1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
|
// Copyright (C) 2015-2025 Jonathan Müller and foonathan/memory contributors
// SPDX-License-Identifier: Zlib
#ifndef FOONATHAN_MEMORY_MEMORY_POOL_HPP_INCLUDED
#define FOONATHAN_MEMORY_MEMORY_POOL_HPP_INCLUDED
// Inform that foonathan::memory::memory_pool::min_block_size API is available
#define FOONATHAN_MEMORY_MEMORY_POOL_HAS_MIN_BLOCK_SIZE
/// \file
/// Class \ref foonathan::memory::memory_pool and its \ref foonathan::memory::allocator_traits specialization.
#include <type_traits>
#include "detail/align.hpp"
#include "detail/debug_helpers.hpp"
#include "detail/assert.hpp"
#include "config.hpp"
#include "error.hpp"
#include "memory_arena.hpp"
#include "memory_pool_type.hpp"
namespace foonathan
{
namespace memory
{
namespace detail
{
struct memory_pool_leak_handler
{
void operator()(std::ptrdiff_t amount);
};
} // namespace detail
/// A stateful \concept{concept_rawallocator,RawAllocator} that manages \concept{concept_node,nodes} of fixed size.
/// It uses a \ref memory_arena with a given \c BlockOrRawAllocator defaulting to \ref growing_block_allocator,
/// subdivides them in small nodes of given size and puts them onto a free list.
/// Allocation and deallocation simply remove or add nodes from this list and are thus fast.
/// The way the list is maintained can be controlled via the \c PoolType
/// which is either \ref node_pool, \ref array_pool or \ref small_node_pool.<br>
/// This kind of allocator is ideal for fixed size allocations and deallocations in any order,
/// for example in a node based container like \c std::list.
/// It is not so good for different allocation sizes and has some drawbacks for arrays
/// as described in \ref memory_pool_type.hpp.
/// \ingroup allocator
template <typename PoolType = node_pool, class BlockOrRawAllocator = default_allocator>
class memory_pool
: FOONATHAN_EBO(detail::default_leak_checker<detail::memory_pool_leak_handler>)
{
using free_list = typename PoolType::type;
using leak_checker = detail::default_leak_checker<detail::memory_pool_leak_handler>;
public:
using allocator_type = make_block_allocator_t<BlockOrRawAllocator>;
using pool_type = PoolType;
static constexpr std::size_t min_node_size =
FOONATHAN_IMPL_DEFINED(free_list::min_element_size);
/// \returns The minimum block size required for certain number of \concept{concept_node,node}.
/// \requires \c node_size must be a valid \concept{concept_node,node size}
/// and \c number_of_nodes must be a non-zero value.
/// \note MSVC's implementation of \c std::list for example is never empty and always allocates proxy nodes.
/// To get enough memory for \c N elements of a list, \c number_of_nodes needs to include the proxy count in addition to \c N.
static constexpr std::size_t min_block_size(std::size_t node_size,
std::size_t number_of_nodes) noexcept
{
return detail::memory_block_stack::implementation_offset()
+ free_list::min_block_size(node_size, number_of_nodes);
}
/// \effects Creates it by specifying the size each \concept{concept_node,node} will have,
/// the initial block size for the arena and other constructor arguments for the \concept{concept_blockallocator,BlockAllocator}.
/// If the \c node_size is less than the \c min_node_size, the \c min_node_size will be the actual node size.
/// It will allocate an initial memory block with given size from the \concept{concept_blockallocator,BlockAllocator}
/// and puts it onto the free list.
/// \requires \c node_size must be a valid \concept{concept_node,node size}
/// and \c block_size must be at least \c min_block_size(node_size, 1).
template <typename... Args>
memory_pool(std::size_t node_size, std::size_t block_size, Args&&... args)
: arena_(block_size, detail::forward<Args>(args)...), free_list_(node_size)
{
allocate_block();
}
/// \effects Destroys the \ref memory_pool by returning all memory blocks,
/// regardless of properly deallocated back to the \concept{concept_blockallocator,BlockAllocator}.
~memory_pool() noexcept {}
/// @{
/// \effects Moving a \ref memory_pool object transfers ownership over the free list,
/// i.e. the moved from pool is completely empty and the new one has all its memory.
