size and \c alignment must be valid.
void* allocate(std::size_t size, std::size_t alignment)
{
auto& stack = stacks_[cur_];
auto fence = detail::debug_fence_size;
auto offset = detail::align_offset(stack.top() + fence, alignment);
if (!stack.top()
|| (fence + offset + size + fence > std::size_t(block_end(cur_) - stack.top())))
FOONATHAN_THROW(out_of_fixed_memory(info(), size));
return stack.allocate_unchecked(size, offset);
}
/// \effects Allocates a memory block of given size and alignment
/// similar to \ref allocate().
/// \returns A \concept{concept_node,node} with given size and alignment
/// or `nullptr` if the current stack does not have any memory left.
void* try_allocate(std::size_t size, std::size_t alignment) noexcept
{
auto& stack = stacks_[cur_];
return stack.allocate(block_end(cur_), size, alignment);
}
/// \effects Goes to the next internal stack.
/// This will clear the stack whose \ref max_iterations() lifetime has reached,
/// and use it for all allocations in this iteration.
/// \note This function should be called at the end of the loop.
void next_iteration() noexcept
{
FOONATHAN_MEMORY_ASSERT_MSG(cur_ != N, "moved-from allocator");
cur_ = (cur_ + 1) % N;
stacks_[cur_].unwind(block_start(cur_));
}
/// \returns The number of iteration each allocation will live.
/// This is the template parameter `N`.
static std::size_t max_iterations() noexcept
{
return N;
}
/// \returns The index of the current iteration.
/// This is modulo \ref max_iterations().
std::size_t cur_iteration() const noexcept
{
return cur_;
}
/// \returns A reference to the \concept{concept_blockallocator,BlockAllocator} used for managing the memory.
/// \requires It is undefined behavior to move this allocator out into another object.
allocator_type& get_allocator() noexcept
{
return *this;
}
/// \returns The amount of memory remaining in the stack with the given index.
/// This is the number of bytes that are available for allocation.
std::size_t capacity_left(std::size_t i) const noexcept
{
return std::size_t(block_end(i) - stacks_[i].top());
}
/// \returns The amount of memory remaining in the currently active stack.
std::size_t capacity_left() const noexcept
{
return capacity_left(cur_iteration());
}
private:
allocator_info info() const noexcept
{
return {FOONATHAN_MEMORY_LOG_PREFIX "::iteration_allocator", this};
}
char* block_start(std::size_t i) const noexcept
{
FOONATHAN_MEMORY_ASSERT_MSG(i <= N, "moved from state");
auto ptr = static_cast<char*>(block_.memory);
return ptr + (i * block_.size / N);
}
char* block_end(std::size_t i) const noexcept
{
FOONATHAN_MEMORY_ASSERT_MSG(i < N, "moved from state");
return block_start(i + 1);
}
detail::fixed_memory_stack stacks_[N];
memory_block block_;
std::size_t cur_;
friend allocator_traits<iteration_allocator<N, BlockOrRawAllocator>>;
friend composable_allocator_traits<iteration_allocator<N, BlockOrRawAllocator>>;
};
/// An alias for \ref iteration_allocator for two iterations.
/// \ingroup allocator
template <class BlockOrRawAllocator = default_allocator>
FOONATHAN_ALIAS_TEMPLATE(double_frame_allocator,
iteration_allocator<2, BlockOrRawAllocator>);
#if FOONATHAN_MEMORY_EXTERN_TEMPLATE
extern template class iteration_allocator<2>;
#endif
/// Specialization of the \ref allocator_traits for \ref iteration_allocator.
/// \note It is not allowed to mix calls through the specialization and through the member functions,
/// i.e. \ref memory_stack::allocate() and this \c allocate_node().
/// \ingroup allocator
template <std::size_t N, class BlockAllocator>
class allocator_traits<iteration_allocator<N, BlockAllocator>>
{
public:
using allocator_type = iteration_allocator<N, BlockAllocator>;
using is_stateful = std::true_type;
/// \returns The result of \ref iteration_allocator::allocate().
static void* allocate_node(allocator_type& state, std::size_t size,
std::size_t alignment)
{
return state.allocate(size, alignment);
}
/// \returns The result of \ref memory_stack::allocate().
static void* allocate_array(allocator_type& state, std::size_t count, std::size_t size,
std::size_t alignment)
{
return allocate_node(state, count * size, alignment);
}
/// @{
/// \effects Does nothing.
/// Actual deallocation can only be done via \ref memory_stack::unwind().
static void deallocate_node(allocator_type&, void*, std::size_t, std::size_t) noexcept
{
}
static void deallocate_array(allocator_type&, void*, std::size_t, std::size_t,
std::size_t) noexcept
{
}
/// @}
/// @{
/// \returns The maximum size which is \ref iteration_allocator::capacity_left().
static std::size_t max_node_size(const allocator_type& state) noexcept
{
return state.capacity_left();
}
static std::size_t max_array_size(const allocator_type& state) noexcept
{
return state.capacity_left();
}
/// @}
/// \returns The maximum possible value since there is no alignment restriction
/// (except indirectly through \ref memory_stack::next_capacity()).
static std::size_t max_alignment(const allocator_type&) noexcept
{
return std::size_t(-1);
}
};
/// Specialization of the \ref composable_allocator_traits for \ref iteration_allocator classes.
/// \ingroup allocator
template <std::size_t N, class BlockAllocator>
class composable_allocator_traits<iteration_allocator<N, BlockAllocator>>
{
public:
using allocator_type = iteration_allocator<N, BlockAllocator>;
/// \returns The result of \ref memory_stack::try_allocate().
static void* try_allocate_node(allocator_type& state, std::size_t size,
std::size_t alignment) noexcept
{
return state.try_allocate(size, alignment);
}
/// \returns The result of \ref memory_stack::try_allocate().
static void* try_allocate_array(allocator_type& state, std::size_t count,
std::size_t size, std::size_t alignment) noexcept
{
return state.try_allocate(count * size, alignment);
}
/// @{
/// \effects Does nothing.
/// \returns Whether the memory will be deallocated by \ref memory_stack::unwind().
static bool try_deallocate_node(allocator_type& state, void* ptr, std::size_t,
std::size_t) noexcept
{
return state.block_.contains(ptr);
}
static bool try_deallocate_array(allocator_type& state, void* ptr, std::size_t count,
std::size_t size, std::size_t alignment) noexcept
{
return try_deallocate_node(state, ptr, count * size, alignment);
}
/// @}
};
#if FOONATHAN_MEMORY_EXTERN_TEMPLATE
extern template class allocator_traits<iteration_allocator<2>>;
extern template class composable_allocator_traits<iteration_allocator<2>>;
#endif
} // namespace memory
} // namespace foonathan
#endif // FOONATHAN_MEMORY_ITERATION_ALLOCATOR_HPP_INCLUDED
|