/// That means that it is not allowed to call \ref deallocate_node() on a moved-from allocator
/// even when passing it memory that was previously allocated by this object.
memory_pool(memory_pool&& other) noexcept
: leak_checker(detail::move(other)),
arena_(detail::move(other.arena_)),
free_list_(detail::move(other.free_list_))
{
}
memory_pool& operator=(memory_pool&& other) noexcept
{
leak_checker::operator=(detail::move(other));
arena_ = detail::move(other.arena_);
free_list_ = detail::move(other.free_list_);
return *this;
}
/// @}
/// \effects Allocates a single \concept{concept_node,node} by removing it from the free list.
/// If the free list is empty, a new memory block will be allocated from the arena and put onto it.
/// The new block size will be \ref next_capacity() big.
/// \returns A node of size \ref node_size() suitable aligned,
/// i.e. suitable for any type where <tt>sizeof(T) < node_size()</tt>.
/// \throws Anything thrown by the used \concept{concept_blockallocator,BlockAllocator}'s allocation function if a growth is needed.
void* allocate_node()
{
if (free_list_.empty())
allocate_block();
FOONATHAN_MEMORY_ASSERT(!free_list_.empty());
return free_list_.allocate();
}
/// \effects Allocates a single \concept{concept_node,node} similar to \ref allocate_node().
/// But if the free list is empty, a new block will *not* be allocated.
/// \returns A suitable aligned node of size \ref node_size() or `nullptr`.
void* try_allocate_node() noexcept
{
return free_list_.empty() ? nullptr : free_list_.allocate();
}
/// \effects Allocates an \concept{concept_array,array} of nodes by searching for \c n continuous nodes on the list and removing them.
/// Depending on the \c PoolType this can be a slow operation or not allowed at all.
/// This can sometimes lead to a growth, even if technically there is enough continuous memory on the free list.
/// \returns An array of \c n nodes of size \ref node_size() suitable aligned.
/// \throws Anything thrown by the used \concept{concept_blockallocator,BlockAllocator}'s allocation function if a growth is needed,
/// or \ref bad_array_size if <tt>n * node_size()</tt> is too big.
/// \requires \c n must be valid \concept{concept_array,array count}.
void* allocate_array(std::size_t n)
{
detail::check_allocation_size<bad_array_size>(
n * node_size(), [&] { return pool_type::value ? next_capacity() : 0; },
info());
return allocate_array(n, node_size());
}
/// \effects Allocates an \concept{concept_array,array} of nodes similar to \ref allocate_array().
/// But it will never allocate a new memory block.
/// \returns An array of \c n nodes of size \ref node_size() suitable aligned
/// or `nullptr`.
void* try_allocate_array(std::size_t n) noexcept
{
return try_allocate_array(n, node_size());
}
/// \effects Deallocates a single \concept{concept_node,node} by putting it back onto the free list.
/// \requires \c ptr must be a result from a previous call to \ref allocate_node() on the same free list,
/// i.e. either this allocator object or a new object created by moving this to it.
void deallocate_node(void* ptr) noexcept
{
free_list_.deallocate(ptr);
}
/// \effects Deallocates a single \concept{concept_node,node} but it does not be a result of a previous call to \ref allocate_node().
/// \returns `true` if the node could be deallocated, `false` otherwise.
/// \note Some free list implementations can deallocate any memory,
/// doesn't matter where it is coming from.
bool try_deallocate_node(void* ptr) noexcept
{
if (!arena_.owns(ptr))
return false;
free_list_.deallocate(ptr);
return true;
}
/// \effects Deallocates an \concept{concept_array,array} by putting it back onto the free list.
/// \requires \c ptr must be a result from a previous call to \ref allocate_array() with the same \c n on the same free list,
/// i.e. either this allocator object or a new object created by moving this to it.
void deallocate_array(void* ptr, std::size_t n) noexcept
{
FOONATHAN_MEMORY_ASSERT_MSG(pool_type::value, "does not support array allocations");
free_list_.deallocate(ptr, n * node_size());
}
/// \effects Deallocates an \concept{concept_array,array} but it does not be a result of a previous call to \ref allocate_array().
/// \returns `true` if the node could be deallocated, `false` otherwise.
/// \note Some free list implementations can deallocate any memory,
/// doesn't matter where it is coming from.
bool try_deallocate_array(void* ptr, std::size_t n) noexcept
{
return try_deallocate_array(ptr, n, node_size());
}
/// \returns The size of each \concept{concept_node,node} in the pool,
/// this is either the same value as in the constructor or \c min_node_size if the value was too small.
std::size_t node_size() const noexcept
{
return free_list_.node_size();
}
/// \effects Returns the total amount of bytes remaining on the free list.
/// Divide it by \ref node_size() to get the number of nodes that can be allocated without growing the arena.
/// \note Array allocations may lead to a growth even if the capacity_left left is big enough.
std::size_t capacity_left() const noexcept
{
return free_list_.capacity() * node_size();
}
/// \returns The size of the next memory block after the free list gets empty and the arena grows.
/// \ref capacity_left() will increase by this amount.
/// \note Due to fence memory in debug mode this cannot be just divided by the \ref node_size() to get the number of nodes.
std::size_t next_capacity() const noexcept
{
return free_list_.usable_size(arena_.next_block_size());
}
/// \returns A reference to the \concept{concept_blockallocator,BlockAllocator} used for managing the arena.
/// \requires It is undefined behavior to move this allocator out into another object.
allocator_type& get_allocator() noexcept
{
return arena_.get_allocator();
}
/// \returns If `ptr` is in memory owned by the underlying arena.
bool owns(const void* ptr) const noexcept
{
return arena_.owns(ptr);
}
private:
allocator_info info() const noexcept
{
return {FOONATHAN_MEMORY_LOG_PREFIX "::memory_pool", this};
}
void allocate_block()
{
auto mem = arena_.allocate_block();
free_list_.insert(static_cast<char*>(mem.memory), mem.size);
}
void* allocate_array(std::size_t n, std::size_t node_size)
{
auto mem = free_list_.empty() ? nullptr : free_list_.allocate(n * node_size);
if (!mem)
{
allocate_block();
mem = free_list_.allocate(n * node_size);
if (!mem)
FOONATHAN_THROW(bad_array_size(info(), n * node_size, capacity_left()));
}
return mem;
}
void* try_allocate_array(std::size_t n, std::size_t node_size) noexcept
{
return !pool_type::value || free_list_.empty() ? nullptr :
free_list_.allocate(n * node_size);
}
bool try_deallocate_array(void* ptr, std::size_t n, std::size_t node_size) noexcept
{
if (!pool_type::value || !arena_.owns(ptr))
return false;
free_list_.deallocate(ptr, n * node_size);
return true;
}
memory_arena<allocator_type, false> arena_;
free_list free_list_;
friend allocator_traits<memory_pool<PoolType, BlockOrRawAllocator>>;
friend composable_allocator_traits<memory_pool<PoolType, BlockOrRawAllocator>>;
};
#if FOONATHAN_MEMORY_EXTERN_TEMPLATE
extern template class memory_pool<node_pool>;
extern template class memory_pool<array_pool>;
extern template class memory_pool<small_node_pool>;
#endif
template <class Type, class Alloc>
constexpr std::size_t memory_pool<Type, Alloc>::min_node_size;
/// Specialization of the \ref allocator_traits for \ref memory_pool classes.
/// \note It is not allowed to mix calls through the specialization and through the member functions,
/// i.e. \ref memory_pool::allocate_node() and this \c allocate_node().
/// \ingroup allocator
template <typename PoolType, class ImplRawAllocator>
class allocator_traits<memory_pool<PoolType, ImplRawAllocator>>
{
public:
using allocator_type = memory_pool<PoolType, ImplRawAllocator>;
using is_stateful = std::true_type;
/// \returns The result of \ref memory_pool::allocate_node().
/// \throws Anything thrown by the pool allocation function
/// or a \ref bad_allocation_size exception.
static void* allocate_node(allocator_type& state, std::size_t size,
std::size_t alignment)
{
detail::check_allocation_size<bad_node_size>(size, max_node_size(state),
state.info());
detail::check_allocation_size<
bad_alignment>(alignment, [&] { return max_alignment(state); }, state.info());
auto mem = state.allocate_node();
state.on_allocate(size);
return mem;
}
/// \effects Forwards to \ref memory_pool::allocate_array()
/// with the number of nodes adjusted to be the minimum,
/// i.e. when the \c size is less than the \ref memory_pool::node_size().
/// \returns A \concept{concept_array,array} with specified properties.
/// \requires The \ref memory_pool has to support array allocations.
/// \throws Anything thrown by the pool allocation function.
static void* allocate_array(allocator_type& state, std::size_t count, std::size_t size,
std::size_t alignment)
{
detail::check_allocation_size<bad_node_size>(size, max_node_size(state),
state.info());
detail::check_allocation_size<
bad_alignment>(alignment, [&] { return max_alignment(state); }, state.info());
detail::check_allocation_size<bad_array_size>(count * size, max_array_size(state),
state.info());
auto mem = state.allocate_array(count, size);
state.on_allocate(count * size);
return mem;
}
/// \effects Just forwards to \ref memory_pool::deallocate_node().
static void deallocate_node(allocator_type& state, void* node, std::size_t size,
std::size_t) noexcept
{
state.deallocate_node(node);
state.on_deallocate(size);
}
/// \effects Forwards to \ref memory_pool::deallocate_array() with the same size adjustment.
static void deallocate_array(allocator_type& state, void* array, std::size_t count,
std::size_t size, std::size_t) noexcept
{
state.free_list_.deallocate(array, count * size);
state.on_deallocate(count * size);
}
/// \returns The maximum size of each node which is \ref memory_pool::node_size().
static std::size_t max_node_size(const allocator_type& state) noexcept
{
return state.node_size();
}
/// \returns An upper bound on the maximum array size which is \ref memory_pool::next_capacity().
static std::size_t max_array_size(const allocator_type& state) noexcept
{
return state.next_capacity();
}
/// \returns The maximum alignment which is the next bigger power of two if less than \c alignof(std::max_align_t)
/// or the maximum alignment itself otherwise.
static std::size_t max_alignment(const allocator_type& state) noexcept
{
return state.free_list_.alignment();
}
};
/// Specialization of the \ref composable_allocator_traits for \ref memory_pool classes.
/// \ingroup allocator
template <typename PoolType, class BlockOrRawAllocator>
class composable_allocator_traits<memory_pool<PoolType, BlockOrRawAllocator>>
{
using traits = allocator_traits<memory_pool<PoolType, BlockOrRawAllocator>>;
public:
using allocator_type = memory_pool<PoolType, BlockOrRawAllocator>;
/// \returns The result of \ref memory_pool::try_allocate_node()
/// or `nullptr` if the allocation size was too big.
static void* try_allocate_node(allocator_type& state, std::size_t size,
std::size_t alignment) noexcept
{
if (size > traits::max_node_size(state) || alignment > traits::max_alignment(state))
return nullptr;
return state.try_allocate_node();
}
/// \effects Forwards to \ref memory_pool::try_allocate_array()
/// with the number of nodes adjusted to be the minimum,
/// if the \c size is less than the \ref memory_pool::node_size().
/// \returns A \concept{concept_array,array} with specified properties
/// or `nullptr` if it was unable to allocate.
static void* try_allocate_array(allocator_type& state, std::size_t count,
std::size_t size, std::size_t alignment) noexcept
{
if (size > traits::max_node_size(state)
|| count * size > traits::max_array_size(state)
|| alignment > traits::max_alignment(state))
return nullptr;
return state.try_allocate_array(count, size);
}
/// \effects Just forwards to \ref memory_pool::try_deallocate_node().
/// \returns Whether the deallocation was successful.
static bool try_deallocate_node(allocator_type& state, void* node, std::size_t size,
std::size_t alignment) noexcept
{
if (size > traits::max_node_size(state) || alignment > traits::max_alignment(state))
return false;
return state.try_deallocate_node(node);
}
/// \effects Forwards to \ref memory_pool::deallocate_array() with the same size adjustment.
/// \returns Whether the deallocation was successful.
static bool try_deallocate_array(allocator_type& state, void* array, std::size_t count,
std::size_t size, std::size_t alignment) noexcept
{
if (size > traits::max_node_size(state)
|| count * size > traits::max_array_size(state)
|| alignment > traits::max_alignment(state))
return false;
return state.try_deallocate_array(array, count, size);
}
};
#if FOONATHAN_MEMORY_EXTERN_TEMPLATE
extern template class allocator_traits<memory_pool<node_pool>>;
extern template class allocator_traits<memory_pool<array_pool>>;
extern template class allocator_traits<memory_pool<small_node_pool>>;
extern template class composable_allocator_traits<memory_pool<node_pool>>;
extern template class composable_allocator_traits<memory_pool<array_pool>>;
extern template class composable_allocator_traits<memory_pool<small_node_pool>>;
#endif
} // namespace memory
} // namespace foonathan
#endif // FOONATHAN_MEMORY_MEMORY_POOL_HPP_INCLUDED
|